

 871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1
Initial Report on AI-Driven Techniques for the

MonB5G Decision Engine

Document Summary Information

Grant Agreement No 871780 Acronym MonB5G

Full Title Distributed Management of Network Slices in beyond 5G

Start Date 01/11/2019 Duration 36 months

Project URL https://www.monb5g.eu/

Deliverable D4.1 – Initial report on AI-driven techniques for the MonB5G Decision Engine

Work Package WP4

Contractual due date M17 Actual submission date 31.03.2021

Nature Report Dissemination Level Public

Lead Beneficiary EUR

Responsible Author Thrasyvoulos Spyropoulos (EUR), Theodoros Giannakas (EUR)

Contributions from Theodoros Giannakas (EUR), Thrasyvoulos Spyropoulos (EUR), Pavlos Doanis
(EUR), Marina Costantini (EUR), Christos Verikoukis (CTTC), Hatim Chergui
(CTTC), David Pubill (CTTC), Jordi Serra (CTTC), Luis Blanco (CTTC), Sarang

https://upload.wikimedia.org/wikipedia/commons/b/b7/Flag_of_Europe.svg
https://www.monb5g.eu/

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 2

Kahvazadeh (CTTC), Luis A. Garrido Platero (IQU), Anestis Dalgkitsis (IQU),
Lanfranco Zanzi (NEC), Francesco Devoti (NEC), Jose Jurandir Alves Asteves (ORA-
FR), Amina Boubendir (ORA-FR), Sławomir Kukliński (ORA-PL), Robert Kołakowski
(ORA-PL), Sihem Bakri (EUR), Bouziane Birk (EUR), Adlen Ksentini (EUR), Anne-Marie
Bonseag (LMI), Mohamed Rahali (BCOM), Cao Thanh Phan (BCOM), Zhao Xu (NEC),
Aiman Nait Abbou (AAL), Mohammed Boukhalfa (AAL)

Disclaimer

The content of the publication herein is the sole responsibility of the publishers and it does not necessarily
represent the views expressed by the European Commission or its services.

While the information contained in the documents is believed to be accurate, the authors(s) or any other
participant in the MonB5G consortium make no warranty of any kind with regard to this material including,
but not limited to the implied warranties of merchantability and fitness for a particular purpose.

Neither the MonB5G Consortium nor any of its members, their officers, employees or agents shall be
responsible or liable in negligence or otherwise howsoever in respect of any inaccuracy or omission herein.

Without derogating from the generality of the foregoing neither the MonB5G Consortium nor any of its
members, their officers, employees or agents shall be liable for any direct or indirect or consequential loss
or damage caused by or arising from any information advice or inaccuracy or omission herein.

Copyright message

© MonB5G Consortium, 2019-2022. This deliverable contains original unpublished work except where clearly
indicated otherwise. Acknowledgement of previously published material and of the work of others has been
made through appropriate citation, quotation or both. Reproduction is authorised provided the so urce is
acknowledged.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 3

TABLE OF CONTENTS

List of Figures ... 6

List of Tables .. 8

List of Acronyms ... 9

1 Executive summary ...11

2 Introduction and Problem Scope ...13

2.1 Structure ..14

2.2 The Need of Distributed Slice Management ..15

2.3 Slice representation ..17

2.3.1 Mathematical description ...17

2.3.2 Slice representation in the standards ..18

2.4 Inputs, and Actions of the Decision Engine ...19

2.4.1 Input Measurements ...19

2.4.2 Action Space ...20

2.4.3 System Performance Metrics ..20

2.4.4 Discussion on the performance metrics. ..21

2.4.5 Machine Learning Algorithms KPIs. ...22

2.5 Types of SLA ...22

3 Related work on AI for Beyond 5G orchestration ..24

3.1 Learning-assisted Admission Control ...25

3.2 Centralized Machine-Learning for Slice Management and Control ..27

3.3 Distributed Methods and Multi-agent Learning for Slice Management..29

3.4 Graph-based Learning for Slicing ..32

4 MonB5G DE structure and specifications ..35

4.1 MonB5G DE vs. ETSI ZSM Control ..35

4.1.1 zsm closed loop control...35

4.1.2 De Positioning in MonB5g Architecture ...37

4.2 MonB5G DE Interfaces and Specifications ...38

4.2.1 DE Interfaces ...38

4.2.2 MonB5G DE Specifications ..40

4.3 DE Cross-Domain Operation..42

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 4

5 Slice Admission Control ..46

5.1 Single domain slice admission control algorithms ...48

5.1.1 Cloud Infrastructure based Slice admission approaches ..48

5.1.2 Model-based admission for the cloud domain ...60

5.1.3 Reinforcement Learning admission for the cloud domain ..63

5.2 Multi-domain slice admission control algorithms ..65

5.2.1 Multi-domain Centralized Admission control using Reinforcement Learning65

6 Intra-slice Orchestration ...67

6.1 Domain-specific intra-slice orchestration ..67

6.1.1 AI methods for VNF (re-)configuration and migration ..67

6.1.2 AI methods for intra-slice scaling ..70

6.2 Cross-domain intra-slice orchestration ...73

6.2.1 E2E VNF and Slice placement and scaling - hierarchical/centralized ..73

6.2.2 Distributed algorithms and use of multi agents Reinforcement Learning75

7 Inter-slice Orchestration ...77

7.1 Domain-specific inter-slice orchestration ..78

7.1.1 Q-Learning with Multiple Objectives ...78

7.1.2 Statistical methods for vnf bottleneck localization ..82

7.1.3 Latency Control ...86

7.2 Cross-domain end-to-end inter-slice orchestration with Reinforcement Learning92

8 Conclusions ..95

9 References ..96

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 5

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 6

List of Figures

Figure 1 Initial slice’s VNF placement according to the service graph [Modified and reproduced from 5G-
Courses.com] .. 17

Figure 2. Functional view of a closed loop and its functional blocks within the ZSM framework [59] 36

Figure 3 MonB5G DE Positioning with MS, AE and ACT .. 38

Figure 4 DE Interfaces .. 39

Figure 5 Inner workings at the DE ... 41

Figure 6 Multiple instances of the MS/AE/DE triplet across multiple technological domains 43

Figure 7 Federated DRL Leveraging Distributed Cross-Domain/Slice DE .. 44

Figure 8 Multi-agent decentralized actor, centralized critic approach [60]. ... 45

Figure 9 System model ... 49

Figure 10 InfProv reward and penalty vs. Time for slice arrival request rate= 2 .. 56

Figure 11 InfProv reward and penalty vs. Time for slice arrival request rate=10 ... 57

Figure 12 Percentage of slice request reject vs Htime for slice arrival request rate=10 ... 58

Figure 13 Percentage of accepted slice type for slice arrival request rate=10 ... 59

Figure 14 Offline and Online DQL Average Reward of Htime= (5, 20, 50, 100) for slice arrival request rate= 10 .. 60

Figure 15 Comparison of blocking ratios vs network load for two ILP algorithms and two versions of the
proposed heuristic: the one adopting random server selection (P2C1), the one adopting the intelligent
server selection policy (P2C2) .. 62

Figure 16 Average execution time evaluation ... 63

Figure 17 Architecture of the proposed DRL agent ... 65

Figure 18 End to end multi-domain physical substrate network modeling .. 66

Figure 19 Multiple geographical domains with local agents instantiated .. 68

Figure 20 Interconnected domains sharing a common reward to enable cooperation between the agents 69

Figure 21 SafeRL with safety shield, logic and multiple safe baselines ... 70

Figure 22 Slice i receives traffic from 3 BSs, and the traffic values are gathered in a Neural Network which
requests resources for the next time steps ... 71

Figure 23 True and DE provisioned traffic intensity vs time for DE with more weight on reconfiguration costs ... 72

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 7

Figure 24 True and DE provisioned traffic intensity vs time for DE with more weight on over/under-provision
costs ... 73

Figure 25 Learning control using previous contribution: heuristic based on the “Power of Two Choices” (P2C)
principle .. 74

Figure 26 Network Slice Acceptance Ratio vs Training Phase ... 75

Figure 27 Multi-agent DRL approach for cross-domain slice orchestration ... 76

Figure 28 Conceptual interaction of intra and inter slice DEs ... 77

Figure 29 On the top: Network operator infrastructure resources, on the bottom: Different slices as graph
embeddings, in all domains.. 78

Figure 30 Objective performance vs time of online Q-learning and offline MDP-optimal controllers; case of one
random and two bursty slices .. 81

Figure 31 Objective performance vs time of online Q-learning and offline MDP-optimal controllers; case of two
random and one bursty slices .. 82

Figure 32 Service Function Chaining architecture ... 83

Figure 33 Service function chain deployment with multiple Service Function Paths ... 83

Figure 34 Failure probability estimations and confusion matrix for 50 tests. In the tests, we vary the number of
simultaneously failed nodes from 1 tot3 ... 86

Figure 35 Radio channel variations as Markov chain. ... 88

Figure 36 Impact of different resource allocation chunk sizes ... 90

Figure 37 Architecture overview ... 91

Figure 38 Preliminary results on Latency control .. 91

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 8

List of Tables

Table 1 Deliverable Structure .. 14

Table 2 Description of the type of DE interfaces and the associated role .. 40

Table 3 Number of resources: (i) available in InfProv, (ii) requested by each slice in UL and DL 55

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 9

List of Acronyms

Acronym Description
3GPP Third Generation Partnership Project

AE Analytic Engine

AE-F Analytic Engine Function

AE-S Analytic Engine Sublayer

AI Artificial Intelligence

CLA Closed-loop Automation

CNF Cloud Native function

DE Decision Engine

DE-F Decision Engine Function

DE-S Decision Engine Sublayer

EEM Embedded Element Manager

eMBB Enhanced Mobile Broadband

eTOM Enhanced Telecom Operations Map

ETSI European Telecommunications Standards Institute

ECA Event Condition Action

ENI Experiential Networked Intelligence

FCAPS Fault, Configuration, Accounting, Performance, Security

ILP Integer Linear Program(ing)

ISM In-Slice Management

ITU International Telecommunication Union

KPI Key Performance Indicator

LCM Lifecycle Management

ML Machine Learning

MANO Management and Orchestration

MaaS Management as a Service

MAN-F Management Function

mMTC Massive Machine Type Communications

MEO MEC Orchestrator

MNO Mobile Network Operator

MLaaS MonB5G Layer as a Service

MS Monitoring System

MS-F Monitoring System Function

MS-S Monitoring System Sublayer

MEC Multi-access Edge Computing

NFVO Network Function Virtualization Orchestrator

NSD Network Service Descriptor

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 10

NSO Network Service Orchestrator

NSP Network Service Provider

NSI Network Slice Instance

NSMF Network Slice Management Function

NSSMF Network Slice Subnetwork Management Function

NST Network Slice Template

NSSI Network sub-Slice Instance

NGMN Next Generation Mobile Networks

NFVI NFV Infrastructure

OAI Open Air Interface

ONAP Open Network Automation Platform

OSM Open Source MANO

OSS Operation System Support

PaaS Platform as a Service

PNF Physical Network Function

PoC Proof of Concept

QoE Quality of Experience

QoS Quality of Service

RL Reinforcement Learning

RAN Radio Access Network

SDN Software-Defined Networking

SON Self-Organizing Network

SLA Service Level Agreement

SFL Slice Functional Layer

SML Slice Management Layer

SM Slice Manager

uRLLC Ultra-Reliable Low-Latency Communication

VIM Virtual Infrastructure Manager

VNF Virtual network Function

VNFM Virtual network Function Manager

ZSM Zero-touch network and Service Management

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 11

1 Executive summary

This deliverable describes our preliminary work related to WP4, namely data-driven and distributed
orchestration mechanisms for slice admission control, intra-slice, and inter-slice management. The key
avenues of innovation for the mechanisms proposed in WP, the initial progress of which we describe here ,
are the following.

First, WP4 proposes a fully data-driven decision engine and algorithm stack. While recent works and related
EU projects investigate the introduction of AI solutions into the beyond 5G architecture, these either focus
mostly on data analytics, or target specific components of the orchestration architecture in a piecemeal
fashion. In contrast, WP4 investigates data-driven algorithms as the key ingredient of all slice lifecycle
management operations, from admission control, to scaling and migration operations targeting a specific
slice (we refer to these as intra-slice operation) and/or specific technological (e.g., RAN, MEC, core, cloud)
and administrative domain, to end-to-end orchestration operations involving large number of slices each
spanning multiple technological and possibly administrative domains. This is greatly facilitated by a tight
integration with an equally novel Analytic Engine (AE) and Monitoring System (MS), also heavily based on
modern AI methods, that feed the algorithms of the Decision Engine (DE) with multi-grain, multi-modal, and
tunable measurements and predictions.

Second, another key novelty of MonB5G and the mechanisms of WP4 is that the DE architecture is designed
to be flexibly distributed across different administrative domains, technological domains, and even fine
granularities such as one DE per tenant, slice, or even VNF (virtual network function). Flexible distribution
means that the proposed DE could operate in different configurations, depending on the need. For example,
a hierarchical DE implementation could be useful, where a “central” DE (e.g. , running in the cloud or core
domain) is in control of various “edge” DEs (partially) responsible for different RAN domains, edge clouds
(e.g., MEC) etc., (or even slice-specific DEs, as mentioned earlier) all working towards optimal lifecycle
management of slices spanning all these domains. On the one hand, having the DE algorithms located as close
as possible to the network components that the decisions are taken for, can greatly improve decision latency,
a key concern when controlling edge resources (e.g., RAN) where even management decisions often need to
be taken at much smaller time granularities than traditional in traditional management frameworks. On the
other hand, the amount of information that needs to be collected and transported across the network to
facilitate the heavy use of modern data-driven algorithms will be orders of magnitude more than in traditional
monitoring and analytics for network management. What is more, if the trained model used is large (e.g.,
state-of-the-art deep neural network architectures used for challenging ML tasks might have millions of
trained weights – and thus resulting operations). Hence, in this deliverable, we will also present mechanisms
that not only distribute the conceptual architecture across domains (e.g., the same DNN model running with
no or minor modifications in different locations) but distribute the model/algorithm itself across domains,
such Distributed Deep Neural Networks

Lastly, in this deliverable we will also consider solutions that fully decentralize the DE, across domains, in a

non-hierarchical, flat topology, without a “central” entity coordinating the rest. This setup is often referred

to as Federated Learning. In beyond 5G networks, federated DEs are often applicable in scenarios where a

slice spans multiple administrative domains, and the local DE of one domain needs to coordinate with other

DEs to optimize a common goal (e.g., the end-to-end performance/SLA of a slice spanning these domains),

yet it does not want to reveal any data to other DEs, besides what is absolutely necessary, for privacy reasons.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 12

It is important to remark the following here: (a) while proposals along each of the above directions has
standalone value, we argue that it is the co-design of these mechanisms that makes the sum more than its
parts, and a key novelty of the WP4 mechanisms; (b) while the DE engine architecture will eventually cover
all technological domains an multiple administrative ones, some of the initial algorithms explored in the first
phase of the project, and described in detail in this deliverable, target specific domains as a key initial step
towards an integrated end-to-end multi-domain setup. These algorithms should be interpreted as building
blocks of the full integrated architectures that the proposed DE will evolve to in the remainder of the project.

The deliverable content flow can be summarized as follows. We commence our exposition with a generic
description of the types of problem setups considered in this work, with respect to key components the
proposed algorithms will consider, namely slice representations, KPI metrics for the algorithms to optimize
as well as KPIs used to measure the performance of the algorithms themselves, SLA types and violation
penalties, etc. We then provide an up-to-date state-of-the-art discussion on existing solutions for problem
falling under the umbrellas of data-driven orchestration, zero-touch slice management, etc., coming both
from the academia as well as industrial white papers, standards, etc. We focus on the key tools that have
attracted significant interest recently, and used by our own algorithmic frameworks, as well, namely (deep)
reinforcement learning, use of deep neural networks for slice-specific objectives, etc. With this setup in mind,
we move on to describe the architecture of the (distributed) Decision Engine proposed , identifying key
component, interaction between DEs residing in the same or different domains, as well as the interfaces with
the Monitoring System (MS) and Analytic Engine (AE).

The rest of the deliverable chapters focus on algorithmic contributions for specific components of slice

management, namely slice admission control, intra-slice orchestration, and inter-slice orchestration; these

topics correspond respectively to the three technical tasks of the work package. Specifically, we first describe

initial proposals and findings for slice admission control using data-driven methodology (e.g., reinforcement

learning) and discuss how modern admission control mechanisms for the scenarios of interest should also

take into consideration future reconfiguration costs (due to new admissions, or demand variability and

resulting resource scaling), as well as generally interact with inter- and intra- slice management mechanisms

active during the lifetime of a slice. We then elaborate on our proposals for intra-slice management, e.g.,

how to up/down-scale the resources of a slice, or migrate the VNFs of a slice chain, in a distributed manner

to respect various types of SLAs, using data-driven mechanisms that use the AE and MS engines to adjust not

only to the current slice and network status, but optimally consider future evolution as well. Finally, we

describe our algorithmic solutions to cope with related reconfigurations and scaling events when multiple

slices, possibly pertaining to different tenants, and (partially or fully) overlapping across domains.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 13

2 Introduction and Problem Scope

In this section, we introduce first the concept of end-to-end slicing in 5G and beyond networks, and we

motivate the need for the two main axes, along which MonB5G proposes to improve the state of the art in

network slice management and orchestration.

The first axis is a fully data-driven decision engine and algorithm stack. While some recent 5G-related projects

(e.g., PPP Phase 2) do investigate the introduction of AI- and ML-based solutions into the architecture, these

either focus mostly on data analytics, and/or partial integration with the underlying orchestration

architecture. In contrast, MonB5G investigates data-driven algorithms as the key ingredient of all slice

lifecycle management operations, from admission control, to scaling and migration operations targeting a

specific slice (we refer to these as intra-slice operation) and/or specific technological (e.g., RAN, MEC, core,

cloud) and administrative domains, to end-to-end orchestration operations involving large number of slices

each spanning multiple technological and possibly administrative domains. This is greatly facilitated by a tight

integration with a highly sophisticated Analytic Engine (AE) and Monitoring System (MS), also heavily based

on modern AI methods, that feed the algorithms of the Decision Engine (DE) with multi-grain, multi-modal,

and tunable measurements and predictions, that are not available in existing architectures or related work.

(The AE and MS systems are described in detail in deliverable D3.1 - here, we focus mainly on the interface(s)

of the DE with these systems.)

The second key axis of novelty and performance improvement, is that the DE architecture is desi gned to be

flexibly distributed across different administrative domains, technological domains, and even fine

granularities such as one DE per tenant, slice, or even VNF (virtual network function). Flexible distribution

means that the proposed DE could operate in different configurations, depending on the need. For example,

a hierarchical DE implementation could be useful, where a “central” DE (e.g., running in the cloud or core

domain) is in control of various “edge” DEs (partially) responsible for different RAN domains, edge clouds

(e.g., MEC) etc., (or even slice-specific DEs, as mentioned earlier) all working towards optimal lifecycle

management of slices spanning all these domains. There are great performance advantages of such

DE/algorithm distribution:

(a) As the decision engine is envisioned to take actions at time granularities that are radically more short

than traditional management operations (orders of minutes or hours), response latency becomes crucial;

having the DE algorithms located as close as possible to the network components that the decisions are taken

for, can greatly improve performance. For example, DE algorithms that orchestrate resources at a RAN

domain often require decision delays in the order of milliseconds. The latency to collect information to and

distribute actuation decisions from the central DE could be prohibitive; instead, such algorithms should be

hosted at a local RAN DE, coordinating with the central one sparsely and on a per need basis.

(b) In addition to latency, the heavy use of data-driven methods for such algorithms suggests that the

amount of information that needs to be collected and transported across the network is expected to be

orders of magnitude more than in traditional monitoring and analytics for network management. It is well

known that modern AI methods like (deep) reinforcement learning and deep neural networks, while often

much more efficient than model-based algorithms in highly dynamic, complex environments, not only do

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 14

they require both great amounts of data during the training phase, but might also be quite burdensome

during operation, if the trained model used is large (e.g., state-of-the-art deep neural network architectures

used for image classification or other difficult ML tasks might have millions of trained weights – and thus

resulting operations – that need to take place for an orchestration decision, e.g., the resource scaling for

some local VNFs). Hence, in this deliverable, we will also present mechanism that not only distribute the

conceptual architecture across domains (e.g., the same DNN model running with no , or minor modifications

in different locations) but distribute the model/algorithm itself across domains. A key contribution of MonB5G

in this direction is the concept of Distributed Deep Neural Networks, which can improve both decision latency

and greatly reduce the network/communication footprint to achieve good performance.

Last but not least, in this deliverable we will also consider solutions that fully decentralize the DE, across

domains, in a non-hierarchical, flat topology, without a “central” entity coordinating the res t. This setup is

often referred to as Federated Learning. In beyond 5G networks, federated DEs are often applicable in

scenarios where a slice spans multiple administrative domains, and the local DE of one domain needs to

coordinate with other DEs to optimize a common goal (e.g., the end-to-end performance/SLA of a slice

spanning these domains), yet it does not want to reveal any data to other DEs, besides what is absolutely

necessary, for privacy reasons.

As a final note, it is important to stress that, while the above two architectural components, data-driven

algorithms and distributed management, that characterize the MonB5G decision engine, have considerable

standalone benefits and challenges, it is their proposed co-design, advocated in MonB5G, that brings

significant added value on top of each method and existing works, and enables a truly ``zero-touch'’

management architecture. It is the data intensive modern AI methods that stress the need for flexibly

distributed DE solutions, and it is distributed, large-scale modern optimization methods that thrive in the

thrive in the “Big Data” context and are able to deliver novel tradeoffs between learning/decision accuracy

and network efficiency.

2.1 Structure

The main structure of this deliverable is summarized in the following table, linking each section with the
corresponding task.

Table 1 Deliverable Structure

Sectio
n

Description Task(s) Starting Month

2 Dedicated to properly introducing the vision of MonB5G. Furthermore,
its second goal is to familiarize the reader with the basic assumptions
we make on the slice representation, its modeling, the KPIs we define
for the decision engine performance.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 15

3 Presents the related work on Slicing control, and its intersection with
AI-based techniques.

4 Lays the foundations for the Decision Engine Architecture and describes
in detail the inner workings of the several components of the DE.

T4.4 M13

5 Is the section that describes contributions related to the Admission
Control of the Decision Engine. It presents Algorithms and policies,
along with their results, as measured by the KPIs defined for the
admission controller.

T4.1 M7

6 Here we include contributions that relate to the intra-slice
orchestration/control dimension of the DE. Having received knowledge
from the analytics engine, the slice takes data-driven local (per domain)
or global (e2e) decisions for resource scaling and migration.

T4.2 M7

7 This section focuses on the problem of inter-slice orchestration, which
is essentially hierarchically the highest orchestrator. After having
collected intelligence and measurements for all slices, the goal of this
orchestrator to reconfigure (either only in one technological domain or
all at once) multiple slices and migrate them with an ultimate the
respect of KPIs and SLAs.

T4.3 M7

2.2 The Need of Distributed Slice Management

Network slicing aims at providing customized networks instances tailored for 3rd-party vertical actors’ service

provisioning. Specific requests for network services and/or virtual networks are expected to be issued by

business vertical actors to an orchestration platform and reach the MonB5G portal as depicted in Figure 1.

In this regard, the first step of the slice Life-Cycle-Management (LCM) involves the definition of a network slice

template, also referred as blueprint, which resumes all the operational parameters, performance

characteristics, and the set of network functions (e.g., PNFs or VNFs) required to build the service. For instance,

with reference to Figure 1, examples of services include:

• URLLC slice would benefit from a dedicated server instance placed at the edge of the network,
together with most of the core network functionalities. Enough transport capacity should be
allocated to guarantee high communication standards, as those expected in Industry 4.0 scenarios,
and radio interfaces should be tuned to guarantee adequate bandwidth.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 16

• eMBB slice will require for a Cache VNF placed at the edge of the network in order to optimize the
traffic distribution in the downlink direction, but most of the core network functionalities can still be
 located in the cloud premises due to less stringent latency requirements.

• mMTC slice will pose most of the effort in defining RAN specifications to guarantee inter-machine
communication within pre-defined boundaries but will require limited cloud resources due to
generally limited mobility in IoT scenarios.

The possibility to actually deploy the network slice generally depends on the resource availability and physical

mobile network architecture. Therefore, the initial slice representation must be compared with the real

network topology in order to define the initial VNF placement and chaining exploiting underlying NFV and SDN

functionalities.

Due to its higher position in the reference architecture, this task is generally performed by the DMO. Its

orchestration decisions rely on aggregated and real-time monitoring information which reduce the possibility

of erroneous instantiation of the network slice services, e.g., due to node congestion. While a centralized

decision approach would benefit from a holistic view of the network, it would provide poor scalability when

dealing with realistic scenarios involving operational network topologies and introduce significant monitoring

overhead.

Nevertheless, due to highly variable traffic loads as well as dynamic mobility patterns which affect the service

demand, over time the initial placement strategy may result in sub-optimal settings negatively affect the

overall operational conditions, e.g., making it impossible to further admit network slices.

In order to tackle these challenges, the MonB5G project design the DE as a logically distributed entity in charge

of performing admission and control decisions as well resolving domain-specific resource allocation tasks

limiting the involvement of the higher architectural layers. On the one side, this approach allows to quickly

match the infrastructure resource allocation with the fast-changing underlying traffic demand, increasing the

resource utilization and reducing operational costs. On the other side, it makes possible to instantiate domain-

specific DE agents with limited scope and control-plane capabilities, reducing the amount of information

exchange along the process and increasing the overall network efficiency.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 17

Figure 1 Initial slice’s VNF placement according to the service graph [Modified and reproduced from 5G -
Courses.com]

2.3 Slice representation

2.3.1 MATHEMATICAL DESCRIPTION

A core issue in network slicing includes describing a network slice requirement to define whether a slice
request can be admitted in the system, and how to deal with it through its lifecycle management from a
network operational perspective. The wide set of orchestration actions required to deal with the life-cycle
management of network slices, inevitably brought the adoption of heterogeneous slice representations
under practical circumstances.

The adoption of virtualization technologies in networking is driving a deep innovation in the way network
services are deployed, managed and delivered. Thanks to the latest development in the field, traditionally
hardware-based networking functionalities can now run as independent, and cost-efficient Virtual Network
Functions (VNF) over a shared platform. This novel paradigm allows some network services to be provisioned
in a more flexible way, therefore increasing the network capabilities when coping with unpredictable traffic
demands.

Depending on the type of slice and its service requirements, several networking functionalities should
logically interconnect, and be allowed to exchange information, i.e., a service function chain has to be created
to sustain the service. In this context, an optimized deployment of network services, composed of VNFs that
may be instantiated in multiple Data Centers (DCs) or Mobile Edge Computing (MEC) platforms, is one of the
most challenging orchestration targets, as an accurate deployment of dedicated slice resources favours the
availability of bandwidth and the satisfaction of latency requirements, especially in case of URLLC slice
deployment.

The problem further exacerbates when Physical Network Functions (PNFs) are involved in the process, as
vendor-specific management functionalities increase the need for dedicated interfaces to orchestrate the

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 18

resource sharing. The service function chain corresponding to a slice instantiation can be represented as a
connected graph G = (E, V) where each node (V) represents a VNF, and edges (E) are the links between nodes.
Clearly, each edge should have enough capacity to handle the full traffic required by the corresponding
service, and each node should have enough resources to handle the provided service.

Given the wide set of heterogeneous resources distributed over multiple technological domains, when
dealing with resource allocation tasks, additional layers of abstraction as well as the definition of aggregated
KPIs come into play, helping to achieve closed form mathematical formulations and mai ntain the problem
tractable.

A slice can be defined as a subset of network resources allocated to an external tenant (virtual operator or
service provider), with complete control over those resources. To this aim, the specific network domain plays
a key role in the definition of required resources depending on the specific type of services. As an example,
at the RAN domain spectrum-level slicing is considered, wherein the available radio resources (i.e., resource
blocks) can be sliced by time, space, or frequency multiplexing, or by an overlaid access. Transport domains
involves flow-based metrics, as well as topological characteristics such as number of nodes and edges
composing the network, together with capacity and bandwidth features. At the core of the network, cloud -
based metrics are often adopted, such as computing and storage capacity, to provide a representation of the
computational requirements dictated by the service to be deployed.

Therefore, network slice requests are also represented as a tuple of different physical resourc es, e.g., radio
RBs, CPU usage, storage, etc. considering the different technological domain of interest. This eases the
admission and control task, where demand requirements are compared against infrastructure resource
availability (defined by means of several abstractions) therefore allowing for the adoption of well-known
optimization formulations, e.g., Knapsack, to solve the network slice allocation problem.

In this deliverable, we also assume that a slice i, and its placement over the mobile network infrastructure,
can be represented by a graph Gi = (Vi, Ei), where each node Vi represents a physical node of the network,
i.e., a base station, a MEC platform, or a cloud server, candidate to host some slice functionalities, and each
edge Ei represents a physical (or even logical) link that interconnects the nodes and allows for the creation of
a specific network slice VNF chain. Additionally, each VNF is accompanied by a set of values; more specifically,
the nodes in the RAN come with a load intensity which represents the resource blocks that are needed for
the slice, the nodes at the MEC and at the cloud come with a requirement which stands for the computation
resources, and finally, the links of the graph are characterized by traffic demand intensity.

What makes slicing hard, in general, is that the problem of deploying a slice Gi in a telecom network boils
down to embedding smaller graphs (our slice tenants) to some larger graph (the infrastructure of the
operator), Go = (Vo, Eo), where the subscript “o” stands for the telecom operator. We need to stress here that
all nodes and links of Go represent physical resources with some finite capacity, and that all the elements of
Gi have some demand that needs to be appropriately (feasibly) placed in Go. Nevertheless, network dynamics
and slice requirements may change over time, for example as a result of end-user mobility, making the overall
problem even more difficult to be solved in a cost-efficient way.

2.3.2 SLICE REPRESENTATION IN THE STANDARDS

When it comes to network slices, the high-level definition given by NGMN (Next Generation Mobile Networks)
considers a sub-network instance as a shared entity between multiple slices [1]. It also considers that a

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 19

network slice instance may be fully or partly, logically and/or physically, isolated from another network slice
instances. There have been many attempts to come up with a common slice data model as a standard.
However, most of the contributions focus only on parts of the problem, mostly, how an end -to-end slice
should be defined. For instance, 3GPP defines a network slice as a dedicated logical network, which provid es
specific network characteristics and capabilities on a shared infrastructure. 3GPP considers Network Slice
Template (NST) to deploy network slices. NST describes the network slice, contains data such as slice
configuration, network capabilities, and specific requirements of the tenants [2].

ETSI NFV considers an NFV network service as a resource-centric view of a network slice, this can be the case
when NSI contains one or many VNFs. This makes the network slice model partially dependent on the network
service Model [3]. There have been few attempts to disassociate the technology from the network slice
model, for instance, this IETF draft is based on YANG module [4]. Nevertheless, this draft went obsolete and
did not continue. The Reason might be the different vision IETF took compared to 3GPP and ETSI.

From this literature, we can classify the existing network slice models into three main classes: a) service -
based; b) resource-based; and c) hybrid-based.

a) Service-based: network slices are represented as a set of network services. The model described on
ETSI’s report [3] is service-based. Examples of an EU project that adopt this model is 5GTANGO.

b) Resource-based: Network slices are viewed as a set of infrastructure resources with service elements
deployed on them. The advantage of this model is scalability, by removing the service elements, the
resources can be used to host anything. MATILDA, for example, follows a resource-based model.
MATILDA by design instantiate and manage the application-aware network slices. The slice
metamodel proposed by MATILDA is based on VIM-managed components (e.g., computing, storage,
and network physical infrastructure) and their components [5].

c) Hybrid-based: Network slices combine between a set of network services and infrastructure
resources; this model does consider a mapping functionality between the two. This model tries to
take the most out of the two approaches. MonB5G, integrate ETSI NFV (service-based) and ETSI MEC
(infrastructure-based) within the same slice management environment. Therefore, the MonB5G slice
model can be seen a hybrid-based.

2.4 Inputs, and Actions of the Decision Engine

2.4.1 INPUT MEASUREMENTS

In this deliverable, the main concern is the decision engine (DE). Put simply, we are interested in the control

of the slicing network, with an ultimate goal to achieve optimal (or near-optimal) performance in a variety of

metrics and KPIs. Before discussing these goals (performance metrics, KPIs, etc.), it is of crucial importance

to specify the set of measurements, which will define the state of the system. We assume that the DEs at:

 Intra-slice level (between the same slice) has clear view of the traffic in the previous time steps for
this slice. This means that there are measurements for RBs, VMs workload intensity , as well as the
accurate measurements for the communication requirements between VNFs that talk with each
other. In principle, the slice DE scheduler should also have the ability to observe the system
rewards/costs. That is, the DE should be updated through the monitoring system to keep track of

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 20

fluctuations in traffic demands, and also through the analytics engine for less obvious metrics, such
as SLA violations, or in general for end-to-end metrics that the DE is trying to optimize/balance.
Essentially, this second part of input measurements should serve as the feedback of the DE.

 Inter-slice level (among different slices), there exist the same measurements as above (traffic
intensities for all active VNFs etc.), but equally importantly, the inter-slice DE must have a holistic
view on the system configuration, i.e., which slices VNFs are placed in which infrastructure server
nodes.

These inputs are supposed to be provided by the monitoring system (MS), and the analytics engine (AE).

2.4.2 ACTION SPACE

Conditioned on the gathered intelligence acquired by the analytics engine, and the monitoring system (the
measurable inputs of the DE), the decision-maker (engine) should be at the position to take some action,
towards improving the system KPIs. Although, these will be discussed in detail in Section 4, here we briefly
list the control entities of the DE in an abstract way:

 Resource Scaling: When some slice observes its (past) traffic intensities from a set of base stations, it
shapes a view about what its future might be. Therefore, it can generate a control signal that notifies
the core network to release or reserve resources accordingly. This control action is closely related to
the intra-slice level control of the system.

 VNF Migration: A really important control of the DE, mostly on interslice level, is to have the flexibility

to migrate (move) the VNFs in different server nodes, with an ultimate goal to maximize some KPIs.

Essentially, the DE should have the ability to define the configuration (embedding) of the slices at

will.

 Admission Policy: A major control of the infrastructure operator is the policy which decides if new

slices should (or could) be admitted. Loosely, this reduces to a “yes/no” action, whose consequences

are however enormous. Admitting new slices could myopically result to increased revenue, but can

end up in a skyrocket of delays, which result in SLA violations.

2.4.3 SYSTEM PERFORMANCE METRICS

There are many ways to define “how well” a decision engine performs. To this end, we make two distinctions.

First, we focus on the actual performance of the decision engine (DE). In principle, a DE performs some actions

in order to maximize (or minimize) some objective criterion that is of great importance to the system.

Depending on the viewpoint of the designer, we can list a number of objectives equally important, and we

initially discuss objectives that are network-operator related.

 Minimum Server Usage: Given the limited availability of physical resources, the DE should schedule

the slice tenants VNFs placement to servers avoiding resource wastage. From the mobile network

perspective, this is beneficial as it allows for:

o Operational costs reduction,

o Ease the admission of new slices, as “there is always room to fit new customers”, and

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 21

o Energy efficiency, and thus greener communications.

 Reconfiguration Operations: The DE should have the necessary vision, which it should get from

“learning statistical demand patterns”, such that it will not move VNFs from server nodes unless this

can lead to even better performance in the long run.

 Service Level Agreement Violations: A significant fraction of the costs is the amount that operators

have to pay whenever they break their agreements with the slice tenants. If the operator has two

VNFs of demands d1 and d2 (of slice 1 and 2), and the capacity of the node that it decides to place

these two is C < d1 + d2, the operator will have to pay some amount to one of the two, or both,

depending on its policies and fairness criteria.

 End to End Delay across VNF Chain: This metric should be measured across all technological domains.

Essentially, a data packet that starts from MEC and has to reach the user, for some specific slice, has

to pass through a set of server nodes (MEC->RAN->user). Depending on the DE placement, some slices

may, or may not experience communication delays. If two slices need to share a server node, then it

is probable that at some point in time, one (or possibly both) will have to queue. These queueing,

plus the service delays, are added up and form the total delay of some slice.

 Utilization of the resources: A node that is not operating at full capacity still pays some cost to be ON

(that is independent of the utilization). Depending of the scenario for example, VNFs supporting

delay-tolerant services may be migrated to minimize the footprint of the VNF chain and maximize the

resource utilization, ensuring that costs are amortized.

 Slice admission rate: In a sense, this and the above metric are closely related, but are not exactly the

same. As an example, if the operator has 10 units of resources, and leases it to one tenant who pays

10 units, is the same as having two tenants who pay 7, and 3 units respectively (again for a total of

10), then high utilization suffices, and admission rate has no particular meaning. However, in most

cases, there is a concave rule (principle of diminishing returns) according to which the operator

leases, which implies that accepting more tenants will lead to higher revenue for the operator. In that

case, the admission rate becomes of major importance.

2.4.4 DISCUSSION ON THE PERFORMANCE METRICS.

The relationship between the various objectives/metrics to be optimized is often non-trivial and conflicting.

This requires sophisticated algorithms to find the right tradeoff, namely data-driven ones given the constant

need to make predictions about the future state or impact of decisions. Minimum server usage suggests that

the VNFs/processes will be packed, however, if there is a peak of traffic for even one slice, the performance

of the whole system will experience a severe degradation, as sudden and high SLA violations will occur.

Furthermore, having a very high admission rate, could mean an extremely bad end-to-end delay. Thus, if one

for example, wishes to maximize the probability of slice admission, they should guarantee some other metric,

and treat it as a constraint, because accepting everything would cause chaos to the performance.

A DE algorithm can try to tackle/tradeoff multiple objectives in different ways. One is to consider a multi-

objective metric and attempt to find pareto-optimal tradeoffs. Another is to consider some of these metrics

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 22

as hard or soft (namely penalty functions) constraints. To summarize, we see that the choosing an objective,

and constraints for the control problems is no easy task, and ultimately depends on the needs of the

operators.

2.4.5 MACHINE LEARNING ALGORITHMS KPIS.

It is clear from the previous discussion that data-driven optimization algorithms will be involved both in terms

of the key input parameter prediction (AE) as well as to identify good tradeoffs between the various

conflicting DE goals. To this end, we also need a second set of KPIs that we'll use to gauge the performance

of the ML algorithms themselves, beyond achieving (or not) good network-related KPI performance

These have to do with “how realistic is the DE”, and if it is able to perform well in a real-world scenario. A

non-exhaustive list follows:

 Convergence (of Learning) Speed: A fundamental problem of learning-based algorithms is that they

typically need a lot of time to converge. Really slow learning can be detrimental, because as long as

the agent has not learnt its surroundings, it is behaving sub-optimally. This relates to what ML

community refers to as sample complexity, i.e., how many samples are needed to learn.

 Scalability: Another important issue we need to take into account, is how much the increase of the

problem size affects the convergence speed. Ideally, one would want an algorithm whose

convergence speed is as insensitive as possible to the size of the problem (states, actions).

 Robustness to Dynamic Environment: This is related to the “zero-touch” notion, which is an important

aspect, and of the key strengths of MonB5G. Essentially, a learning agent can be tuned to understand

its surroundings quickly, and then exploit its rewards, however, it is crucial that a data-driven

algorithm cannot only learn an unknown environment, but that it learns environments that might be

constantly changing.

2.5 Types of SLA

The Service Level Agreement is a contract between the Infrastructure provider and the Slice tenant defining
the service characteristics and the responsibilities of each part. It states clearly the obligations of the provider
in terms of QoS, hence it provides specific QoS parameters that must be satisfied. In case the QoS terms are
violated, the provider is obliged to pay a penalty to the tenant. This penalty may take different forms (linear,
nonlinear, etc.). The SLA depends strongly on the type of the slice since each type has different QoS
requirements. Moreover, the SLA can be customized to the specific needs of the tenant. Some of the typical
QoS parameters in SLAs are the following:

 Minimum guaranteed bit rate/throughput. It specifies the minimum value of successfully delivered
bits per second for a particular service.

 Maximum end to end latency. It is the latency perceived by the end user. It includes both the delay
due to propagation through the traversed links and the delay due to processing at the network’s
nodes [6], [7].

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 23

 Service availability. The provided service must be available within the agreed Quality of Service for
at least a specified percentage of time [7].

 Reliability. Since a service is available, reliability is defined as the percentage of sent packets which
are successfully delivered to the destination within the time constraint required by the specific
service. Some of the factors that degrade reliability are hardware faults of the servers, software faults
at different levels and operator’s faults (e.g., mistaken network configuration or VNF deployment /
migration) [6], [8].

SLAs may contain one or more of the above KPIs. It is true that usually it is nontrivial to map a high level QoS
term to the actual physical resources that should be provided in order to satisfy the SLA.

A case where SLA violation is observed is when the reserved capacity provisioned in the network for a slice is
lower than the actual slice demand. In that case the QoS is definitely degraded. The SLA can be formulated
as a constraint of the slice embedding problem in following form:

 Hard (per time step) constraint: the provisioned capacity must be always greater than the demand

 Long-term constraint: the provisioned capacity must be greater than the demand X% of the time

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 24

3 Related work on AI for Beyond 5G orchestration

A significant challenge for 5G Networks is to support diverse verticals with very different Quality of Service

(QoS) requirements. In addition, it is also expected that 5G Networks are able to support a large number of

verticals simultaneously, with sometimes multiple services supported by each vertical. These requirements

make the problem of resource management and orchestration one of the most critical in the context of 5G.

5G is designed to make extensive use of Network Slicing, which is one of its key technologies. Network Slicing

enables the configuration of virtual networks by creating logical instances of a subset of the physical

resources of the physical network. A varying amount and varying types of resources can be instantiated to

create a network slice to provide different services with different performance constraints , making slices

highly customizable. In this setting, the physical resources of the network are shared among the network

slices, and these slices are owned by a tenant, which is the service provider or virtual network operator [9].

There can be a large number of network slices simultaneously deployed with varying degrees of physical

resource sharing [10] [11] [12]. Thus, it is necessary to have orchestration mechanisms to coordinate the

slices and to coordinate the resource allocation.

To meet the QoS requirements of the network slices and to ensure communication without downtime,
researchers have focused on automating resource management with AI algorithms, since manu al solutions
for these problems are infeasible. The authors in [13] give a generic framework of the Network Slicing
problem. A network slice consists of a set of interconnected Virtual Network Functions (VNFs) that make up
a virtual network, which needs to be embedded on top of the physical network. This requires for VNFs to be
placed on physical nodes. This is done by reserving adequate processing capacity, while the virtual links that
connect VNFs must be associated with physical links by reserving sufficient communication capacity. The
Network Slicing problem is a combined optimization problem that can be formulated as an extended Virtual
Network Embedding (VNE) problem. This problem is known to be NP-hard. The goal is the optimal placement
of a Slice (VNFs and associated virtual links) on the physical network, considering constraints on the capacities
of the resources as well as on the placement’s location (some VNFs run only on RAN nodes while others only
on Core nodes).

Limitations of the State of the Art: The utilization of AI techniques to solve these kinds of problems is one of the
main topics in the state-of-the-art research for 5G. There are still many challenges that lie in the efficient
management, orchestration and configuration of VNFs and consequently the efficient allocation of resources.
Despite the originality and the novelties of current state of the art, there are still some important limitations.
More specifically, a large part of these works focus their entire contributions to the RAN domain, without
providing an integrated e2e network slicing solution. The e2e solutions that were developed to overcome these
limitations constitute a first step towards addressing the technical challenges behind the effective design of e2e
slicing. However, advanced practical data-driven solutions are still required to handle the massive number of slices
that are expected to operate in a recursive manner and in different timescales. Finally, the approaches that are
tailored to specific applications do not provide holistic solutions for the instantiation (creation), and management
of e2e network slices.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 25

Beyond State of the Art: MonB5G will go beyond the existing state of the art network slicing solutions in several
directions. In particular, we will design and implement different “layers” of network slicing, from coarse-grained
high level slices that satisfy the operator SLAs to fine-grained slicing techniques that go even up to the
user/application level. To that end, advanced ML concepts will be leveraged to process the big data volume in
different parts of the network (e.g., MEC, RAN, core network), enabling an automated zero-touch virtual and
physical function chaining that dynamically binds the heterogeneous resources (i.e., computational, storage,
communication) in an end-to-end manner across different network domains. Finally, the proposed ML-aided
network slicing mechanisms will be able to satisfy various distinct KPIs (e.g., delay, rate, QoE, massive
connectivity), thus being application-independent and completely transparent to the end user, applicable to the
whole cohort of 5G use cases.

3.1 Learning-assisted Admission Control

The problem of admission control involves the deployment of the network slices over the physical
infrastructure, as well as the admission of the User Service Requests (USRs) into the slices after they have
been deployed [14]. As more slices get deployed and as more USRs arrive, it is necessary to ensure resource
utilization efficiency and revenue maximization for the 5G infrastructure provider.

The problem of resource allocation [15] is intrinsic to admission control, in which physical resources have to
be dynamically re-assigned to a slice in order to guarantee the performance constraints of the services
provided by the slice. When considering newly deployed slices, there’s a VNF embedding and collocation
problem [16] [17] [18] [19] that needs to be solved, which includes a resource allocation sub-problem. There
are multiple Reinforcement Learning (RL)-based solutions for this [20].

Once the slices are operating, USRs start arriving [12] [21]. And depending on the available resources and the
load generated by the USRs, these USRs will either get through to the network, will be deferred to be
processed at a later time or rejected. The USRs arrive at the slices owned by the respective service provider
at random times, and the rate of arrival is usually modelled as a Poisson distribution [22] (the same
distribution is also used for slice deployment requests [23]). Since the slices present variable loads (i.e.,
different number of users with different loads as well), it will be necessary to re -allocate the available
resources among VNFs executing in one single host, or to migrate the VNFs to different hosts without
breaking the forwarding graph (i.e., the connectivity) of the Service Chains of the slice.

The problem of Virtual Network Function-Forwarding Graph (VNF-FG) embedding is targeted by Quang et. al.
[24]. This problem relates to the initial deployment of network slices over the infrastructure. Quang et. al.
proposed a solution based on enhanced versions of the Deep Deterministic Policy Gradient (DDPG), a
continuous-action RL algorithm. Their solution neglects the cost of VNF migrations as a simplification, and
focuses only on the impact of VNF collocation.

Bunyakitanon et. al. [25] also target the VNF placement problem and their solution relies on the forecasting
of the Total Response Time for a VNF running an end-to-end service. The forecasting is done using multiple
regression models (Lasso, KNN-Regression, SVR), as well as Decision Trees and Random Forests. This
mechanism for VNF placement assists existing MANO frameworks into deciding the best placement for VNFs
on the infrastructure hosts. However, it does not consider link/bandwidth resource utilization.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 26

In [26], Bega et. al. implemented the Q-Learning algorithm (a form of RL) to make admission control decisions
of the slices (not the USRs). Their approach works by modeling the admission control problem as a Semi -MDP
in which a slice can be admitted or rejected (losing them forever) for deployment. The algorithm then learns
to accept or reject slice admissions based on the maximization of the revenue perceived by the infrastructure
provider after many admittance decisions have taken place, resulting in a better performance compared to
other heuristics used as baseline comparisons. Their approach is very innovative, but does not offer
comparisons with more careful defined heuristics for the problem domain or other RL approaches, which
makes it difficult to assess the performance gains from using Q-Learning.

Han et. al. [23] used a genetic algorithm (comparable to RL algorithms) to determine an admission control
policy from a set of admission strategies encoded as binary sequences. In this case, when the slices are not
admitted, the response to the slice (admitted or denied) can be delayed instead of being denied directly, and
their approach queues all initially declined slice requests. The slices have a utility value, and the purpose of
the genetic algorithm is to maximize the overall utility value over a long term of T operation periods. One
limitation in this work is the fact that their approach requires admission strategies already pre -defined and
encoded, which may in fact not be optimal and non-trivial to determine. Moreover, encoding a policy in
binary sequences is also not a trivial task depending on the specific policies, which adds an additional layer
of complexity.

There have been multiple research efforts that seek to leverage AI mechanisms for admission control of the
USRs. For example, the works presented by Buyakar et. al. [27], Sciancalepore et. al. [28], and Song et. al.
[29] presented a traffic forecasting technique to control the admission of USRs. Salhab et. al. [30] also used
a traffic forecasting approach, but used it to drive slice deployment requests and slice scheduling, rather than
on USRs.

The framework developed in [29] evaluates the USRs in order to drive a resource orchestration mechanism,
while in [27], the criterion for USR admittance is based on the USRs’ SLA constraints in terms of bandwidth
and delay. In the latter work, their approach developed uses an End-To-End delay predictor implemented
using Mondrian Random Forests to predict the delay of an incoming flow. They also use a LSTM -based
Machine Learning predictor to forecast bandwidth utilization. Based on these forecasts, their mechanism re-
allocates resources to the slices in order to ensure that SLAs of the current and incoming USRs are met.

Sciancalepore et. al. [28] use the additive version of the Holt-Winters algorithm to forecast the traffic load of
USRs, and extend their traffic predictor to capture the spatial distribution of the load in the geographical
space in which the base stations are deployed. And to improve the capabilities of their traffic predictor, they
implement a form of RL that monitors the occurrence of SLA violations of the slices. Using this monitoring
mechanism, they change the parameters of the traffic predictor in order to reduce the probability of SLA
violations. One limitation from their approach is the utilization of the Holt-Winters algorithm for prediction,
since other machine learning-based predictors, like those based on LSTMs, can perform better in this respect.

Similarly, Salvat et. al. [21] also employed a machine learning approach to forecast traffic behaviors. In this
case, they used the multiplicative version of the Holt-Winters algorithm to perform traffic prediction of the
slices that are deployed. This prediction is then used to drive an admission control and resource reservation
mechanism among the slices exploiting the fact that the users (USRs) rarely consume all the resources they
request.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 27

Limitations of the State of the Art: Using machine learning-based forecasting techniques has become one of
the main approaches to anticipate resource demand of network slices, as we can see in the related work.
These predictions can be exploited to design policies for admission control and resource allocation. The type
of predictor used and the accuracy of the prediction are of extreme importance for these policies. However, a
lot of the research works in the state of the art seek to improve on the accuracy of the prediction, which in
itself cannot guarantee optimal admission control and resource management policies designed around it.

Beyond the State of the Art: MonB5G proposes to extend the state of the art in this respect, by developing
more refined prediction mechanism that are trained using information relevant to beyond-5G technologies.
Building on these novel prediction mechanisms, it is possible to enhance resource allocation and admission
control policies optimizing them for different problem domains related to network slice management. Further
enhancements to current state of the art will also include the design of distributed and decentralized forms of
forecasting, which will bring as a consequence admission control and resource allocation mechanisms that are
distributed as well.

3.2 Centralized Machine-Learning for Slice Management and Control

The slice embedding problem has been examined extensively by various authors and it would be useful to

remark some of the different models and objectives used. In [31], the service chain embedding problem is

tackled by maximizing the total flow. The authors propose an approximation algorithm that considers both

the VNF placement and the routing of the flows. The setup is a network that comprises a number of

computational nodes connected by links, without any distinction between RAN and Core Network (CN). The

input is a number of different source-destination pairs of nodes, where each pair is associated with a

maximum flow and a processing demand per unit traffic demand. The problem is to find the routing paths

for all pairs that maximize the total flow by enforcing strict constraints concerning the bandwidth of each

link, the processing power of each node and the maximum flow on each pair. This optimization problem is

formulated as a mixed integer program which is NP-hard. The proposed method is an approximation

algorithm that solves the problem in polynomial time combined with a heuristic algorithm that further

improves the solution.

In [32], the problem of slice embedding is formulated using an objective that jointly takes into account the

profit of the service provider and the profit of the network operator by considering the pricing of network

resources. The chosen pricing policy seems to be important because it affects the profit of both parties and

the demand for resources (which affects resource efficiency). The system is modeled by a weighted graph

that comprises access nodes, forwarding nodes and data centers connected by links. Consequently, each VNF

can be deployed only on a subset of the nodes. The total traffic demand for each slice is divided into different

flows and each flow is associated with a source node and a destination node. The path of a flow must traverse

the nodes where the slice's VNFs are deployed following a specified order. Iterative approximation methods

are used to jointly optimize the slice embedding and the pricing of the resources.

In [7], the objective is to minimize the total deployment cost for the network operator, which includes the

server cost, the cost associated with the VNF licenses and the link cost (it is related to bandwidth leasing).

The authors model the system by a graph similarly to previously mentioned works. The interesting part is the

hard constraints considered, which include not only the link bandwidths and the node capacities, but also the

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 28

minimum availability of service, the maximum end to end latency and the minimum data rate. This feature is

important considering the diverse QoS requirements of Slices in 5G Networks. Note that availability may be

reduced due to failure of the host server, the VNF software or the link. Moreover, latency is incurred due to

processing or propagation delay and the data rate is limited due to the limited capability of a VNF instance

to process traffic. The authors formulate this problem as an ILP and they also propose a more computationally

efficient greedy heuristic algorithm.

There are also some works that examine the Service Chain routing problem in isolation from VNF placement.

An example is [33], where authors model the network as an undirected graph with different types of nodes.

The objective is to route an incoming service chain request so as to minimize the maximum network

congestion. A service chain request is defined by a source node, a terminal node, the set of required VNFs

and the traffic along the paths between consecutive VNFs, in which some these may have traffic changing

effects (i.e., the amount of traffic coming out of a VNF might be different than the amount of traffic that goes

in). This problem is formulated as an ILP problem as well, and computationally intractable to solve. Hence,

the authors propose a routing algorithm inspired by the virtual circuit routing problem that is less

computationally intensive and suitable for the online problem.

In [34], the authors present an overview of slicing in mobile networks that stresses the trade-offs introduced

and the importance of dynamic resource allocation. High customization of services comes with a cost because

it reduces the efficiency of resource sharing and impacts the operational costs. The most important

contribution of the paper is a comparison between different slicing techniques that use static or dynamic

allocation of resources to slices (dynamic allocation assumes that an oracle gives the exact future traffic

demands). The metric used for their evaluation is the multiplexing efficiency (the ratio between resources

required with network slicing and those needed under perfect sharing). The analysis is based on real traffic

measurements, in a big and a medium city, acquired by a network operator. This analysis demonstrates the

importance of dynamic resource allocation for increasing the efficiency of the network and the need for

appropriate intelligent algorithms that will be able to work in short time scales.

Dynamic resource allocation requires real-time information about the traffic demand of each Slice. Moreover,
an estimate of the future traffic demand based on the current demand would enhance resource allocation
efficiency. Towards this direction, Deep Learning methods have been applied to facilitate resource allocation.
In [35] the authors propose a method for approximating the traffic demands of individual services/slices by
utilizing only the information of the total traffic volume monitoring. This problem is called Mobile Traffic
Decomposition (MTD) problem. To accomplish this task, they introduce a novel framework that assists the
employment of different neural network architectures to solve the MTD problem. Deep Learning methods
can successfully estimate the individual service traffic demands by exploiting hidden spatiotemporal features
(characteristic of each service) in the traffic aggregates. The proposed method is less computationally
intensive compared to the in-depth inspection of the traffic streams and can be used to facilitate real time
resource allocation.

In [36] the authors propose a Deep Neural Network Architecture that leverages the traffic measurement data
of a slice at antenna level to make a capacity forecast for that slice. This optimizer predicts the capacity that
should be reserved in order to reassure that no under-provisioning will occur and that over-provisioning will
be minimized. The use of an appropriate loss function allows their approach to balance between under and

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 29

overprovisioning. This is one of the most important features of this model and makes it stand out from other
forecasting solutions that perform prediction based on minimization of the error of the actual and future
demands. Another important feature is its configurability and can be tuned for different reconfiguration
periods according to the Network level.

Limitations of the State of the Art: The mechanisms proposed in the state of the art, as we have examined, solve
different problems for slice management (dynamic resource allocation, slice deployment, forecasting, etc) and
they rely on the measurement and pre-processing of different key performance metrics or indicators (KPIs). As
the number of KPIs to be measured and pre-process increase, so does the complexity of the proposed mechanism
and its computational load.

Beyond the State of the Art: In order to enhance further the capability of these mechanisms, solve these
limitations and to extend the state of the art in this respect, MonB5G proposes the use of local Analytics Engine
(AE) algorithms. These algorithms are expected to provide updated KPI estimates, complementing confidence and
raw metrics, based on (Deep) Bayesian Networks and Gaussian processes. The latter is able to quantify the
confidence in the ability of the locally optimized/reconfigured slice to resolve the potential problem (e.g., slice
performance predicted to violate some SLA metric). Local and remote DEs will use AE-produced KPI estimates to
reconfigure a specific slice based on (deep) reinforcement learning algorithms that will be responsible to both
decide which features are relevant to be communicated, and which chain specific actions (scaling up/down,
migration, etc.) to initiate. Finally, we will investigate multi-agent RL algorithms to implement a decomposition of
the proposed DE algorithms.

In regards to the service chain routing problem and the slice embedding problem in particular, MonB5G will
extend the state of the art by proposing appropriate graph structures and new deep learning methods optimized
for them, that are able to accurately yet minimally capture inter-slice dependencies. These dependencies include
(i) the coupling between potentially large numbers of resources, where re-configuring one slice can affect
numerous others and their respective SLAs; (ii) the coupling between slices is partial, which creates complicated
dependencies that give rise to hard optimization problems, beyond the sharing of individual resources between
users or even slices. While deep-learning has had considerable success on image and sound-like inputs, graph-
based relations have significant differences from the former, and existing methods are not directly applicable. To
this end, MonB5G proposes as well to adapt novel methods from the recently emerging field of graph-specific
deep learning methods to extract the key dependencies between slices. These will be combined with RL methods
(local DEs) and deep RL (central DE) to efficiently (re-)allocate radio, transport, computation, and storage
resources between massive numbers of co-existing slices.

3.3 Distributed Methods and Multi-agent Learning for Slice Management

Due to the enormous scale that 5G networks are expected to reach and the predicted future demand for
even faster and more reliable communication services, researchers quickly shifted their focus to distributed
methods and algorithms for slice management. Specifically, the problem of effectively deploying and
managing network services in slices has raised considerable interest in the research community.

In recent bibliography, Shah et. al. [37] employ Multi-Agent Reinforcement Learning (MARL) to solve the
Service Function Chaining (SFC) placement problem for Internet of Things (IoT) connected devices. The

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 30

presented system enables IoT devices to access processing power from the Network Function V irtualization
(NFV) enabled network by sending requests and gaining access through SFCs that are deployed in the
network. Their proposed solution is based on multiple Deep Q-Network (DQN) agents that map the SFCs to
the substrate network and it is considered a resource allocation method.

In [38], Quang et. al., propose a multi-domain non cooperative VNF-FG embedding deep RL based approach.
They consider a physical substrate network with multiple domains. One learning agent is assigned to each
domain and it is trained to perform VNF-FG embedding in this domain using embedding cost minimization as
its optimization criterion. To train their agents they adopt DDPG. Their proposal is innovative, since they are
one of the first works to use multi-agent deep RL to solve the VNF-FG embedding problem considering non-
cooperative domains. However, they do not consider the existence of multiple technological domains wh ich
limits the applicability of the proposed approach, and they neglect the cost of VNF migrations focusing only
on the impact of VNF collocation.

In [39], the authors propose a Multi-Agent deep Q-learning method for federated and dynamic network slice
management and resource allocation for differentiated QoS services in future IoT networks. Their approach
considers optimization of resource allocation in terms of Transmission Power and Spreading Factor according
to the slices QoS requirements. Simulation results show that the approach improves energy c onsumption,
delay and throughput when compared with other traditional approaches. However, there is no real
implementation of the proposed framework.

In [40], Sun et. al., focus on Radio Access Network Slicing. They propose a multi-agent RL-based Smart handoff
policy with data sharing. The proposed policy aims to reduce handoff cost while maintaining user QoS
requirements in RAN slicing. It consists in a distributed version of the Q-learning algorithm that is more
efficient than centralized Q-learning due to smaller action space. Numerical results show that in the proposed
distributed Q-learning approach can significantly reduce the handoff cost when compared with traditional
handoff policies (without learning). Again, no real implementation of the proposed approach is provided.

One approach that has become a very important research topic is Federated Learning [41]. This is a recent
Machine Learning paradigm that allows multiple agents to train a shared model in a decentralized manner
without exchanging their local data. In particular, Federated Learning contrasts with "traditional" centralized
Machine Learning model training in that it puts together elements from large-scale Machine Learning, privacy
preservation and decentralized optimization [42]. Current research on Federated Learning is dedicated to
address the many challenges that the approach presents, namely:

- Training a potentially huge model (neural networks can have millions of parameters) in a
decentralized manner requires a large amount of communication. Current approaches to alleviate
this drawback are trying to reduce the number of communication rounds .

- Coping with the large heterogeneity of the devices and communication channels in the network. The
very different storage capacity, computing power and communication reliability of the devices
connected to the network carrying out the require designing Federated Learning methods that are
robust against lack or intermittent participation of certain agents. Current approaches to address this
challenge are asynchronous communication, and accounting for the limited power of some
components of the network instead of just ignoring them, which can have a negative impact on
convergence [42].

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 31

- The data collected at each device may differ significantly in their distribution, which on the one hand
violates the assumption of independent and identically distributed (IID) data, and on the other hand
allows for the incorporation of other frameworks as multi-task learning [43].

- Achieving a good trade-off between model performance and quality of the exchanged information,
since even just exchanging the model parameters and not the data itself can still reveal sensitive
information [44].

Federated Learning techniques are particularly relevant to MonB5G because they deal with many
implementation challenges of decentralized and distributed learning, which can be exploited to provide
solutions of these same type for slice management. Similarly, approaches in the area of Decentralized
Consensus Optimization (DCO) [45] can be used to train predictors, for example, using data locally collected
at the analytic engines, dealing with decentralization and distribution learning similar to Federated Learning.
DCO provides methods for coordinating the local predictions and take into account the data of all engines in
the network. It can be seen as the theoretical optimization component of Federated Learning, since it tackles
the problem of forcing the individual agents holding the data to agree on a unique common model that differs
from that which each agent would have found in isolation, i.e., if no communication between the agents was
possible.

Decentralized algorithms differ respect to distributed parallel algorithms (e.g. [46]) in that no central
coordinator is required, therefore decentralized approaches are suitable for any network configuration.
Furthermore, since there is no central coordinator, decentralized approaches must converge by design to a
consensual solution (i.e., to the same parameter values) independently of the distribution of their data (i.e.
they do not rely on the IID assumption).

Therefore, decentralized consensus algorithms (DCAs) are the methods to resort to for decentralized training
of KPI predictors under the condition of keeping the data private at each node. Some DCA approaches have
been developed to cope with the frequently changing networks. These are of particular interest in settings
with detrimental connectivity conditions. Algorithms such as those found in [47] [48] for time-varying graphs
can still guarantee convergence to the consensus solution under bounded delay. Alternatively, algorithms
that are asynchronous and allow for one-to-one communication and customized network sampling [49] can
potentially allow each node to adjust their communication schedule to minimize its idle time and that of its
neighbors.

In the cross-domain case, some approaches focus on robustness against fluctuating communication speed
and their potential interruption of the connectivity and network heterogeneity. Asynchronous decentralized
algorithms have been proposed [48] [49] [50] that do not require all agents to perform their parameter
updates simultaneously, and allow thus much more flexible implementation. Network load is another concern
of the decentralized training, since a large amount of data must be exchanged through the network links. To
alleviate the congestion, there are several decentralized compression algorithms that can achieve close -to-
optimal performance with significantly less transmitted data [51] [52] [53].

Limitations of the State of the Art: The current state of the art works regarding multi-agent learning are
focused on solving the SFC embedding and VNF placement problem approaching the solution in a non -
scalable way. They are focused on traditional optimization algorithms, like Integer Linear Programming (ILP),
to identify the placement that maximizes -or minimizes- a specific metric, or Single-Agent solutions, such as
DQN, to learn an optimized placement for the entire network through trial and error. However, these

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 32

algorithms complexity and calculation time increases exponentially, posing problems with s caling in larger
networks. Due to the predicted future demand, researchers shifted their focus to distributed methods and
algorithms. In the recent bibliography, multi-agent Service Function Chaining (SFC) placement solutions have
emerged, but mostly disrupting other fields and sectors, such as energy efficiency and security, rather than
focusing on low latency-high bandwidth Ultra-reliable and low latency communications (URLLC) services.

Beyond the State of the Art: In the context of WP4 we go beyond the state of the art in distributed (federated)
methods, along the following main directions: (a) we will investigate network-friendly federated and multi-
agent learning methods that attempt to take the network conditions (e.g., congestions, link capacity, etc.)
and/or network topology into account, and co-design the learning algorithm with the network one; (b) we
will go beyond “static” state-of-the-art decentralized (“federated”) optimization schemes towards online
decentralized algorithms, based on the framework of Online Convex Optimization (OCO), which has been
recently extended to distributed setups; (c) we will consider some recent advances on multi-agent
reinforcement learning (RL) to extend the initially proposed RL- frameworks for end-to-end slice
management, that are able to reduce the complexity of the state and action space by many orders of
magnitude, with often limited optimality loss.

In regards to Multi-Agent Learning, MonB5G will extend the related State-of-The-Art by providing distributed
Multi-Agent RL solutions to solve the Service Function Chaining (SFC) placement problem optimized for low
latency, ensuring Quality of Service (QoS) requirements of critical URLLC services. Unlike similar solutions
from the state of the art that utilize traditional optimization algorithms or single-agent RL, and only work in
small scale system models, our solution will be able to optimize SFC placement keeping latency low, even in
enormous sized networks with multiple domains.

3.4 Graph-based Learning for Slicing

The admission of slices at the infrastructure will trigger a series processes for VNF embedding and collocation
[16] [17] [18] [19], which results in a resource allocation problem most of the time. This problem is called the
VNF-Forwarding Graph problem [5], which consists on modeling the service chain functions of the slices as a
forwarding graph.

Kuo et. al. [16] target the VNF-FG embedding problem by considering the problem as a Joint VNF Placement
and Path Selection (JVPS) problem (which is NP-Hard), with the objective of maximizing the total size of
admitted demands that can be actively processed. The model of the physical network they use is defined as
an edge-weighted vertex-weighted directed graph G = (V, E), where the edges represent physical links and
the nodes represent servers. In this model, the weight of each edge in E corresponds to the link capacities
that it maps to and the weight of each vertex corresponds to the number of virtual machines (VMs) that it
can host. The solution proposed, based on a dynamic programming algorithm, consists of analyzing the
incoming demands for resources (not specified, could be USRs or slice deployment requests) separately and
solving the JVPS problem given the current available resources for one at a time. Besides increasing the
number of simultaneously served demands, their approach aims to increase resource efficiency by reusing
VMs among multiple paths, as long as the constraints for each demand and path are satisfied.

Cao et. al. [54] provide a two-step solution for VNF-FG design that consists of flow designing and flow
combining. In addition, they also provide a solution for placement of the VNFs into a VNF -FG and mapping
them into physical nodes in order to minimize bandwidth consumption and maximize link utilization. The

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 33

formulation of this problem of multi-objective optimization problem (also known to be NP-Hard) is similar to
Kuo et. al. [16]. However, Cao et. al. [54] do not show proof of its NP-hardness. Their solutions are four
proposed genetic algorithms that are based on two well-known state of the art genetic algorithms, namely:
multiple objective genetic algorithm (MOGA) and improved non-dominated sorting genetic algorithm (NSGA).
They obtained their four algorithms by applying two different strategies, random and greedy, at the phase of
initialization population. With the greedy strategy, nodes that have more residual resources wi ll have higher
priority during the VNF-to-node mapping, and links with shorter length are prioritized as well. Node mapping
always occurs prior to link mapping. The four algorithms they used are: Greedy- MOGA, Random-MOGA,
Random-NSGA-II and Greedy-NSGA-II, with the latter one performing the best.

The authors in [55] use a graph-based learning technique called Graph Convolutional Network (GCN)
combined with deep learning and reinforcement learning to solve the Virtual Network Em bedding (VNE)
problem. As mentioned in the beginning of Section 3, the VNE problem can be considered a variant of the
network slice placement problem. The authors proposed an Asynchronous Advantage Actor Critic (A3C)
approach to solve it. They use a GCN layer in their model to automatically extract advanced spatial features
of the physical substrate network to learn how to perform slice placement actions efficiently. Their work is
innovative and shows better results than other recently published papers on deep RL for slice placement.
However, their approach does not consider Quality of Service (QoS) requirements such as latency and it is
centralized solution and no real implementation is provided.

The work in [56] introduces the idea of using a Digital Twin (DT) based on Graph Neural Networks (GNN) to
capture the intertwined relationships among slices and monitor the end-to-end (E2E) metrics of slices
deployed under a common infrastructure. The proposed DT exploits the novel Graph Neural Network model
that can learn insights directly from slicing-enabled networks represented by non-Euclidean graph structures.
Simulations are performed where the DT is used to mirror the network behavior and generate E2C metrics
prediction of each slice. The model is show to predict E2E latency under different topologies accurately.
However, the model is not tested here under a realistic environment.

Rkhami et. al. [57] deal also with a network slice placement and they combine DRL and Relational Graph
Convolutional Networks (RGCN) in order to automatically learn how to improve the quality of an initial
solution proposed by a heuristic. RGCN is introduced by [58] as an extension of regular GCNs to work with
heterogeneous graphs. This propriety is essential to learn appropriate representations of large -scale
relational data graphs. Simulation results show the effectiveness of the proposed approach but again the
solution proposed is centralized and no real implementation is provided.

Limitations of the State of the Art: The use of graph-based ML through Reinforcement Learning or Deep
Reinforcement Learning is adapted to the nature of network capabilities and features (nodes and links) and
is very useful for automatic feature extraction to feed learning models for solutions based on Graph
Convolutional Networks (GCN). However, the use of Reinforcement Learning or Deep Reinforcement Learning
solutions alone in current state of the art may lead to behaviors and decisions that are not always
explainable, easy to explore and sometimes not that efficient regarding the policies to apply (placement or
resource allocation issues).

Beyond State of the Art: MonB5G proposes to extend the state of the art by developing techniques that
couple heuristics with Deep Reinforcement Learning yielding more optimal control algorithms that can adapt
their behavior after the learning phases.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 34

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 35

4 MonB5G DE structure and specifications

The support for end-to-end network slicing provided by the MonB5G architecture passes through the
definition of accurate data-driven decision schemes involving multiple network domains to guarantee per-
slice Quality of Service (QoS) provisioning and the global KPIs already defined in MonB5G. Therefore, this
section discusses DE specifications, functions, interfaces, and cross-domain operation.

The section first starts by positioning DE in the MonB5G architecture and shows that together with the other
management elements, i.e., Monitoring System (MS) (including an internal memory), Analytic Engine (AE) as
well as Actuators (ACT) form all a strong framework that fit very well with the recently proposed ETSI ZSM
Closed Loop (CL) automation architecture. The section then delves into the definition and thorough
description of the different DE interfaces, either inside a slice or with external entities in the MonB5G
distributed system, and provides afterward the detailed blocks of the DE in a generic way that can be
instantiated differently according to the specific needs of the target domain, slice, or network function, while
linking it with the three main functions, i.e., slice admission control, intra-slice reconfiguration and inter-
slice reconfiguration. This includes in particular the structure of the inputs (state space) and outputs (action
space) as well as the design of reward/feedback signal. The section then moves to show how MonB5G
distributed architecture can be leveraged in decentralized decision either intra-domain (between different
slices) or cross-domain, involving the end-to-end DE and several local DEs. This is further clarified through
practical Deep Reinforcement algorithms to show the nature of cooperation between the different DEs.

4.1 MonB5G DE vs. ETSI ZSM Control

In this section, we provide a mapping between the functional blocks of MonB5G control architecture that is
built around the Decision Engine (DE) on one hand and ETSI ZSM Closed Loop (CL) automation framework on
the other hand.

4.1.1 ZSM CLOSED LOOP CONTROL

ETSI has recently proposed some insights on the Zero-touch Service Management (ZSM) framework for Closed
Loop (CL) management automation [59]. CLs may exist in each of the management domains of the ZSM
architecture. Next Figure presents the CL functional scheme, in which the ‘Decision’ stage plays a key role.
The aim of this section is to briefly present the ZSM framework proposed by ETSI and link it with MonB5G DE.
As will be shown in the next subsections, the structure and specification of the MonB5G DE are aligned with
it.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 36

Figure 2. Functional view of a closed loop and its functional blocks within the ZSM framework [59]

This Figure is composed by four stages besides the ‘Knowledge’ functional block. The ‘monitoring/collection’
stage is the responsible for gathering and pre-processing the raw data from the managed entities or external
resources (in this context, a managed entity is either a service, a managed resource, or another closed loop).
Since raw data can have different heterogeneous formats, coming from different sources, can be transformed
in a way that it allows to analyze it in conjunction with the data coming from other sources. After this, comes
the ‘Analysis’ stage, which is in charge of providing insights from the available data obtained from the
Monitoring stage. Then, the ‘Decision’ stage, which governs managed entity, decides the action that must be
taken based on the issues detected by the analysis block. These actions can be reactive, proactive, or
predictive. It should be remarked that the decision stage is only responsible for deciding which actions are
necessary, but not for their execution. This is the competence of the ‘Execution’ stage, which translates the
decided actions into commands. The Execution stage is in charge of executing the necessary workflows in the
managed entity in order to implement the actions determined by the decision stage. This execution could
also involve other management domains. When this happens, interactions with other CLs are needed. Thus,
multiple distributed CLs are required for the automation of E2E service management. The ‘Knowledge’ bloc k
in the functional diagram presented above is not technically a stage of the CL, it refers to the storage and
retrieval of historical, configuration and operational data that are shared between the stages of a closed loop
as well as between different CLs in the network.

The ‘Decision’ stage involves different primary flows or interfaces:

 A2D interface. It connects the Analysis function with the Decision stage. It provides insights on
historical and/or real-time information provided by the collection/monitoring stage. It can also
provide information for tuning the analytic models and starting/terminating the analytics processes.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 37

 D2E interface. It is used by the Decision stage to provide action plans in form of workflows (e.g.,
configuration changes, onboarding services and resources). It can also be used to provide information
to tune the decision models and start/stop the decision processes.

 E3 external interface represents the data and control inputs and outputs from/to other closed loops
or external entities. It can be used to: i) start/stop the decision processes; ii) change the settings of
the Decisions stage and attributes of the models; iii) retrieve the historical or real -time data of the
function, such as logs, outcomes of the Decision function; iv) provide the resulting data of the
Decision stage to other closed loops or authorized entities outside the ZSM framework, e.g., external
management systems.

 K3 interface is a knowledge-enable flow, which is represented by a double-headed arrow, and is used
for data-related inputs and outputs from the Decision stage. The primary interfaces exposed above
can be augmented by data stored and retrieved from the ‘Knowledge’ functional block. The data can
be historical workflows (generated over the time or coming from external resources) or real -time
workflows (continuously generated by the operations of the Decision stage).

4.1.2 DE POSITIONING IN MONB5G ARCHITECTURE

In MonB5G it has been assumed that the DE that is part of slice runtime management, is embedded in the
slice and is therefore part of the slice template. As depicted in Figure 3, MonB5G has separated in the
template the slice management part, called Slice MonB5G Layer (SML) from the Slice Functional Layer (SFL).

The SML is split into sublayers responsible for Monitoring System (MS), Analytic Engines (AEs) and Decision
Engines (DE) as well as the Actuators (ACTs). It is assumed that MS provides generic, reusable monitoring
since it also contains an internal memory that gathers measurements as well as decision history and AI
performance metrics, serving thereby as a ‘Knowledge block’ comparable to ZSM proposal. On the other
hand, AEs perform data analysis and prediction. DEs implement control algorithms such as deep
reinforcement learning to take online decisions regarding slice lifecycle management (LCM). Typically, in the
management systems multiple goals have to be optimized therefore multiple AEs and DEs can be part of SML.
To avoid competition between DEs, the DE Selector/Arbiter component is implemented (can be AI-driven).
The SML enables direct, intent-based management by the tenant. Therefore, MonB5G DE and its serving
administrative elements (MS, AE, and ACT) are in line with the aforementioned ETSI ZSM CL framework.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 38

Figure 3 MonB5G DE Positioning with MS, AE and ACT

4.2 MonB5G DE Interfaces and Specifications

4.2.1 DE INTERFACES

Figure 4 shows how the DE, MS and AE are expected to communicate with each other. This figure also includes
the actuators which translate DEs decisions into API calls to different slice components (e.g ., VNFs, links,
PNFs) in each of the technological domains (RAN, Edge, Cloud) that a slice is supposed to cross.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 39

Figure 4 DE Interfaces

The MS in Figure 4 is the one responsible of gathering a set of different metrics from the systems that the DE
is controlling. This information can be passed to the DE and the AE directly, but they are also stor ed in a
common online memory store (COMS), illustrated by the grey cylinder. This COMS is added in order to avoid
implementing hard synchronization constraints among the MS, DE, AE whenever information needs to be
exchanged. In this way, the DE and AE can be more flexible in terms of the length of their processing without
compromising the granularity at which the MS can sample monitoring data from the controlled systems. So,
it is the MS (depending on its capabilities and amount of information as well as the granularity set from the
External User Interface (EUI)) that somehow defines how fast the data is sampled. It is worth emphasizing
that COMS is in line with the ‘Knowledge’ block of the ETSI ZSM functional scheme presented in Figure 2.

The AE then reads the monitoring information from the COMS in order to pre-process it (e.g., perform

predictions) before making it available to the DE. The AE may also read information directly from the MS, but

this is expected to be used in more punctual cases, where some synchronization is needed. The prediction

interval can also be set from the EUI. Once the AE outputs the pre-processed data, it will proceed to store it

in the COMS.

In a similar way, the DE is expected to read its input from the COMS, however it is also possible to receive
this information directly from the AE and MS. Once the DE has generated its decisions, it will also store those
in the COMS, as well as issue them to the actuator interfaces of the systems it is controlling to translate them
into API calls for slice components lifecycle management (LCM). DE parameters can be fine-tuned in runtime
from EUI as well and might take effect in the next DE configuration update interval.

Cross-domain operation between local DEs (i.e., DEs of each technological domain) or with E2E DE passes
via the Inter-Domain Manger and Orchestrator (IDMO), while operation between inter-slice DEs inside is
ensured by DMO.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 40

Table 2 provides a description of the different interfaces that link MonB5G DE with the other control blocks.

Table 2 Description of the type of DE interfaces and the associated role

Interface Type Role

IAD Tensors/Database
query

DE Reads the predicted KPI from AE (either online or from COMS)

IMD Tensors/Database
query

DE reads raw MS measurements (either online or from COMS)/Store AI
metrics and DE decisions in COMS

IMA Tensors/Database
query

AE reads raw MS measurements/Store AI metrics, predictions in COMS

IUD Database Query EUI reads/Changes DE configuration (e.g., discount factor of a DRL
algorithm)

IUA Database Query EUI reads/Changes AE configuration (e.g., prediction interval, learning
rate)

IUM Database Query EUI reads/changes MS configuration (e.g., granularity)

IUC Database Query EUI reads/changes actuation configuration (e.g., API primitives’
parameters)

IDACT REST API Call DE sends decisions to Actuators

4.2.2 MONB5G DE SPECIFICATIONS

As we can see in Figure 5, the DE is composed of several internal sub-blocks. The Input/output Pre-processors,
the Control Trigger (CT), and the Decision Algorithm (DA). The Input/output Pre-processors are customizable
according to the adopted Decision Algorithm (RL algorithm, GA algorithm or something as simple as a PID).
For instance, in the case of a deep reinforcement learning (DRL) decision, these pre-processors correspond
to the environment (e.g., OpenAI Gym-based) that converts the inputs received from either the MS or the
AE to a standardized State Space representation and translates the actions of the Decision Algorithm to an
Action Space format. The decision algorithm might encompass several internal sub-blocks, such as replay
buffers, actor, and critic neural networks in the case of DRL. The CT is added to make sure the DA executes
when systems states are read and verified that they are consistent. This could be done on demand by an
external user, or it could be done periodically driven by the reward function of a DRL algorithm.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 41

Figure 5 Inner workings at the DE

MonB5G decision algorithm performs slice-level admission control, intra-slice reconfiguration (e.g., VNF
scaling, VNF (re)-placement) as well as inter-slice reconfiguration. This requires access to a set of parameters
in the state space to provide then the adequate action space instance based on a feedback/reward. To that
end, we describe in the sequel a typical representation for both spaces as well as the key idea of the
reward/feedback.

4.2.2.1 DE STATE SPACE

The state space of Domain DE includes but is not limited to the following set of measurable/predicted
parameters:

 Initial map of new slice service graph into the architecture, i.e., which slice’s VNFs should be created
in the local domain (e.g., eMBB slice requires the creation of CU and Popular Content Cache VNFs at
the Edge).

 Initial required resources per VNF for the new slice in the current domain. For the RAN, initial RAN
resources (i.e., the PRBs).

 Edge/Cloud AE prediction of resource usage per VNF for the existing slices over the next T time steps.
As an example of expected resources, we can list the following: CPU usage, RAM, disk space power
available, the latency and the link bandwidth.

 RAN AE prediction of resource usage per slice, i.e., the UL/DL Resource Block Groups.

 RAN UL/DL scheduler type per slice. The scheduler involves several relevant functions, such as for
instance, link adaptation, resource assignment, power control, etc. and different types of schedulers
are assigned to satisfy the QoS requirements of the applications.

The end-to-end DE state space contains but is not limited to the following parameters:

 Initial required resources per edge/cloud VNF for the new slice (1 slice might have several VNFs per
domain) and the initial RAN resources (PRBs) for the new slice.

 Domains where the target slice VNFs creation is successful and domain/s where the target slice VNFs
creation failed (if any).

 Latency prediction and observed latency of all the slices. Since latency is an important KPI in some
applications (e.g., URLLC scenarios), the latency must be properly measured and forecasted in order
to fulfill the SLAs.

 Information of the free resources that are available in the other domains (e.g, CPU, RAM, disk space,
etc.). This information is needed for future slice reconfigurations.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 42

4.2.2.2 DE ACTION SPACE

The set of possible actions taken by DRL and transmitted to actuators to enforce them into the architecture
are the next:

 Slice admission control. This action includes the initial VNF placement within the domain servers and
the initial resource allocation. It should be noted that the former is a discrete action, while the latter
is bounded continuous action.

 Reconfigure a slice without changing other slices. After the admission, change the VNF placement.
If the domain AE predicts a resource usage decrease over now+T time steps, then scale down the
corresponding resources (e.g., CPU, RAM, Disk space, Power, Latency, Link bandwidth, Resource
Blocks). On the contrary, if AE predictions show that an SLA is about to be broken, then decide to
change the VNF placement.

 Inter-slice reconfiguration. If Failed initial VNF placement/allocation or running VNF scale up: Change
the placement of other slices’ VNFs inside the domain to accommodate the new slice (statistical
multiplexing) or scale the running slice. If AE predictions show a future resource usage decrease over
now + T time steps, decide to scale down and give the resources to the demanding slice.

 If a domain DE, e.g., Edge DE fails, the E2E DE can intervene to perform a global reconfiguration. This
includes moving an existing slice VNF from the Edge to the Cloud, if, for instance, the E2E AE predicts
a relaxation in its latency requirement, which allows to allocate the released resources at the Edge to
the existing or new slices.

4.2.2.3 REWARD/FEEDBACK

The reward function is carefully defined to guide the DA (generally a DRL agent) towards maximizing the slice
admission rate and the resource utilization as well as optimal VNF placement/slices reconfiguration, while
minimizing the total network cost (i.e., CPU consumption, latency, energy consumption and SLA violations).
Therefore, the design of the reward function requires considering a multi -objective approach. This will be
defined as a weighted linear combination of the costs to be maximized (e.g., the number of success
admissions) and the inverse of those to be minimized (e.g., 1/energy, 1/number of reconfigurations, 1/SLA
violations). In this multi-objective function, the weights of the costs need to be properly balanced and the
constraints on the KPIs are enforced via a penalty in the reward. By tweaking the weights, the agent is guided
to optimize the costs prioritized by the slice tenant and/or the infrastructure operator and that are set via
the External User Interface (EUI).

4.3 DE Cross-Domain Operation

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 43

Figure 6 Multiple instances of the MS/AE/DE triplet across multiple technological domains

At every technological domain, it is expected that there is a MS/AE/DE triplet, as shown in Figure 6. However,
we might have more instances of the triplet depending on the granularity of control we might need for the
overall system, which could be per slice, per tenant, per domain, per Infrastructure Provider, or other. Given
that there might be multiple instances of DE, the design of the DE and its interfaces has been made agnostic
to the specifics of the technological domain or the system layer in which it is deployed , especially that DEs
need to collaborate/cooperate to achieve the end-to-end control/decision that targets the optimisation of a
key performance indicator (KPI).

Leveraging MonB5G distributed architecture with decentralized decision can be made via the use of several
advanced combinations of decision schemes. To exemplify, we present here two approaches:

 Federated Deep Reinforcement Learning. In this scheme, the local DEs are built upon either value-
based DRL (e.g., DQN) or policy-based DRL (e.g., A2C, DDPG, SAC). The key idea is that, as long as the
action/state spaces of the different DEs are homogeneous, one can dramatically improve the decision
accuracy and leverage the experiences learned in e.g., other domains, slices, by letting the local DEs
exchange the weights of their embedded decision actor/critic or Q networks with the E2E DE that
performs a custom averaging to generate a more accurate model and broadcasts it to the local DEs
to update their local networks and improve decision. This avoids exchanging raw data between local
and E2E domain, even in the decision phase.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 44

Figure 7 Federated DRL Leveraging Distributed Cross-Domain/Slice DE

 Multi-Agent Deep Reinforcement Learning. Local DEs play the role of Actors and can learn policies
using only local information (i.e., their own observations in local domain, slice, etc) at execution. On
the other hand, the Critic is located in the E2E domain. This allows the policies to use extra
information to ease training, so long as this information is not used at test time. It is unnatural to do
this with Q-learning, as the Q function generally cannot contain different information at training and
test time. Thus, actor-critic policy gradient methods where the critic is augmented with extra
information about the policies of other agents is suitable to implement a decentralized decision
leveraging MonB5G architecture.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 45

Figure 8 Multi-agent decentralized actor, centralized critic approach [60].

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 46

5 Slice Admission Control

A slice can be defined as a subset of network resources allocated to an external tenant (virtual operator or

service provider), with complete control over those resources. The allocated resource are needed for the

deployment of virtual functions and connectivity between them and slice customers. The resources are

typically virtual (computing, storage, connectivity); however, some physical resources as PNFs or hardware

accelerators can also be allocated to slices. The resources are typically distributed spatially (as customers

also are), and the way in which they are allocated to a slice can impact seriously slice performance. The slice

functions that are required to exchange information with low delay should be, for example, placed in the

same datacentre, and the delay may also concern interactions between the slice and the users, according to

a predefined metric such as delay (min, average or max) in some cases (for example for URLLC slices). The

amount allocated to slice resources can be dynamic; however, a critical point is the initial allocation of

resources to a slice that is used for slice admission. In some case, resources and their features can be included

in the slice deployment request. In some cases, they can be estimated; in the other ones, the number of

needed resources can be unknown. One of the goals of the MonB5G project is to make an initial resource

allocation to a slice in such a way that would minimize the operations related to the change of resource

allocation, i.e., the scaling of resources. The ultimate goal is to satisfy as many slice deployments requests as

possible but at the same time fulfilling slice KPIs. Such approach maximizes the revenue of infrastructure

providers.

In MonB5G, it is proposed to elaborate the decision about slice admission based on the following factors:

 In the case of multi-domain slices of the same type, different ways of the split of a slice into multiple
domains with evaluation of the possibility of their mutual interconnection. Then the split slice graph
should be deployed in which of involved domains as described below. In the process of splitting slice
template, the IDMO is involved. The problem of admission of end-to-end slices deployed in multiple
technological domains will be described in section 5.2.

 The first criterion that has been evaluated during slice admission process is the status of consumed
and available resources and termination time of running slices (some of them can be short -lived
slices). The status of resources should also include their reliability. In MonB5G the status of consumed
resources will be combined on the predication of their usage in the future based on AI algorithms.

 The number of resources needed by a slice (min, max, average, initial) can be obtained:
o Directly from a slice template.
o Indirectly from a slice template using GST/NEST approach as proposed by GSMA [61]. In this

case, each slice instantiation request has, for example, additional information about the
number of users, etc. This information has to be during slice admission converted into
resource demands.

o Time of day when a slice is admitted and its duration. For most slice templates, the time -of-
day may have an important impact on the number of active users, therefore on resource
consumption.

o The history of the resource consumption by the slice template. The history may show the min,
max and average resources consumption and the dependency on the time of day. Such

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 47

historical measurements allow for the estimation of the number of resources needed by a
slice with the minimum number of customers.

 Slice priority is yet another factor that has to be taken into account. Slice instances that handle real -
time traffic need higher resource allocation priority than a slice without real-time constraints.
Moreover, some service types may include resource allocation priorities such as e.g., in case of an
emergency slices, which may require very high resource allocation priority. In general, resource
allocation priority should be established on a per slice-basis. Priority per slice function or link is not
considered in MonB5G; however, in some situations, such an approach might prove to be beneficial.

 Slice lifetime has to be taken into account as short-lived slices may be deployed in the case when
some slices are already scheduled but no in the near future.

 Resource allocation constraints may concern reliability, delay, separation (impact of congestion in
other slices) and some preferences related to the deployment of a group of functions (VNFs) in the
same data centre, selection of the preferred data centre (close to users) .

 Resource pricing combined with slice calendaring can be used for overall efficient resource
consumption. If a slice can be deployed with a strong time of deployment constraints, its deployment
can be shifted to a moment of time when the averaged resource consumption is relatively low (for
example, deep at night). Such slice can be used, for example, for synchronization of databases,
creating billing reports, etc.).

 The ability of a slice to work in an ’emergency mode’. Such emergency mode is a situation in which a
deployed slice can minimize its resource consumption, but it is still able to provide basic functionality.
The emergency mode can be used during disasters in which the number of resources is significantly
reduced, but the slice functionality is essential for the control of the power grid, etc. Another case is
a failure of the power grid system that may require switching off of some resources in order to keep
the lifetime of the temporarily battery-powered data centres. So far, such a ‘dual template’ slice
issue is so far ignored.

 RAN resource allocation is a separate problem as it may deal with a way in which the RAN slicing is
implemented.

In general, the rule of keeping running the existing slices templates should be kept (golden rule in

telecommunications). The exception are slices of higher priorities which deployment may cause termination

of slices of lower priorities. An open issue is a negotiation between slice requester and slicing system owner

that can lead to the deployment of slice instance using reduced resources in comparison to the initial request,

instead of rejecting the request.

There are some cases in which slice deployment time is critical. Part of the time is an algorithmic delay and

the time needed to access information that is needed for the elaboration of the decision. Therefore, in such

cases, the admission control algorithm should be able to provide the admission decision quickly.

As it has been presented, the process of slice admission is multidimensional, and in such case, the AI approach

seems to be the most efficient one. It has to be noted, however, that most of the p resent approaches use

much simpler problem definition than described above. Typically, the problem of slice admission control is

defined as the optimization of revenues of infrastructure operators (or maximization of the usage of

infrastructure resources) while keeping the required KPIs of deployed slices (slice KPI/QoS violation can be

linked with a penalty) [10].

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 48

The lifetime of a slice may vary, but we can assume that short-lived slices may stay for 30 mins and that can

be long-lived slices that may stay for years (the MVNO case). It is, therefore, hard to estimate the number of

slice requests in a specified period of time. In general, the slice request arrivals are non-deterministic, and in

most cases, (except slice calendaring) average waiting time must be short enough. Typically slice admission

strategies include random, first-come-first-served, priority-based, greedy and semi-greedy [10].

Network slice can span multiple and different technologically domains. In case of the 5G network, the

domains comprise RAN, transport, MEC and Core. The resource allocation in each of the domains can be

different – in RAN; for example, it is about Resource Blocks scheduling. In MonB5G multiple orche strators

and domain-specific templates are used. The admission of the end-to-end slice has to be preceded by the

admission process in each of the domain that is used for the end-to end slice deployment. If admission is

possible in each domain, the and-to end-slice is admitted for deployment. In MonB5G the multi-domain slice

deployment requests are coordinated by IDMO, whereas, for each domain, a respective DMO for slice

admission is used.

The forthcoming sections are dedicated to the slice admission control algorithms that can be used for domain-

specific (section 5.1) and cross-domain admission control (5.2). These section presents the initial works of

the MonB5G project.

5.1 Single domain slice admission control algorithms

As described already, the admission control for multi-domain slices can be in most cases decomposed into a
set of independent admission control process in each domain that is used by the multi -domain slices.
Therefore, the presented in this section domain-specific admission control is also applicable in case of slices
spanning multiple technological or administrative domains. The efficient slice admission control impacts the
3.2 (maximization of network slice acceptance ratio) and 5.4 (reduced slice reconfigurations) KPIs of
Deliverable D2.2.

5.1.1 CLOUD INFRASTRUCTURE BASED SLICE ADMISSION APPROACHES

This subsection presents a description of novel slice admission control (SAC) algorithms that can be run at
the Infrastructure Provider (InfProv) level (cloud domain), in order to derive an optimal policy regarding
acceptance or rejection of the arriving network slice request. The proposed algorithms are based on
Reinforcement Learning, and seek the optimal policy to maximize InfProv revenue while reducing the penalty
caused by SLA violations. Three algorithms that use the following techniques are introduced:

 Q-Learning (QL),

 Deep Q-Learning (DQL),

 Regret Matching (RM).

Besides deriving the optimal policy, the ability to run offline or online, which is a crucial criterion, is assessed
for each method. The proposed system model is illustrated in Figure 10.

The model considers two main players: (i) the Infrastructure InfProv, which is the owner of the network
infrastructure being in charge of instantiating network slices for tenants by providing the required resources;

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 49

(ii) the tenants that request the instantiation of network slice from the infrastructure provider to offer
services for their clients.

Figure 9 System model

Each network slice is characterized by five main criteria:

 The physical resources needed to satisfy the requirement of a network slice, in UL and DL, noted
𝑁𝑟𝑒𝑠𝑟𝑒𝑞

𝑖 (UL) and 𝑁𝑟𝑒𝑠𝑟𝑒𝑞
𝑖 (DL), respectively. Where i is the slice type, which can be either eMBB, uRLLC,

or mMTC. Needed resources by each slice type are described as follows:

𝑁𝑟𝑒𝑠𝑟𝑒𝑞
𝑒𝑀𝐵𝐵(𝐷𝐿) >> 𝑁𝑟𝑒𝑠𝑟𝑒𝑞

𝑒𝑀𝐵𝐵 (UL) (5.1)

𝑁𝑟𝑒𝑠𝑟𝑒𝑞
𝑢𝑅𝐿𝐿𝐶 (DL) >> 𝑁𝑟𝑒𝑠𝑟𝑒𝑞

𝑢𝑅𝐿𝐿𝐶 (UL) or

𝑁𝑟𝑒𝑠𝑟𝑒𝑞
𝑢𝑅𝐿𝐿𝐶 (DL) == 𝑁𝑟𝑒𝑠𝑟𝑒𝑞

𝑢𝑅𝐿𝐿𝐶 (UL) or

𝑁𝑟𝑒𝑠𝑟𝑒𝑞
𝑢𝑅𝐿𝐿𝐶 (DL) << 𝑁𝑟𝑒𝑠𝑟𝑒𝑞

𝑢𝑅𝐿𝐿𝐶 (𝑈𝐿)

(5.2)

(5.3)

(5.4)

𝑁𝑟𝑒𝑠𝑟𝑒𝑞
𝑚𝑀𝑇𝐶 (DL) << 𝑁𝑟𝑒𝑠𝑟𝑒𝑞

𝑚𝑀𝑇𝐶 (UL) (5.5)

We justify these assumptions as most eMBB traffic has dominated DL traffic (ex. high-definition video
streaming), while mMTC traffic has dominated UL traffic (ex. IoT traffic). The case of uRLLC is different,
as all the types of traffic may exist and depend on the service.

 The hosting time of each network slice type 𝑯𝒕𝒊𝒎𝒆. Each slice, if admitted, will use the InfProv’s
resources for a given duration.

 The priority of the slice depending on the application running on the corresponding slice.

 The price 𝑷𝒓𝒆𝒒
𝒊 that a slice tenant pays to InfProv for the used resources. The tenant has to pay

the resources per time unit for the 𝐻𝑡𝑖𝑚𝑒 duration (“req” refers to a slice tenant, and “i” refers
to the slice type).

The infrastructure provider entity is characterized by its capacity in terms of available resources at time t
(𝐶𝑡). It represents the total amount of available resources that may be allocated to a new network slice. It is

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 50

worth noting that 𝐶𝑡 is updated when a network slice is admitted or leaves. In other words, when a new
network slice is accepted, the needed resources will be allocated and dedicated to it; when a network slice
is terminated, its associated resources will be automatically released. Thus, at each time instant t, the
available resources at InfProv is performed as follows:

 𝐶𝑡= 𝐶𝑡𝑜𝑡𝑎𝑙 - 𝐶𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 + 𝐶𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑 (5.6)

Note that, two formulas are used, one for UL and one for DL, as the resources are separated. 𝐶𝑡𝑜𝑡𝑎𝑙 is the
total number of resources available in the InfProv in UL or DL. 𝐶𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 and 𝐶𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑 are respectively the
number of allocated and released resources at time t in UL or DL. The proposed SAC model is applied only for
the RAN resources, composed of DL and UL. We argue this assumption by the fact that RAN is considered as
the bottleneck of the system, while other network slice’s required resources (such as computing) are always
available, and no reservation is needed. In summary, the InfProv is characterized by its resources capacity

𝐶𝑡𝑜𝑡𝑎𝑙, while a network slice is identified by: 𝑁𝑟𝑒𝑠𝑟𝑒𝑞,
𝑖 𝐻𝑡𝑖𝑚𝑒 , 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦, and 𝑃𝑟𝑒𝑞

𝑖 .

As stated earlier, we seek an optimal admission control policy that aims at finding a trade-off between
fulfilling the network slice resource request (UL and DL); while maximizing InfProv revenues. First, we propose
to model the SAC using Markov Decision Process (MDP) [62]. Since exactly solving the MDP is very challenging
due to the difficulties in modeling the traffic dynamics, we apply reinforcement learning to derive the optimal
policy and to find the earlier-mentioned trade-off. For that, we will use different Reinforcement learning
models, namely QL, DQL, and RM, to predict the optimal action to apply when a new demand of a network
slice arrives at the system (i.e., accept or reject an arrival slice request).

A Markov Decision Process is composed of 4-tuples M = (S; A; T; R), where S is the set of states, A is the set
of actions, T is the transition probability from state s at time t to state s’ at time t + 1 when taking an action
a, and R is the reward obtained by performing the action a, which leads to move from the state s to s’.

For our system, we assume that a state s = (n, m, l, b) is composed of four information where:

 n is the number of accepted eMBB slices;

 m is the number of accepted uRLLC slices;

 l is the number of accepted mMTC slices;

 b is a value that can be equal to 1, 2 or 3 to indicate the slice type, eMBB, uRLLC, or mMTC,
respectively, of the last received request.

At receiving a new network slice request, InfProv, observes the state of the system via an agent and takes
action a:

a= {
 1 𝑖𝑓 new arrival slice request is accepted
0 𝑖𝑓 new arrival slice request is rejected

 (5.7)

The different transitions of the system occur when a new network slice arrives, and a decision is needed when
a network slice leaves the system. If the system is in a state s = (n, m, l, b) and a new slice arrives, a decision
needs to be taken (i.e., accept or reject), leading the system to transit to one of the following states:

 (n + 1, m, l, 1) if a slice of eMBB is accepted;

 (n, m + 1, l, 2) if a slice of uRLLC is accepted;

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 51

 (n, m, l + 1, 3) if a slice of mMTC is accepted;

 (n, m, l, 1) if a slice of eMBB is rejected;

 (n, m, l, 2) if a slice of uRLLC is rejected;

 (n, m, l, 3) if a slice of mMTC is rejected.

If a network slice leaves, then the system moves to one of the following states without taking any action:

 (n − 1, m, l, 1) if a slice of eMBB has left;

 (n, m − 1, l, 2) if a slice of uRLLC has left;

 (n, m, l − 1, 3) if a slice of mMTC has left.
As mentioned above, each network slice is described by <𝑁𝑟𝑒𝑠𝑟𝑒𝑞

𝑖 (𝐷𝐿), 𝑁𝑟𝑒𝑠𝑟𝑒𝑞
𝑖 (𝑈𝐿), 𝐻𝑡𝑖𝑚𝑒 , 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦, and

𝑃𝑟𝑒𝑞
𝑖 >.

We assume that the price 𝑃𝑟𝑒𝑞
𝑖 to pay by each slice tenant, by time unit, is proportional to the slice priority.

Hence, we propose to model the estimated reward that InfProv expects to receive from each accepted
network slice as follows:

𝑅𝑖𝑛𝑓 = [𝑠𝑖𝑔𝑛(𝐶𝑡 − 𝑁𝑟𝑒𝑠𝑟𝑒𝑞
𝑖)] ∗ 𝑃𝑟𝑒𝑞

𝑖 ∗ 𝐻𝑡𝑖𝑚𝑒𝑟𝑒𝑞
𝑖 (5.8)

With:

𝑠𝑖𝑔𝑛(𝐶𝑡 − 𝑁𝑟𝑒𝑠𝑟𝑒𝑞
𝑖) = {

 1 𝐶𝑡 ≥ 𝑁𝑟𝑒𝑠𝑟𝑒𝑞
𝑖

−1 𝐶𝑡 < 𝑁𝑟𝑒𝑠𝑟𝑒𝑞
𝑖

 (5.9)

In equation 5.8, we multiply the 𝑃𝑟𝑒𝑞
𝑖 by 𝐻𝑡𝑖𝑚𝑒, since each accepted slice tenant pays a 𝑃𝑟𝑒𝑞

𝑖 according to the

slice priority by a time unit. Hence, the total price that a tenant of an accepted slice will pay depends on his
priority and the requested hosting time. Besides, we have added the sign in this equation to ensure that there
are enough resources in InfProv to support the number of required slice resources.

It is worth noting that in this work, for each accepted network slice, the InfProv should be able to provide the
needed resources for both UL and DL. Otherwise, the InfProv will pay a penalty, if it accepts a slice request
without having enough resources to cover the slice resource requirements. To this end, Ct should be always

higher than 𝑁𝑟𝑒𝑠𝑟𝑒𝑞
𝑖 in UL and DL. Therefore, the reward defined in 2 for both UL and DL will be calculated as

follows:

𝑅𝑖𝑛𝑓 = [𝑠𝑖𝑔𝑛(𝐶𝐼𝑛𝑓𝐷𝐿 − 𝑁𝑟𝑒𝑠𝑟𝑒𝑞𝐷𝐿
𝑖) ∧ 𝑠𝑖𝑔𝑛(𝐶𝐼𝑛𝑓𝑈𝐿 − 𝑁𝑟𝑒𝑠𝑟𝑒𝑞𝑈𝐿

𝑖)] ∗ 𝑃𝑟𝑒𝑞
𝑖 ∗ 𝐻𝑡𝑖𝑚𝑒𝑟𝑒𝑞

𝑖 (5.10)

 We also note that the 𝑅𝑖𝑛𝑓 is null if the slice request is rejected, as neither penalty nor reward can be applied.

Having defined the MDP model, we need to find the optimal policy that maximizes the long-term total reward
for InfProv. The optimal policy corresponds to the action to take for each state s aiming at maximizing the
long-term total reward. Since the MDP is hard to solve using techniques like Value iteration or Policy iteration
as the traffic model is hard to model, we describe in the next section how to find this policy using
Reinforcement Learning, through three models QL, DQN, and RM.

5.1.1.1 ADMISSION CONTROL USING Q-LEARNING

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 52

Q-learning is an offline reinforcement learning algorithm that generates an optimal policy to maximize the
expected total reward for any finite MDP [63], i.e., the state and action spaces may be finite, which is our
model’s case. This policy is based on the Q-learning function, which is designed to seek the best action in
each state to maximize the long-term total reward. The QL method consists first of calculating, for each
possible action in each state, a value named Q-value. Then the QL method stores these Q-values in a table,
namely the Q-table. This step is called the exploration of the unknown environment. It is worth noting that
the Q-table is initiated to zero and updated with the new Q-values obtained after each episode. The agent
performs in a state st, one of the two actions: accept or reject a new slice request for the epoch t, and it
observes the state transitions st+1, and rewards r. Hence, it updates the Q-value using the weighted average
of the previous and the new Q-value, as shown in the following equation:

𝑄𝑛𝑒𝑤(𝑠𝑡, 𝑎𝑡) (1 − 𝛼) 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼 (𝑟𝑡 + 𝛾 𝑚𝑎𝑥𝛼∈𝐴 𝑄(𝑠𝑡+1, 𝑎)) (5.11)

With:

• Q(st, at) is the old Q value;
• Qner(st, at) the new value obtained after updating the old one;
• α is the learning rate that controls how fast the new estimation adapts to the random changes imposed

by the environment.
• is the discount factor that notifies the importance of future rewards;
• rt is a reward received from action at;
• maxQ(st+1; a) is the estimation of the optimal future action.

After several episodes, the Q-table converges and becomes the reference table for the agent (.i.e., the entity
that takes decisions) to select the best action based on the Q-value. However, one of the QL method’s
weaknesses is the convergence time, i.e., the time needed by the agent to explore all the states to learn the
best action to take in the future. Indeed, it depends on the state space; if the latter is large, the time to
converge is high, which may be problematic if QL is used without offline training.

5.1.1.2 ADMISSION CONTROL USING DQL

Q learning is based on a Q-table to store the learned results for each state and action. Consequently, if the
state space is large, the table size explodes, leading to an increase in the training time as the agent has to
take more time to explore all the states. To this end, DQL uses deep learning to represent the Q-values, where
each state passes through several hidden layers of a neural network to get the Q-values [64]. Then, DQL
calculates: (i) the loss function that represents the mean squared error (MSE) as shown equation 5.12 of the
predicted Q-value (Qpred), and (ii) the target Q-value (Qtarget) (see equation 5.13) that represents the maximum
possible value for the next state.

𝑀𝑆𝐸(𝜃𝑖) = [𝑄𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑄(𝑠𝑡 , 𝑎, 𝜃𝑖]2 (5.12)

𝑄𝑡𝑎𝑟𝑔𝑒𝑡 = 𝐸[𝑟 + 𝛾 max 𝑄(𝑠𝑡 , 𝑎′, 𝜃𝑖−1] (5.13)

With 𝜃 is the weight.

Using the same 𝜃 weights in (5.12), the values Qtarget and Qpred move at the same time. For this purpose, DQL
uses two neural networks, one for Qpred and the other one for Qtarget. Algorithm 1 presents the different steps
of the DQL algorithm. Note that we have considered the states and actions as defined in the MDP.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 53

5.1.1.3 ADMISSION CONTROL USING REGRET MATCHING

Regret Matching (RM) is an online learning algorithm similar to Reinforcement Learning. Its agent (player or
user) looks for the right action based on the regrets of the previous actions. The main principle consists of
minimizing the regrets of its decisions at each step of the system [65]. To do so, the agent relies on past
behavior of taken actions to guide its future decisions by favoring the actions that it regrets not to have
chosen before. The strategy of this method is to adjust the agent’s policy by distributing probabilities on all
actions proportionally to the regrets of not having played other actions. The regret is defined as follows: if a
is the action chosen by the agent at time T, thus for any other action a ≠a*, the regret of choosing the action
a but not another action a* up to time T is obtained as shown equation 5.14 [66].

𝑅𝑇(𝑎, 𝑎∗) =
1

𝑇
∑ (𝑟𝑡(𝑎)) −

1

𝑇
∑ (𝑟𝑡

𝑖(𝑎∗))𝑇
𝑡=0

𝑇
𝑡=0 (5.14)

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 54

With: 𝑟𝑡(𝑎) is the reward obtained at time T, by choosing the action a. At each step, the agent chooses an
action 𝑎𝑇 between two actions (accept or reject) considered in this study (see equation 1). The probability
𝑃𝑇+1 that the agent will choose action a in the next step defined by next time T+1, is defined as follows:

𝑃𝑇+1(𝑎)= {

 [𝑅𝑒𝑔𝑇(𝑎, 𝑎∗)]+

∑ [𝑅𝑒𝑔𝑇(𝑎, 𝑎∗)]+
𝑎=0,1

 𝑖𝑓 𝑎 ≠ 𝑎𝑇

1 − ∑ 𝑃𝑇+1(𝑎′) 𝑎′≠𝑎𝑇
𝑖𝑓 𝑎 = 𝑎𝑇

 (5.15)

With: [𝑅𝑒𝑔𝑇(𝑎, 𝑎∗)]+ = max[𝑅𝑒𝑔𝑇(𝑎, 𝑎∗), 0] presents the non-negative part of the regret 𝑅𝑒𝑔𝑇(𝑎, 𝑎∗). The
RM algorithm is illustrated in Algorithm 2.

It is worth noting that the RM is a fully online solution; the policy should be initiated before that the algorithm
starts adapting itself. Therefore, we consider RM with two initial policies: accept and reject. The first one
starts by accepting the network slice requests, while the second one starts by rejecting the requests.

5.1.1.4 PERFORMANCE EVALUATION

In this section, we present the simulation results of the slice admission control problem by c omparing the
three methods’ performances. It is worth noting that the RM considered here is initialized once by accepting
the first received requests (noted as RM with accept policy), and once by rejecting the first received requests
(noted as RM with reject policy).

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 55

Table 3 Number of resources: (i) available in InfProv, (ii) requested by each slice in UL and DL

[UL, DL] InfProv [100, 100]

[uRLLC, mMTC, mMBB] UL slices [5,9,5]

[uRLLC, mMTC, mMBB] DL slices [5,5,10]

We assume that InfProv receives requests to create slices following a Poisson process with two different
arrival rates as follows: (i) rate=2 per time unit (tu) corresponding to a low arrival rate (i.e., the slice requests
arrive rarely), and (ii) rate=10 per tu corresponding to a frequent slice request arrival. Besides, we assume
that each slice request stays hosted in InfProv for a Htime period. To show the impact of Htime, we use four
values as follows: (i) short period where Htime= 5 tu, (ii) medium period where Htime = 20 tu, (iii) large period
where Htime = 50 tu, and (vi) very large period where Htime = 100 tu. We consider that the number of resources
requested by each slice in UL and DL, and the number of resources available in the InfProv are different, and
their values are presented in Table 3. Note that the three algorithms considered in our work (i.e., RM, QL,
and DQL) apply the same reward formula, which is based on the price and hosting time of each accepted slice
request.

Regarding slices’ priority, we assume obviously that uRLLC slices have the highest priority since it hosts
application requiring critical latency and reliability, while eMBB and mMTC slices have the same priority. The
price of running the uRLLC slice type is four times higher than the price to pay for running the mMTC and
eMBB slice types. The latter slices (i.e., mMMTC and eMBB) have the same price. In other words, we use the
price to pay as a way to enforce priority among the slice types.

Considering the training session, it is worth noting that the offline version of both QL and DQL algorithms
requires a training phase, in which the agent explores the environment to learn how to achieve the optimal
and most rewarding actions. However, our results are generated on the test phase, i.e., we aim to evaluate
our learning models on new data.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 56

Figure 10 InfProv reward and penalty vs. Time for slice arrival request rate= 2

Figure 10 illustrates the cumulative reward as well as the cumulative penalty obtained using the proposed
algorithms (RM initialized with accept policy, RM initialized with reject policy, QL, and DQL) when the arrival
rate is 2 per tu, and for four values of the Holding time (Htime). The same metrics are shown in Figure 11, but
for an arrival rate of 10 per tu. We recall that cumulative reward is obtained by the infrastructure provider
when accepting slices, and (ii) the penalty is incurred when a slice is accepted but InfProv has not sufficient
resources either in DL or UL or in both directions to satisfy its requirements. For the cumulative reward, we
notice that, for both arrival rates and in the four proposed solutions, when the Htime increases, the cumulative
reward decreases. We argue this by the fact that the resources are not released quickly when Htime is high;
hence the InfProv rejects new requests during this Htime period.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 57

Figure 11 InfProv reward and penalty vs. Time for slice arrival request rate=10

Besides, penalties (accepting a slice without having a resource) occur when the InfProv resources are
saturated, and the SAC keeps accepting arrival slices. We remark that penalties are higher when both the
arrival rate and the holding time are high, which is evident as the resources are quickly saturated since
accepted slices stay longer in the system. Further, we note that most of the algorithms require some time to
detect that the resources are saturated and keep accepting requests until the reward starts to be negative.
Consequently, they change the policy to reject. The time to detect that the resources are saturated is a
criterion to understand which algorithm performs well, and hence learned the system’s behavior. In this case,
we remark that RM obtains the best performances with accept policy, followed by DQL. QL achieves the worst
performance. We argue this by the fact that RM, thanks to its regret formula, detects quickly that the reward
starts to be negative, and adapts the policy accordingly. Further, DQL with the neuronal network can learn
and predict better when to change the policy, compared to QL, where the Q-tables cannot predict when to
update.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 58

On the other hand, when the arrival rate and the holding time are low, the probability of having penalties is
very small or even null as there are always available resources to accept new slices (Figure 10).

The results of Figure 10 and Figure 11 also show that in terms of rewards, the QL algorithm is the worst
algorithm of all tested algorithms regardless of the arrival rate of each type of slices, by achieving the lowest
cumulative reward. This means that it does not learn well when the policy should change from accepting to
rejecting, or the contrary. Indeed, QL derived policies that favor rejecting slice requests.

Figure 12 Percentage of slice request reject vs Htime for slice arrival request rate=10

Figure 12 presents the percentage of rejected requests according to Htime when using the proposed algorithms:
RM with accept policy, QL and DQL, and request arrivals rate= 10 corresponding to a frequent slice request
arrival. We notice that increasing Htime leads to an increase in the percentage of rejection for all the algorithms.
This is obvious as high values of Htime mean that admitted slices will stay longer in the network, and hence low
resources are available to accept new slices (i.e., increase the reject rate). Moreover, we noticed that QL
rejects more requests than RM and DQL for all the Htime, which confirms the low cumulated penalty and
reward of QL shown in the two precedent figures.

In Figure 13 we present the percentage of accepted slices according to their type and for different Htime, when
using RM algo rithms with accept policy, QL and DQL. Here our objective is to verify whether the proposed
algorithms satisfy the slice priority condition, i.e., the ability to give priority to uRLLC slices compared to the
other slice types. We can see that all algorithms favor the uRLLC slice over the other slice types. Further, we
see that DQL and RM show the highest percentage of accepted uRLLC slices compared to QL. In other words,
these results validate our reward function and the fact of using the price to pay as a way to enforce priority
among the three types of slices.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 59

Figure 13 Percentage of accepted slice type for slice arrival request rate=10

One of the biggest challenges when using Reinforcement Learning to solve SAC’s problem is whether online or
offline learning is better? And what is the time of convergence? So far, we have seen that RM, a fully online
algorithm, works well for SAC’s problem, while DQL and QL need to be trained before being used. Regarding
DQL we wanted to understand if an online version could make sense to address the SAC problem efficiently.
To this aim, we draw in Figure 14 a comparison between the offline DQL (when we first perform the training
phase and then the tests) and the online DQL in terms of average reward. The online training phase of DQL
varies between 0 and 1000 episodes. Each episode represents one training epoch during which the sys tem
receives 100 arrival slice requests. The maximum number of episodes depends on the convergence of the
online learning model. We have increased the number of episodes and calculated the corresponding average
reward. We have stopped when the learning model starts to give a constant reward (between 500 and 1000).
Note that the average reward is an average value of the reward obtained for the four considered Htime. We
clearly observe that the online DQL needs time i.e., more episodes to con- verge (improve the learning) and
start achieving the same performance as offline DQL (around 400 episodes). This means that during this

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 60

period, i.e., before converging, the DQL performances are awful and can seriously affect the business of
InfProv. All the results confirm that one of SAC’s best policy is to accept whenever the resources are available
to maximize the InfProv profile. In this context, RM with accept policy achieves the best performances by reducing
the penalty and increasing the reward. DQL and QL could be a good candidate, but there is a need to well tune
the learning steps in order to anticipate when the policy has to change. Indeed, RM uses a simple and efficient
formula to understand the need to change policy, while DQL and QL need to learn this. However, in a more
complex system, where a high number of actions are available, things may change as RM can hardly, by using
a simple formula, capture the behavior of the system. In contrast, DQL can be a powerful solution. But, in the
case of a SAC with only two available actions, RM with the accept policy is the best alternative for InfProv.

Figure 14 Offline and Online DQL Average Reward of Htime= (5, 20, 50, 100) for slice arrival request rate= 10

5.1.2 MODEL-BASED ADMISSION FOR THE CLOUD DOMAIN

A lot of state-of-the-art research has employed traffic forecasting to drive admission control policies for
network slices and for user service requests. However, the prediction values used are usually expected to
yield overbooked resources values in an undesirable degree [28], which incurs in costs either for the
Infrastructure Provider (InP), due to reduced resource efficiency, or to the tenant (since its paying for
resources it does need).

Using Context Aware Traffic Predictor (CATP), a traffic forecasting technique developed within MonB5G, as
the traffic prediction mechanism increases the quality of the prediction values. Then, driving an admission
control using CATP as the traffic predictor we believe it will yield important improvements over state-of-the-
art research for admission control. Coupled with the utilization of CATP, it will be possible to differentiate
between reservation of resources by the slices and the real resource utilization, therefore giving a more
precise vision to the InP about resource utilization, that can allow it to overbook resources based on the CATP
forecast, potentially allowing an increase in the acceptance ratio of the admitted slices and/or the user
service requests. This also increases even more the resource efficiency utilization, increasing revenue.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 61

At this point, the development of the slice admission control with CATP forecasting is on the way. The main
consideration is to model the Admission Control problem as a type of Time-Window based Bin-Packing
Problem with CATP forecast. In short, we would consider a set of network slices over a physical infrastructure,
and model the traffic load at specific time windows with variable duration as user service requests (USRs)
during that time window. As a first step, the admission control will be static, only allowing USRs for which
there is no conflict during the time windows, therefore avoiding congestion and SLA faults. The evaluation of
this approach it is not in a definite stage, and some additional considerations will be defined as it undergoes
progress.

This approach is currently being developed for driving the admission control at the BS station level (RAN
domain). It is important to note, that at this stage, we are not considering the problem of VNF-FG placement
or network embedding. At this stage, we are focusing on Admission Control based on resource forecast and
utilization.

We propose efficient online heuristic algorithm to solve network slice admission optimization problem. We
rely on an approach called the “Power of Two Choices” to build the heuristic algorithm. The modeling
proposed considers the physical network nodes resources (CPU, RAM) capacities, link resource capacities
(bandwidth) and also Edge-specific and URLLC constraints (user location, E2C latency) to calculate the best
location for placing the VNFs of the network slices and which network paths to use to chain them.

The algorithm optimization targets are resource utilization minimization and network slic e acceptance ratio
maximization. To calculate an accurate network slice admission decision is not trivial. The physical substrate
network is heterogeneous that is contains different types of DCs with different capacities: Edge Data Centers
(EDCs) as local DCs with small resources capacities, Core Data Centers (CDCs) as regional DCs with medium
resource capacities, and Central Cloud Platforms (CCPs) as national DCs with big resource capacities. Also,
different classes of network slices with different requirements in terms of resources, QoS and coverage area
are requested. In this context we propose an intelligent network slice admission policy to offload edge data
centers since these are critical resources.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 62

Figure 15 Comparison of blocking ratios vs network load for two ILP algorithms and two versions of the
proposed heuristic: the one adopting random server selection (P2C1), the one adopting the intelligent server

selection policy (P2C2)

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 63

Figure 16 Average execution time evaluation

Figure 15 and Figure 16 present evaluation results recently published in the conference paper [67] which
shows the good performance of the heuristic that solves the problem in few seconds under a large-scale
network scenario and considering multiple network slice request types: Best-Effort (BEF), Enhanced Mobile
Broadband (EMBB) and Ultra-Reliable and Low Latency Communications (URLLC). The heuristic also improves
the acceptance ratio of network slices when compared against a deterministic online Integer Linear
Programming (ILP) solution.

5.1.3 REINFORCEMENT LEARNING ADMISSION FOR THE CLOUD DOMAIN

As explained in Section 3.1, the admission control problem is closely related with a form of resource
management. As the number of slices and/or USRs get admitted into the network, the load on the
infrastructure increases as well, and resources are allocated to support the load. However, as the load varies
over time it will be necessary to re-allocate the initial resource assignment, and to implement dynamic
mechanisms to re-shuffle resources in an efficient way.

In order to provide a solution for this, our CATP-based Admission Control mechanism together with an RL-
based mechanism can be deployed in the following ways:

1. Use it as the main solution for admission control. Admission control can be modelled as a
combinatorial optimization problem, usually, as a variation of knapsack problems (but other
modelling options are viable). Since RL algorithms have proven to be the effective in solving these
types of problems, then providing a solution for admission control using RL is an attractive solution

2. Use RL for fine-grain optimization for resource reallocation among the admitted network slices
exploiting forecast information with CATP.

When using RL for fine-grain optimization upon admitted slices, the issue will be to decide from which
slices/USRs to reclaim resources from and to which slices/USRs re-allocate them to. This RL algorithm will
reclaim and reallocate resources at a smaller magnitude when compared to the resource allocation for initial

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 64

deployment of slices and USR acceptance. The optimization range of the RL algorithm should be in some
allocation region around the initial allocation.

The motivations behind using RL for fine-grain optimization, beyond the main admission control mechanism,
can be summarized in the following:

1. The convergence time of RL mechanisms make them inviable for real system deployment due to the
huge operational costs they can generate when determining their action policies. Implementing them
for fine-grained optimization prevents from incurring those costs of initial deployment and learning.

2. Prevents the system from falling into unstable states as the RL mechanism develops its policy.
3. Action exploration remains an important part of RL mechanism, even after convergence. Even though

explorative actions generate benefits to improve and optimize the policy even further after
convergence, this explorative nature can translate into undesirable costs for a communication
infrastructure.

In order to tackle these issues, the possibility of allowing some form of feedback between the RL fine-grain
optimization and the forecasting-based admission control mechanism will need to be provided, similar to
[28]. However, the development of these approaches for MonB5G are still under evaluation.

In Section 7.1.1, we have developed an RL approach which learns how to online solve a Binpacking problem.
For the admission control that is especially interesting, as our inter-slice orchestrator takes into account the
cost of having open server nodes. Essentially, the algorithm tries to place all the VNFs to as least server nodes
as possible. There is a two-fold advantage in that: a) having less servers on saves energy, b) fitting VNFs to
the least amount of server nodes, allows for potentially very large slices that will request to be placed in the
network, to find available resources; these resources would otherwise have been rejected service by the
operator.

We propose a Deep Reinforcement Learning (DRL) approach based on the Asynchronous Advantage Actor
Critic Algorithm (A3C) introduced by [68] to optimize network slice admission. The approach leverage on the
results of [69] that has shown that A3C yields good results in terms of acceptance ratio in the domain of to
the Virtual Network Embedding (VNE) problem.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 65

Figure 17 Architecture of the proposed DRL agent

Figure 17 presents the architecture of the proposed DRL agent. The agent maintains two neural networks
that are trained at the same time, one that generates the action selection policy called Actor Ne twork and
one that will calculate the state-value function estimation at each time step t. To reduce the action space,
we divide the calculation of the admission decision in several steps. Each step corresponds to the admission
of one specific VNF v of the Network Slice Placement Request (NSPR) and mapping of the virtual links
associated with VNF v. A training episode will therefore correspond to the admission of the NSPR into the
Physical Substrate Network (PSN) or its complete rejection.

At each training step the Graph Convolutional Network (GCN) layer is fed with the features of the PSN nodes:
the avaliable CPU capacity (cap_cpu), the avaliable RAM capacity (cap_ram), the maximum outgoing
bandwith (cap_bw) and a placement mask (x) indicating the number of VNFs of the current NSPR already
placed in each node. The features representing the resource requirements of the VNF v to be placed are
separately transmitted to a fully connected layer. We consolidate the outputs of its two layers into a second
fully connected layer which has a number units equal to the number of nodes of the PSN. This layer is
connected to a last neuron which is used to calculate the state value and to a softmax layer which calculates
a probability Pa of placement in each node a of the PSN, which corresponds to the placement policy π.

At the end of a training step there is an attempt to place the current VNF v on the server with the highest
probability of placement value. The reward obtained and saved and there is a PSN updated. At the end of an
episode, a loss function based on all the rewards and state values obtained is calculated and an update of the
weights of the neural networks is performed using the gradients of this function.

5.2 Multi-domain slice admission control algorithms

5.2.1 MULTI-DOMAIN CENTRALIZED ADMISSION CONTROL USING REINFORCEMENT LEARNING

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 66

The forecasting-based Admission Control mechanism together with the RL fine-grained optimization are in

principle technological-domain agnostic. But for an end-to-end implementation and evaluation, it is

necessary to get load traces at different technological domains, and this data has not been made available.

In order to develop this part, we would rely on the testbed and getting the necessary data from it. However,

this is still heavily under evaluation, and developing a clear mechanism for this is not possible at this point.

So far, we tackle the problem of admission control in multiple domains by applying the DRL agent introduced
in section 5.1.2 in a multi-domain network context. The multi-domain physical substrate network (PSN) is
represented in Figure 18. The PSN is divided in three parts: the Virtualized Infrastructure (VI), the Access
Network (AN) and the Transport Network (TN). The virtualized infrastructure represents the set of data
centers (DCs) interconnected by network elements (switches and routers) and located at Point of Presence
(PoP) or centralized. They offer IT resources to run VNFs.

We define three types of DCs with different capacities: Edge Data Centers (EDCs) as local DCs wit h small
resources capacities, Core Data Centers (CDCs) as regional DCs with medium resource capacities, and Central
Cloud Platforms (CCPs) as national DCs with big resource capacities. The Access Network (AN) represents
User Access Points (UAPs) (Wi-Fi APs, cellular, etc.) and Access Links. Users access the slices via one UAP,
which may change during the life time of a communication by a user. The Transport Network (TN): represents
the set of routers and transmission links needed to interconnect the different DCs and the UAPs.

Figure 18 End to end multi-domain physical substrate network modeling

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 67

6 Intra-slice Orchestration

To focus on slice orchestration, this Section gathers the challenges and proposed methods for AI-based intra-
slice orchestration relying on the architecture, principles and methods introduced in Sections 4 and 5 above.

We highlight: i) domain-specific mechanisms for intra-slice orchestration as per the specificities of the
architecture domains and the use of AI methods for configuration, migration, and scaling applied to VNFs as
main components of a network slice; and ii) cross-domain intra-slice orchestration with an E2E approach
including the use of AI methods for VNF chains placement and scaling with regards to the application of
distributed algorithms and multi-agents methods for multi-domain network slicing.

It is important to mention that when we consider single-domain algorithms for intra-slice orchestration, these
domains and associated contributions are not standalone contributions but are to be considered as building
blocks that will be integrated as components of the distributed architecture discussed in Section 4 above.

6.1 Domain-specific intra-slice orchestration

In this sub-section, we first present the set of AI methods we are considering for VNF configuration,
reconfiguration and migration when it comes to domain specific intra-slice orchestration. Then, we go
through the AI methods used for intra-slice orchestration.

6.1.1 AI METHODS FOR VNF (RE-)CONFIGURATION AND MIGRATION

Modern 5G networks consist of a huge amount of distributed Virtual Network Functions (VNFs) between
multiple geographical locations. Manually managing these VNFs and their data-flows to provide the maximum
performance at minimum cost is impossible. Since the world is already moving towards data -driven
automation, Augmented Intelligence (AI) algorithms can be employed to tackle the issue of zero -touch VNF
placement and migration.

There are several AI methods that have shown promising results for VNF placement and migration. Past
projects mostly focused on traditional optimization algorithms, like Integer Linear Programming (ILP), to
identify the placement that maximizes - or minimizes - a specific metric. However, the optimization
algorithms’ complexity and calculation time increases exponentially, posing problems with scaling in larger
networks. Newer works focus on exploring the abundant resources of network data available to train De ep
Neural Network (DNN) based algorithms to forecast the best VNF placement -or reconfiguration- given the
current or historical data. An important breakthrough was the use of time-series forecasting Long Short-Term
Memory (LSTM) and spatial data identifying Convolutional Neural Networks (CNN) algorithms to identify
trends and patterns that trigger a specific VNF reconfiguration that is predicted to perform the best given a
metric. Compared to ILP, these algorithms are able to find the best configuration, with the least
computational cost which is important for real-time, dynamic systems.

Since networks can be modelled as Markov Decision Process (MDP) environments, Reinforcement Learning
(RL) algorithms demonstrated their ability to dynamically tackle the issue of VNF reconfiguration and
migration. This field is inspired by the recent breakthroughs in self -driving cars, robotics, and the revolution
that OpenAI Gym environments sparked. Recent projects are focused on dynamically solving the VNF
migration problem with cutting edge algorithms, currently exploited by other industries also, such as Deep

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 68

Deterministic Policy Gradients (DDPG), various Actor-Critic Methods (A2C, A3C), and Proximal Policy
Optimization (PPO).

Recently researchers started to exploit the repetition in networks by employing Multi -Agent RL (MARL)
algorithms to achieve better learning in parallel with multiple algorithms that share the same problem and
cooperate to solve this issue. This solution is faster, more efficient, and with less cost.

New scalable cooperative MARL algorithms with multiple goals or objectives and complex shared rewards
emerged to tackle the dynamic VNF reconfigurations and migration issue, but this time also in great scales.

Figure 19 Multiple geographical domains with local agents instantiated

We recommend the use of discrete MARL algorithms, such as Multi-Agent Deep Q Network (MADQN), to
efficiently solve the problem of dynamic VNF reconfiguration and migration in a scalable way. The large
placement state space can be shared between multiple agents that perform the VNF placement in parallel.

The entire network can be split into multiple logical or geographical domains. VNF placement agents can be
instantiated locally in each domain. The placement agents can communicate with a global agent that is
responsible to distribute the VNFs-to-be-placed amongst them. A shared reward function can enable
cooperation for the optimization of a specific metric, such as latency, throughput, or a complex metric.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 69

Figure 20 Interconnected domains sharing a common reward to enable cooperation between the agents

The VNF placement is performed based on the capacity and load of the connected links and servers, the
congestion level of local and alternative computing resources, and KPI predictors. Local placement agents
attempt to identify feasible local reconfigurations, affecting only a small, local part of the network. These
reconfigurations could apply a specific policy, without the need for global network VNF reconfiguration. One
multi-agent RL-based solution [70] that we are considering in the context of intra-slice orchestration is SafeRL
(see Figure 21 below).

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 70

Figure 21 SafeRL with safety shield, logic and multiple safe baselines

This solution combines the RL-based approach with a safety shield, to only allow the RL agents to find new
reconfigurations within certain constraints. In the traditional RL model, the agents directly interact with the
environment and receive feedback.

In Safe RL, the safety shield acts as a proxy between the agents and the environment to protect it from
possibly unsafe actions proposed by the agents. The safety logic collects proposed actions by agents and
baselines based on the current state of the environment and chooses a final safe action to be performed on
the real environment. The RL agents continuously train based on the feedback of the action that was chosen
by the safety logic and executed by the safety shield.

Using different learning methods enables parallel experimentation with different techniques and parameters,
to determine the most suitable safe action among them. The safe baselines can be defined as a set of slice
configurations that are known to satisfy the safety requirements with acceptable performance (e.g., it may
not be a configuration that leads to optimal usage of resources, but it allows for the slice SLAs to be met).
The safety logic for the slice reconfiguration case can include slice SLAs and prediction models to estimate
how well the proposed action will do with respect to certain performance indicators. The local AE may also
be asked for predictions on slice KPIs.

6.1.2 AI METHODS FOR INTRA-SLICE SCALING

6.1.2.1 DEEP NEURAL NETWORKS (DNN) FOR INTRA-SLICE RESOURCE SCALING

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 71

In what follows, we will report our progress on the problem of intra-slice resource scaling in the MEC domain
of the network. Before delving into the details and to assist the reader, in the Figure 22 below, we show the
setup of our problem.

Figure 22 Slice i receives traffic from 3 BSs, and the traffic values are gathered in a Neural Network which
requests resources for the next time steps

In the RAN side, we condition our viewpoint on the i-th slice (e.g., Instagram) only. The goal is to design an
NN that gathers these measurements and allocates resources; this is placed in the MEC, which has higher
computational capacity. The target is summarized as follows:

 Service/Deployment. At time t, receive a number of signals M (as many as the BSs), from a time
window W (some integer number), and the DNN will return a single scalar value R (stands for
resource), which is the decision for the resource allocation for the whole slice at time t+1, across the
multiple BSs that this traffic receives traffic from.

 Problem Setup. We approach this problem from a data-driven viewpoint. To do so, we train a long-
short-term memory (LSTM) network, which is known to be very effective in applications that include
time-series data. We take a step further and instead of simply predicting values with the LSTM, we
ask from it to essentially solve an optimization problem, and demand from it to balance three
different competing goals:

 Overprovisioning: SLA violations and under-provisioning may be of critical cost, but also
“wasting” resources in order to be safe, is highly problematic and has to be avoided.

 Under-provisioning: We definitely need the allocated value to be on the “safe side”, i.e, reserve
slightly more resources than the slice needs, because failing to do so, will be of severe cost to the
infrastructure operator; this situation directly implies SLA violations on the contract between the
tenant and the operator.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 72

 Reconfigurations: One really important source of costs is the constant and unreasonable change
of resources from one timestep to the next, that the |R(t) - R(t-1)|. We penalize the DNN and do
not allow it to scale up and down at will and assign to the reconfigurations some amount of
money, exactly as we do with the rest of the costs.

Notably, this simple NN architecture tackles the same problem as the AZTEC [71], but does so in a much
simpler way. We train the network using as batches of inputs (X) the values of the BSs over a period/window
W, and the corresponding output is a single scalar (y). Importantly, as the loss function consists of three
entities, we need to carefully select the values w1, w2, w3 that show the emphasis on each of the individual
components above.

Among the obtained results, we show here the results for two cases:

a. one where the reconfigurations have the highest penalty rate (i.e., weight), and
b. and second one where under/overprovision rates are relatively much higher than the reconfiguration,

with higher penalty to the under-provisioning.

Figure 23 True and DE provisioned traffic intensity vs time for DE with more weight on reconfiguration costs

In the plot of Figure 23 above, we see that for case a) (in blue) the sum of traffic values that data center j in
the MEC “sees”, and with red, we see the value of the allocator.

As expected, since the penalty on the reconfiguration is very high, the allocated resources waveform is quite
smooth and does not “fall into the trap” of constantly changing its R.

Furthermore, note that since the under-provisioning penalty is higher than the overprovisioning, the allocator
simply “learns” the long-term trend, in order to avoid rescheduling resources, and tries to stay higher than
the demanded traffic (in blue).

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 73

Figure 24 True and DE provisioned traffic intensity vs time for DE with more weight on over/under-provision
costs

On the other, right above we see case (the colors represent again, blue: “True” and red: “Allocated”) (b):
Since the penalty on the reconfiguration is lower, we see a much spikier red/allocated waveform, which
comes from the fact that we do not penalize changes too much. Reasonably, the allocated waveform follows
much better the true one, and can find a much better trade-off, especially on the overprovisioning side of
things. The allocation of plot (b) does not “waste” resources in order not to make reconfigurations, and that
is why it achieves a much lower overprovision cost.

6.2 Cross-domain intra-slice orchestration

6.2.1 E2E VNF AND SLICE PLACEMENT AND SCALING - HIERARCHICAL/CENTRALIZED

Regarding the E2E VNF and Slice placement, we tackle here the problem of how to admit a maximum number
of network slice requests into an E2E physical network infrastructure. This involves solving the E2E network
slice placement and resource orchestration optimization problem.

The network slice placement optimization problem contains two main elements: the Physical Substrate
Network (PSN) and the Network Slice Placement Request (NSPR). The PSN is represented as a weighted
undirected graph Gs = (N, L), where N is the set of physical nodes in the PSN, and L = (a, b) in NxN refers to a
set of substrate links. The available CPU and RAM capacities on physical substrate nodes are defined
respectively as CAPCPUn, CAPRAMn, n in N. The available bandwidth capacities on the PSN links are defined
as CAPBW(a,b), (a,b) in L.

We consider that each network slice is a finite number of VNFs that is placed and chained on the PSN. VNFs
are batched and introduced in the network as NSPRs. The NSPRs are similarly represented as a weighted
undirected graph Gv = (V, E) where V donates the set of VNFs in the NSPR, and E = (a,b) in VxV is a set of
Virtual Links (VLs). The CPU and RAM requirements of each VNF of a NSPR are defined respectively as

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 74

REQCPUv and REQRAMv, v in V. The bandwidth required by each virtual link in a NSPR is given REQBW(a,b),
(a,b) in E.

We formulate the network slice deployment/placement optimization as follows:

 Given: a NSPR graph Gv = (V, E) and a PSN graph Gs = (N, L),

 Find: a mapping Gv to Gs =(N1,L1), N1 is a subset of N, L1 is a subset of L,

 Subject to: the VNF CPU requirements REQCPUv, v in V, the VNF RAM requirements REQRAMv, v in
V, the Virtual Links bandwidth requirement REQBW(a,b), (a,b) in E, the nodes CPU available capacity
CAPCPUn, n in N, the servers RAM available capacity CAPRAMn, n in N, the physical links bandwidth
available capacity CAPBW(a,b), (a,b) in L

 Objective: maximize the network slice placement requests acceptance ratio, minimize the total
resource consumption and maximize load balancing.

To solve the proposed network slice placement/deployment problem we introduce a novel algorithm called
Heuristically Accelerated Advantage Actor Critic. This algorithm is designed as an extension of the Advant age
Actor Critic algorithm introduced by [68] and successfully applied by [55] in the domain of the Virtual Network
Embedding (VNE), which can be considered as a variant of the network slice placement/deployment problem.

As explained in [55], the Advantage Actor Critic algorithm when applied to the VNE problem yields good
results in terms of acceptance ratio of network slices but it needs a considerable amount of training episodes
to achieve that. While the training is not done, the agent keeps taking bad decisions, what leads to rejection
of many NSPRS. This fact reduces the safety of using this kind of approach in a practical environment.

To deal with this problem we make use an efficient heuristic based on the Power of Two Choices (P2C)
developed in a previous work [66] to accelerate the learning process. In the proposed approach, this heuristic
is used as a support to the DRL agent to accelerate its convergence as shown in the Figure 25.

Figure 25 Learning control using previous contribution: heuristic based on the “Power of Two Choices” (P2C)
principle

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 75

We implemented our approach using PyTorch and ran some initial simulations to evaluate the convergence.
We considered the EMBB simulation scenario as described in [66] with a network load of 90%. We show in
the Figure 6.8 the Acceptance Ratio of the Advantage Actor Critic (DRL) and the Heuristically Accelerated
Advantage Actor Critic (DRL+P2C).

Figure 26 Network Slice Acceptance Ratio vs Training Phase

The preliminary results in Figure 26 show that the use of the P2C helps to improve the DRL performance. As
next steps, we plan to extend this approach to also handle QoS constraints like latency requirements.

6.2.2 DISTRIBUTED ALGORITHMS AND USE OF MULTI AGENTS REINFORCEMENT LEARNING

MARL algorithms and specifically Multi-agent Deep RL, had an outstanding evolution and gained more
traction in more industries recently. Learning in MDRL algorithms is fundamentally more difficult than single -
agent RL due to the issues regarding the collaboration between the agents.

MARL algorithms can be divided in multiple categories and each implementation can be mixed with different
techniques, from single-agent RL or other AI implementations. MARL algorithms can be either cooperative,
competitive or operate in mixed scenarios. The agents can solve goals, maximize or minimize rewards or have
inputs that are shared or independent amongst the agents. To enable VNF placement between multiple
geographical domains, the most important case is cooperative learning and is usually achieved through a
common complex weighted reward.

We plan to extend the approach introduced in section 6.2.1 to use it in a multi-agent architecture as shown
in Figure 27. We take as basis the multi-domain non-cooperative VNF-FG embedding architecture introduced
by [38] and apply it to our case, using the DRL agent based on HA-A2C algorithm. This will allow our approach
to scale up even further as we consider in this multi-agent scenario that we would have one DRL agent per
network domain. Each DRL agent will learn on how to make network slice placement decisions in his

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 76

respective domain. A higher-level decision engine is responsible for evaluating, when needed the decisions
taken by each local DRL agents and to choose the most advantageous.

Figure 27 Multi-agent DRL approach for cross-domain slice orchestration

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 77

7 Inter-slice Orchestration

After having discussed the problems of slice admission and intra-slice control/orchestration, this final
technical section focuses on the problem of inter-slice orchestration. The said problem lies a level above the
intra-slice one. As an example, when a specific slice demands a huge increase in resources, as the inter-slice
DE has full view of the infrastructure at its disposal, it can move the aforementioned slice to a fresh dedicated
server node, so that the slice KPIs remain guaranteed. Essentially, the inter-slice DE is the entity having a
wider picture (supervision) of the network operations and its performance.

At large, its role is to coordinate the VNF processes across all technological domains inside the physical
network of the operator. The said coordination has to result in a robust operation of all slices (i.e., respecting
the SLA agreements and guaranteeing promised KPIs) and this has to happen in the most cost-efficient way
possible for the operator. The problem is highly complex, because if the operator (inter-slice DE) starts
moving VNFs around at will (even if the taken decisions seem correct in the short run), this may cause a huge
damage to the KPIs of the slice tenants in the long-run. These reconfigurations will be followed by increased
end to end delays (or even severe congestions), as packets may start gathering while the inter-slice DE moves
the VNFs.

Thus, another key objective for the DE at this level is to pay attention to reconfiguration costs. Importantly,
the DE at this level implicitly has control over the admission as well. One of the main objectives of MonB5G
is to be able to host a large number of slices, and to this end, the inter-slice orchestrator has to take into
account this dimension as well. Therefore, although we need to respect SLA agreements, anot her key goal
for us is to make sure we do not waste resources by operating unnecessarily too many server nodes open.
Having the minimum amount of physical infrastructure nodes OFF (a) is environmentally friendlier, (b): less
costly for the operator and (c): allows to host more slices in the future.

To bind the intra-slice together with the inter-slice DEs, we present here a figure that shows conceptually
how these entities coordinate and the distributed nature of the decisions taken.

Figure 28 Conceptual interaction of intra and inter slice DEs

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 78

Notably, this should not be taken as an alternative DE architecture, but rather as a conceptual scheme of how
the algorithms of Section 6 and Section 7 relate to each other.

In what follows, we will see some approaches related to domain-specific and cross-domain orchestrators.

7.1 Domain-specific inter-slice orchestration

At this level, the inter-slice DE is responsible for reconfiguring the slice-server assignment only on one
technological domain (e.g., RAN or MEC or transport). It is important to note here, and for the remained of
this section, that when we describe some solutions as “domain-specific”, for example, an algorithm targeting
the RAN technological domain, we assume that this solution is not a standalone algorithm, but will be
integrated (in the remainder of the project) into the end-to-end DE architecture described in Section 4,
interacting through the defined interfaces with other DEs (and locally residing algorithmic components).

7.1.1 Q-LEARNING WITH MULTIPLE OBJECTIVES

We need to carefully define the goal, i.e., objectives, and the model we assume before continuing to the

proposed algorithmic solution. We employ here a simple, yet widely used model for the slicing problem. A

pictorial representation of what we assume as a slice and the corresponding network infrastructure is

presented below in Figure 29 [13].

Figure 29 On the top: Network operator infrastructure resources, on the bottom: Different slices as graph
embeddings, in all domains

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 79

Moreover, we are considering a decoupled version of the network and focus only on one side of it, e.g., the
RAN or the MEC or the transport. Thus, our analysis and solution would hold for an interslice orchestrator at
any technological domain of the network for the objectives we choose to optimize.

Slice and Infrastructure: Modelling and Problem Setup. According to the Figure above, each slice consists of
some virtual network functions (VNFs) or processes, and depending on the type of VNF, these can be placed
either in the radio access network (RAN) or the MEC. In our first attempt to solve this problem, we will assume
a simplified version of the architecture we see above. We are dealing with a set of slices L = {1, …, |L|}, where
each slice comes with one VNF only. Note that each VNF (and therefore slice) comes with some traffic
intensity Di, for all i set of slices L, which is a scalar real value.

The infrastructure of the operator is assumed to be a set of server nodes N = {1, ..., |N|} that have some

specific capacity Ci, with i in set N, and each can fit inside some VNFs. Importantly, each VNF (and therefore

slice) comes with some traffic intensity Di, which we assume to be random. Finally, must be always placed in

one node only. Put differently, it is prohibited to split a process into more than one server nodes.

Time Scale. In this basic setup, the time is slotted and discrete; the system starts from t = 0, 1, … and evolves

infinitely. In other words, we face the problem as a non-episodic process. Usual examples of episodic Markov

Decision Problems (or Reinforcement Learning (RL)) in the unknown environment case) are the ones that

have a fixed (deterministic or random), and finite horizon. We view our problem as an “ever-learning”

infinitely long RL episode. At each time, the agent/learner is able to fully observe the state and the rewards

of the system, and is also able to take an action.

State Space. A reasonable first thought for a state space is to take all the possible configurations/placements
for the slices in the possible nodes/links that are available. The configurations are basically all the possible rij
with i in L (for slices) and j in N (for nodes) where each slice is assigned to only one node. For each slice, we
can have N possible placements, therefore we have N x ... x N, L times (i.e., NL), as many as slices we have.
However, if we can control deterministically the evolution of the slices configurations, then there is nothing
random in the transitions of the system. The only random entity in this process is the slice traffic demand. In
Markov process terms, this could easily be represented as a probability transition matrix with entries dij with
i in D and j in D = {0, ..., |D|} being the possible values the traffic demand can take. Note that there are L
underlying such probability transition matrices, one for each slice. This accounts for NL x DL states in total.

Action Space. A crucial entity of the MDP/RL framework is the action space of the agent. Here we assume
that the agent’s control is the configuration of the system , so the action taken by the learner at time step t,
ends up being the part of the state that corresponds to the slices configuration at the immediate next time
instance (at t+1).

Importantly, we have to specify the KPIs of interest that characterize a high-performance inter-slice
orchestrator.

 Free up Resources: One first problem is the one where the objective is to maximize the free space of
the resources so that when a new slice wants to be embedded in the PN, the operator is able to fit it.

 SLA Violations: Given the current demand and the configuration, new slice demands are revealed at

t+1, and we pay some penalty that depends on where we placed the VNFs, and on the demands that

arrived (which potentially caused capacity violations on the assigned server nodes at t+1). These

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 80

penalties model some sort of SLA violation, since exceeding the capacity of the server node directly

translates to money paid from the infrastructure owner to the slice tenant .

 Reconfiguration Costs: Every time instance, the controller agent has to decide whether to change the
slice/server assignment. The L1 norm |Xt+1 - Xt| (where X is the slice/server assignment) expresses
the number of reconfigurations we had to make from. If we weigh this quantity with some cij (that
indicates the cost the corresponding reconfiguration), we have the total cost of the reconfiguration
of two consequent slice/server assignments.

We stress at this point, that the costs we have listed above, for sure implicitly help the slice-tenant perceived

performance, however, they are explicitly network-operator-centred. Essentially zero cost at the above

metrics (2, 3) implies optimal experience for the slice tenant. However, since we need one global cost, we

have to define the cost as a convex combination of (1, 2, 3) and therefore we can never explicitly set to zero

any of the above metrics, but rather only minimize a combination of them. Therefore, for now we omit a

crucial slice tenant-perceived performance metric, i.e., the delay experienced by the tenant, which we will

discuss in detail later and add to this flexible framework.

Since we now have formalized all the necessary entities (state space, action space, rewards description) of

the RL framework, we can now formalize our immediate reward/cost as a function of the current state, the

next state and the action taken by the agent.

Results. Here, we have formulated an unconstrained RL problem, and our approach allows us to capture a

variety of different scenarios, where the agent focuses more on (1), (2), (3), and/or a convex combination of

the above. The question we need to answer through the results, is whether the RL algorithm finds the optimal

solution of the problem conditioned on some combination of weights {w1, w2, w3}, for a variety of different

slice traffic demand patterns.

For simplicity, we will assume two types of slices that take discrete values, with D = {0, 1} (this corresponds

to an ON/OFF type of traffic) and we will assume that our slice demands can be either:

 IID: each time step, the traffic of the slice is random, independent, and comes out of the same

distribution.

 Bursty: the traffic at time t+1 is random, but it is highly likely to be similar to t.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 81

We test the algorithm in a scenario where we have |L| = 3 slices (with one VNF each) and |N| = 3 server

nodes; each server node has a capacity of one unit. For these scenarios, we simulate traffic that is random,

and an allocator/agent orchestrates in real time the traffic and assigns it to appropriate server nodes. The

ultimate goal is to design an agent that manages to find the optimal policy in the initially unknown

environment, that is “minimize the expected cost of time step”. To assess whether the algorithm performs

well/reasonably we simulate the offline MDP that is fully aware of the system’s stochastic dynamics, and plot

its expected per time step reward. In the following plots, we showcase two scenarios:

 Two slices are random, and one is bursty,

 Two slices are bursty and one is random.

The results justify that such approaches are able to learn the dynamics, and exploit simultaneously.

Figure 30 Objective performance vs time of online Q-learning and offline MDP-optimal controllers; case of
one random and two bursty slices

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 82

Figure 31 Objective performance vs time of online Q-learning and offline MDP-optimal controllers; case of
two random and one bursty slices

Some conclusions. As we can readily see from the plots above, the RL-online algorithm can reach the optimal

cost performance. However, the optimality comes at some cost. The time we observe at the x-axis is

essentially time-slots, and as we can see, we need about 105 time instances until we reach the optimal

performance. If each time instance was a second, this would be about 2.5 hours. Note that this is the time

needed for a small-scale scenario, and this would probably further increase with the increase of the example.

7.1.2 STATISTICAL METHODS FOR VNF BOTTLENECK LOCALIZATION

Model and notation

The concept of connecting multiple VNFs is an ordered chain to afford an end-to-end service with specific

QoS requirements is known as Service Function Chaining (SFC). The SFC is complementary to the NFV

forwarding graph concept since it enables the interconnection of multiple virtual functions or service

functions over multiple domains in a dynamic and flexible way. The SFC architecture can be built on top of

the NFV ETSI model. The latter model supports the management operations for the VNFs to deploy the

network services from the service forwarding graphs and needed interfaces for the VNFs and lifecycle

management. These features enable the implementation of the SFC concept taking into consideration the

NFV standards specifications.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 83

Figure 32 Service Function Chaining architecture

Explanation of Figure 32: It depicts the main components of the SFC architecture. The first element in the

service chain is the Ingress Classifier, which is responsible for applying the traffic steering policy for matching

the incoming flows with the needed Service Functions (SFs) where the packets can have specific processing.

The SFs can be for example a firewall or a Deep Packet Inspection (DPI). A Service Function corresponds to a

VNF (or multiple connected VNFs) in the NFV MANO architecture. Finally, the Service Function Forwarder

(SFF) is responsible for forwarding the traffic to the SFs or to the next SFFs according to the SFC encapsulation

information. The path taken by a packet formed by the SFFs and SFs is called the Service Function Path (SFP).

Figure 33 Service function chain deployment with multiple Service Function Paths

Explanation of Figure 33: It shows an example of an SFC deployment over an NFVI with multiple SFPs. For
each SFP, a tunnel is created between the needed VNFs instances.

A failed instance can lead to disrupt all the requests passing through. It is possible to infer the intermediate
nodes state from end-to-end measurements. There are some required conditions to fulfil while designing the

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 84

probing system to ensure the efficiency of such methods. These methods can be evaluated by its capacity to
localize accurately the maximum of simultaneously failed points.

The monitoring system can detect/predict a performance degradation on an end-to-end path. In this case,
the decision system must take remediation actions to correct the problem. The remediation action can be
for example adding resources for the bottleneck nodes. End-to-end measures do not allow to localize these
nodes accurately, so the decision system can deploy more sophisticated probing schemes to find them with
minimum cost.

Decision Engine for probing strategy

We propose in this section an adaptive approach to select the needed set of probing paths. The first step of
the monitoring operation is to cover the set of nodes V with a minimum number of paths from an exhaustive
list denoted by Pglobal. This enables the detection of any misbehavior in the network topology. The process is
described in lines 2-5 of Algorithm 1. It is based on an iterative process where we select at each iteration the
path p that covers the maximum number of new nodes denoted by Vp until covering all the set of nodes noted
V. The performed end-to-end measurements on this initial set of paths allow the detection of any anomaly
in the network. Then, we need additional paths for the localization. The process of probing path selection for
faulty nodes localization is a particular case of Group Testing Theory [72]. We follow an adaptive incremental
method, where the DE selects at each iteration the path that gives the maximum of useful information
according to the already measured paths. In our path selection strategy, we privilege those who are likely in
an “UP” state.

Indeed, if the end-to-end measurement on a path is "UP”, we can conclude that all the nodes composing it
are functional, which is not the case if the path is faulty. Thus, we compute at each iteration a score for the
non-selected paths to choose the best one. This score reflects the expectation of the number of "UP” nodes
for which we do not know their state weighted by the probability that the path is "UP”. This estimation is
computed with formula:

 Where V’ denotes the nodes with unknown states. At each iteration, the value of α is computed with the
Algorithm inspired by [73].

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 85

Algorithm: Probing path selection

Results

We use simulations to evaluate the proposed solution. Consider the case of a network service chain

composed of 4 VNFs. Each network function has between 4 and 5 instances. We build a topology that respects

the sufficient condition to localize k failures, and k is fixed to 1 in these tests.

The number of failed nodes is varied from 1 to 3. Figure 34 (below) illustrates the probability dispersion and

the confusion matrix for the node states made with 50 tests. For each test, the algorithm gives the probability

of failure on each node. These values give together the probability dispersion graph. Then, these values are

compared to a fixed threshold to decide if the node is down or not to give the confusion matrix.

 With only one failure node, the monitoring system can localize them accurately in all the tests. These results

are expected since the sufficient condition is satisfied to localize one failed node. However, this co ndition

does not hold when more than one failure are generated as shown in the next tests in Figure 34. With two

and three failed nodes, the inference algorithm identifies all of them. However, the number of false positives

increases a little bit to reach 3% and 9% respectively.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 86

Figure 34 Failure probability estimations and confusion matrix for 50 tests. In the tests, we vary the number
of simultaneously failed nodes from 1 tot3

7.1.3 LATENCY CONTROL

In the context of multi slice orchestration in the Radio Access Network (RAN) domain, radio resources are

divided among the instantiated slices by the slice controller. The great variety of services to be instantiated

translates in the need of accurate resource allocation schemes, and inter-slice isolation aspects to support

the coexistence of latency-constrained, and throughput-constrained services. To fulfil this need, we design

an orchestration solution that autonomously assigns chunks of radio spectrum (slices), hence pursuing the

goal of simultaneously guaranteeing latency and throughput constraints.

When dealing with the RAN domain, the behavioural dynamics of the (aggregated) demand across involved

tenants, and the inherent randomness of the wireless channel must be considered. Our solution takes into

consideration the latter two aspects with a novel learning scheme which is able to extrapolate the

implications of allocation decisions on per-slice latency, without explicitly making assumptions on the

underlying dynamics. To this aim, we model our decision-making problem as a Markov Decision Process

(MDP) to neglect low-level details of the tenant demands and channel dynamics. While to deal with state

transition matrix statistics estimation, we rely to a Multi-Armed Bandit (MAB).

The Latency Control Problem

Let us define a network running slice i∈ I and the end-user u∈ Ui associated to the i-th slice. The total amount

of wireless resources is split into multiple non-overlapping network slices. Based on fixed SLAs, each network

slice is characterized by maximum throughput and expected latency denoted by Λi and Δi, respectively. Each

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 87

base station (BS) is characterized by a capacity C, thus the spectrum assignment per each slice, denoted as yi,

must satisfy the capacity constraint ∑i∈I yi ≤ C.

We consider a time-slotted system where time is divided into decision epochs n = {1, 2, …, N}, with duration

ϵ that may be decided according to the infrastructure provider policies. We define the experienced

instantaneous signal-to-noise ratio (SNR) of slice i (averaged over all u∈ Ui) and the instantaneous aggregate

traffic demand within time-slot n as Random Variables (RV)s γi
(n) and λi

(n), respectively. Our system does not

assume any knowledge on such random variables, and exploits machine learning techniques to overcome this

limitation.

The control problem becomes:

where ς(⋅)(n) is a mapping function that returns the number of bits that can be served using the allocated

number of PRBs (yi
(n)) and the current SNR level (γi

(n)), the agreed slice latency tolerance Δi, and ri
(n) introduced

to account for the additional delay due to packet queuing during the time-slot n. To address this optimization

problem, we rely on a two-layer scheduling approach wherein an inter-slice scheduler is in charge of defining

the Physical Resource Blocks (PRBs) allocation strategy, and an intra-slice scheduler enforces the assignment

of the pre-allocated subset of PRBs to the connected end-users. Our work mainly focuses on the higher-level

inter-slice scheduler, leaving the implementation of intra-slice scheduling strategies open to address tenant-

specific requirements. To solve the PRB allocation problem, we propose a two-stage approach that models

channel and traffic demand variations based on previous observations and iteratively applies slice settings

towards the goal of honouring SLAs.

Discrete Time Markov Chain Model

Expected channel conditions and violations on latency tolerance are analyzed through a Discrete Time

Markov Chain (DTMC) model that accounts for the system dynamics over each slice, as depicted in Figure 35.

We consider Markov chain time-slot that is smaller than the channel coherence time, in order to model

variations as a sequential visiting of consecutive states.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 88

Figure 35 Radio channel variations as Markov chain.

For the sake of tractability, we consider an aggregate channel condition resulting from the set of users ui∈ Ui

belonging to slice i, and bound the channel quality to a finite set of quality levels G. Let us consider a discrete-

time stochastic process Xt that takes values from a finite and discrete state space denoted by S={S0, 0, …, Sg,d,

…, SG,1 | 0 ≤ g ≤ G , d ∈ {0, 1}}. Visiting state Sg,d represents (a): an experienced channel level g ∈ G, with (b):

an associated delay exceeding the one specified by the slice SLA (d = 1) or otherwise (d = 0).

Hence, we define the probability to improve (or worsen) the user channel condition from level g to level g +

1(g - 1) as pg, g+1 (pg, g-1). Last, we model the probability to experience delay constraint violation as mg and the

probability to keep the access delay within the agreed bound as lg. Thus, this process can be formulated as a

two-dimensional DTMC M ∶ = (S, P), where P denotes the state transition probability.

To estimate the matrix P, we rely on unsupervised learning, and more specifically on the well-known theory

of probabilistic latent variable. Let us consider w ∈ W as the stochastic latent variable denoting the current

channel quality. Formally, we can redefine the transition probability of the DTMC as ρa,b
g= Pr(Xt = Sg,b | Xt-1 =

Sg,a, g = w) that is the transition probability from state Sg,a to Sg,b with channel quality g = w. The weight of

each latent variable based on a given set of previous observations can be evaluated as

where Ŝt denotes the history of transitions across Xt among different states, and {α, β} ∈ {0,1}2. We can

generalize the probability to move from a state wherein the latency is under control Sg,0 to some state

incurring unexpected latency Sg,1, using the following expression

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 89

Markov Decision Process (MDP)

The decision problem is modelled as a Markov Decision Process (MDP) defined by the set of states ∑={ρ}, the

set of actions Φ={ϕ}, the transition function T(ρ, ϕ, σ'), and the reward function R(ρ, ϕ).

The set of states accounts for all the slicing configurations cσ = {y1,…, yI} expressed in terms of PRBs, where

∑i∈I yi ≤ C. The transition function characterizes the system dynamics state σ to state σ' through action ϕ.

Finally, the function R(ρ,ϕ) measures the reward associated to the state transition, when performing action

ϕ. The policy for the decision agent is defined as P(n) ∶ ∑(n)→Φ(n) and specifies which action to perform at time

n when the system is in state σ. The final aim of the decision agent is to find the policy that maximizes the

expected total reward.

To maximize the reward, each slicing configuration is associated with a reward action which is linked to the

probability of exceeding the latency constraints defined in the slice SLA. Given a slicing configuration cσ = {yi

| i∈I }, if the associated transition probability matrix P is perfectly known, we can derive the steady-state

probabilities Π* = {πs*}; this can be used to formulate the instantaneous reward value R(σ(n), ϕ(n)) = (∑s∈Sg,0

πs*)η where s is the index of all states Sg,0 ∀ g∈ G such that the slice latency is under control, whereas η∈[0,1]

is an adjustable value decided by the infrastructure provider to provide action fairness in the reward function

when η tends to 0, or maximum likelihood of keeping latency under control when η tends to 1.

Our objective is to maximize the expected aggregate reward obtained as . To achieve

this goal, we need to rely on the transition probabilities ρa,b inferred based on the previous observations.

Multi armed bandit problem

The proposed MDP can be solved by using dynamic programming solutions such as Value Iteration [16]. These

approaches require exploring the entire state space of the MDP (several times) and the associated rewards.

Let us consider a scenario with I online slices running in our system. Assume that each slice configuration yi

can take values from integer multiples of a minimum PRB chunk size Θ. Then, we can calculate the overall

number of states equal to (C/Θ +I-1)! / ((I-1)! (C/Θ)!). This poor state scalability, as well known as the curse

of dimensionality, compromises the feasibility of MDP models under practical conditions.

However, MDPs provide insights regarding the structure of the problem itself and are very helpful to design

auxiliary solutions, such as Multi-Armed Bandit (MAB) models, which are better suited for functional

deployments. Therefore, in the next section we rely on a novel MAB design that exploits information from

the underlying MDP to expedite the learning process while attaining near-optimal results.

Multi- Armed Bandit (MAB) problem emulates the action of iteratively select a single bandit (or slot machine)

that may return the best payoff. Each slot machine returns unpredictable revenues out of fixed statistical

distribution, not known a priori, that is iteratively inferred by previous observations. This matches well the

randomness of the channel quality and the traffic demand we aim to capture whereas each bandit can be

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 90

mapped onto a slicing configuration state, with the final objective of maximizing the overall gain after a finite

number of rounds. Let us define each arm σ∈ ∑ as a different slicing configuration cσ. Once selected, each

arm provides an instantaneous reward R(σ) = ∑i∈I (ζ(yi, γi) - λi/Δi) where the slicing configuration is yi ∈ cσ,

ζ(⋅) computes the number of bits that can be served using yi configuration and given the current channel

quality γi, and λi is the slice traffic demand. The bandit’s reward is thus the expectation of access latency

exceeding slice SLA.

Numerical Results

To assess heterogeneous slices, we simulate the network load demand of slice i at each time-slot (i.e., each

transmission time interval (TTI) in Long Term Evolution (LTE) systems). Each slice has a normally distributed

latency constraint, and Rayleigh channel is considered.

Figure 36 Impact of different resource allocation chunk sizes

.

Figure 36 shows the trade-off between the action space of the MAB agent (and its granularity) and the

associated reward loss. To this aim, we set up a simple experiment with 2 slices with equal SLA requirements

in a deterministic and static environment. 3 different action sets are available to the orchestrator: {0, 2, 4, …

, 100}, {0, 10, 20, … , 100} and {0, 10, 20, … , 100} PRBs (with 50, 20 and 10 available configurations each),

labelled “2 PRBs“, “5 PRBs“ and “10 PRBs“, respectively. The results, shown in Figure 36, make it evident that

the higher the granularity the longer the exploration phase(s): over 50 intervals for “2 PRBs“ , whereas it takes

around 10 intervals for “10 PRBs“. Interestingly, the loss in reward attained to the latter configuration is only

2%. Therefore, due to a faster convergence time at the expense of minimal reward loss, we empirically select

10 PRBs for our purposes.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 91

Figure 37 Architecture overview

Figure 38 Preliminary results on Latency control

In order to illustrate, validate and analyze the performance of our LACO solution, we developed it as a

standalone software module running on top of an open-source platform that implements the LTE protocol

stack, namely srsLTE [74] and commercial tablets as UEs. The architecture of our software implementation

and

LACO’s interfaces with srseNB are depicted in Figure 37. LACO interacts with the eNB’s Medium Access

Control (MAC) layer to implement two key features: I) Monitoring agent. This feeds LACO with real-time SNR

reports generated by the physical (PHY) layer from feedback received from the UEs, the selected MCSs and

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 92

corresponding transport block size (TBS) value used to encode information at the MAC layer, and other traffic

statistics such as packet size and arrival times; II) Policy Enforcer. This allows LACO to dynamically enforce

the PRB allocation policies calculated by our MAB model.

This information, together with the scheduling buffer size and data arrival times, is essential to compute the

latency experienced by the different slices running in the system. To highlight the ability of dealing with

heterogeneous slices, the empirical CDF of delay for an URLLC (5 ms) and eMBB (30 ms) slices sharing the

radio interface is shown in Figure 38, against standard Round Robin (RR) policy. Results show a remarkable

improvement of latency CDF for the URLLC slice, almost without affecting the performances of eMBB.

7.2 Cross-domain end-to-end inter-slice orchestration with Reinforcement
Learning

For this level of controller, the decisions taken at one domain do affect the performance of the whole system.
The end to end orchestrator has a wider view of the infrastructure and the analytics of the slices. As a result,
it can capture more interesting tradeoffs, as the decisions on one technological domain may need to come
with decisions on the other domain as well. Mathematically, the problem has similar complexity to the one
of single (or domain specific) inter-slice orchestrator, however its state and action spaces are dramatically
larger.

Slice and Infrastructure: Modelling and Problem Setup. In order to apply E2E centralized reinforcement
learning control we first have to extend the model presented in subsection (7.1.1). This was a decoupled
version of the network focusing only on the RAN domain. Here we aim to incorporate different network
domains (RAN and Core) and consider an E2E metric. In a setup like that the actions taken for each of the
domains are coupled. In this subsection we will mainly stress out the additions required on top of the existing
model presented in (7.1.1).

We mainly utilize the same simple model for the network and the slices but we introduce some additional
elements that will allow us to consider the E2E delay for each slice. Our system consists of N nodes on the
RAN and M nodes on the Core Network. For the moment we assume that there is a total of N×M available
links that connect RAN with Core nodes (one for each pair), and that each slice comes with one RAN VNF and
one Core VNF, but this can be easily generalized. The nth RAN and mth Core nodes have a total available
capacity of Cn

R and Cm
C accordingly, while the capacity of the link that connects them is Cnm

L. Time is slotted
since we consider again the same Time Scale as in section (7.1.1). We assume that there is a Service Level
Agreement for each slice to be respected by the network operator. From the viewpoint of the enterprise
requesting the slice, the quality of service could be perceived by the mean response time of the system or in
other words the average E2E delay for a transmitted packet. Hence, we denote by Ti

max the maximum E2E
delay according to the SLA for the ith slice. Also, we assume that the arrival of packets at each node or link is
described by a Poisson process with rate λ. In the simple scenario of a slice that consists of one VNF on the
RAN and one on the Core, the slice can be sufficiently described by λi

R, λi
C, λi

L, Ti
max, where λi

R, λi
C and λi

L are
the arrival rates (or traffic demands) for the RAN VNF, the Core VNF and the link that connects them
accordingly. Moreover, we assume that the service times at the nth RAN node, the mth Core node and the link
between them are exponentially distributed with mean values 1/Cn

R, 1/Cm
C and 1/Cnm

L respectively. Hence,

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 93

we can calculate the end-to-end delay of the system by modelling each node as well as each interconnection
link by an M/M/1 queue. Since the number of packets arriving between reconfigurations of the system is very
large, we can use the closed form expressions for M/M/1 queues to calculate the mean response time of the
system (stationarity is required). Note that for a stable M/M/1 queue, Poisson arrivals with rate λ and
exponential distributed service times with mean 1/μ, the mean response time is given by 1/(μ-λ).

State Space. The configuration of the system can be represented by two indicator matrices, one for the RAN
(xR) and one for the Core (xC) with size L×N and L×M respectively (i.e. if some capacity of the nth RAN node is
allocated to the VNF of the ith slice we set xin

R=1, otherwise it is xin
R=0). The configuration of the RAN and Core

implies also the configuration of the links (if the first VNF of the ith Slice runs on the nth RAN node and the
second VNF runs on the mth CORE node then xinm

L=1). Hence, for each slice there are N×M possible
configurations in total. Also, each of the slice traffic demands is defined by a D×D transition probability matrix
as remarked in (7.1.1), and there are 3L such matrices in total (3 for each slice). In such case, considering that
a state is sufficiently defined by the RAN, Core configurations and the traffic demands, the total number of
states is NL×ML×D3L.

Action Space. The action we take at time t is the RAN and Core configurations at time t+1. Hence, at each
state there are NL×ML possible actions.

Reward/cost. Here we use the same KPIs of interest as in subsection (7.1.1.). These are Free up Resources,
Reconfiguration Costs and SLA Violations. However, we will formulate the SLA violations cost in a way that
reflects the slice-tenant perceived experience and we will depart from the network-operator centred
objective. Towards this direction we will use the E2E delay as a metric. Consequently, the objective now
becomes:

Where:

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 94

And,

Let us see how this objective captures the slice viewpoint. The first two terms are no different than the
corresponding terms presented in (7.1.1.). They are linear and capture the “Free up Resources” and
“Reconfiguration costs” for RAN and Core. However, C3 term is nonlinear and couples the decisions we make
for RAN with the decisions we make for Core, since it is an E2E metric. We observe that with this model a
violation of the service level agreement for a slice is possible even when the total arrival rate associated with
any node or link does not exceed its total rate of service. Also, when a node or link is congested (the total
arrival rate associated with this node or link gets close to its capacity), it acts like a bottleneck for the end-
to-end transmission and affects all the associated slices. Note that this objective sums the SLA violations of
each slice and not the under-provisioning of each node or link of the system. i.e. when there is a serious delay
due to the overload of a specific node, this is taken into account as many times as the number of slices
associated with this node and not just once. This is why it captures the SLA violation from the viewpoint of
the slice and not from the viewpoint of the network operator. Also, note that the expressions for Ti

R, Ti
L and

Ti
C hold only when the total arrival rate associated with any node or link does not exceed its total rate of

service. Hence, in any other case we have to assign an infinite value to Ti
R, Ti

L, Ti
C. A last remark concerns the

indicator variable vi
ind of the C3 term, which ensures that C3 takes only positive values. Without that the

algorithm would try to make this term as negative as possible leading to overprovisioning.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 95

8 Conclusions

In this deliverable, we have presented the initial progress of the distributed AI-driven decision engine (DE),

proposed in Work Package 4. We identified the key axes of novelty of the proposed mechanisms, mainly as

the co-design of: (a) a stack of algorithms that is fully data-driven, and based on state-of-the-art machine

learning methods that are revisited taking into account the intricacies specific to cellular networking setups,

that force these algorithms to become network-aware or network-friendly; (b) a distributed implementation

of such algorithms that is flexible enough to adapt from hierarchical to fully decentralized “federated”

operation.

Specifically, in this deliverable we have discussed appropriate models and assumptions related to the
problem setup(s) that are appropriate for the lifecycle management algorithms for beyond 5G slicing, such
as slice representations, KPI metrics for the algorithms to optimize as well as KPIs used to measure the
performance of the algorithms themselves, SLA types and violation penalties, etc. We have also provided an
up-to-date state-of-the-art discussion on existing solutions, compared to the original discussion in the
proposal. Based on the generic setup of the problem, we then proposed a flexibly distributable architecture
for the DE, along with all the intra DE interfaces as well as interfaces with the MS and AE system. Th is
architecture will be the basis for the integration and implementation envisioned in Task 4.4, to take place in
the remainder of the project.

Finally, in the last three chapters, each pertaining to the main technical tasks of the project, namely tasks

4.1, 4.2, and 4.3, we have discussed in detail our initial attempts towards efficient algorithms related to the

key phases of modern slice lifecycle management, namely admission control (Section 5), intra-slice

management (Section 6), and inter-slice management (Section 7). There has been a range of methodology

and AI-related tools investigated ranging from Deep Neural Networks adapted for slice resource allocation,

to (tabular and deep) Reinforcement Learning methods (a natural candidate for control problems arising in

both intra- and inter-slice management problems), even briefly touching upon “adversarial” (worst-case)

methods that are a robust and fast-learning tool for highly non-stationary setups (which we plan to explore

more in the remainder of the project).

In the remainder of the project, we will use the outcomes of this deliverable as the main guide towards
achieving the following goals for the project: (a) we will investigate how the DE architecture proposed in
Section. 4 can be integrated and demonstrated on an experimental platform, with multiple technical
domains; (b) a large number of algorithms described in this deliverable were initially targeting a single
domain; we plan to evolve these algorithms (or appropriately synthesize different components) towards full -
fledged end-to-end solutions that span multiple technological and administrative domains; (c) we will further
improve the individual algorithms as well as attempt to compare them in a common fair setup, with similar
assumptions, and KPIs, in order to understand the (case-)specific pros and cons of our algorithmic arsenal.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 96

9 References

[1] "NGMNAlliance,2016(Online). Available:,
https://www.ngmn.org/wpcontent/uploads/160113_NGMN_Network_Slicing_v1_0.pdf".

[2] "3GPP Specification #23.501, System Architecture for the 5G System (5GS), 2018".

[3] "Network Functions Virtualisation (NFV) Release 3; Evolution and Ecosystem; Report on Network Slicing
Support with ETSI NFV Architecture Framework, available: https://www.etsi.org/deliver/etsi_gr/NFV -
EVE/001_099/012/03.01.01_60/gr_NFV-EVE012v030101p.pdf".

[4] "IETF Draft, Technology Independent Information Model for Network Slicing, available:
https://www.ietf.org/archive/id/draft-qiang-coms-netslicing-information-model-02.txt".

[5] "https://private.matilda-5g.eu/documents/PublicDownload/119".

[6] NGMN Alliance, "5G White Paper," 2015.

[7] P. Vizarreta, M. Condoluci, C. M. Machuca, T. Mahmoodi and W. Kellerer, "QoS-driven function
placement reducing expenditures in NFV deployments," in 2017 IEEE International Conference on
Communications (ICC), 2017.

[8] D. Cotroneo, L. De Simone, A. K. Iannillo, A. Lanzaro, R. Natella, J. Fan and W. Ping, "Network Function
Virtualization: Challenges and Directions for Reliability Assurance," in 2014 IEEE International
Symposium on Software Reliability Engineering Workshops , Naples, Italy, 2014.

[9] 5G PPP Architecture Working Group, "View on 5G Architecture," 5G PPP Architecture Working Group,
2020.

[10] M. O. Ojijo and O. E. Falowo, "A Survey on Slice Admission Control Strategies and Optimization Schemes
in 5G Network," IEEE Access, vol. 8, pp. 14977-14990, 2020.

[11] S. E. Elayoubi, S. B. Jemaa, Z. Altman and A. Galindo-Serrano, "5G RAN Slicing for Verticals: Enablers and
Challenges," IEEE Communications Magazine, vol. 57, no. 1, pp. 28-34, 2019.

[12] Y. L. Lee, J. Loo, T. C. Chuah and L. Wang, "Dynamic Network Slicing for Multitenant Heterogeneous
Cloud Radio Access Networks," IEEE Transactions on Wireless Communications, vol. 17, no. 4, pp. 2146-
2161, 2018.

[13] S. Vassilaras, L. Gkatzikis, N. Liakopoulos, I. N. Stiakogiannakis, M. Qi, L. Shi, L. Liu, M. Debbah and G. S.
Paschos, "The Algorithmic Aspects of Network Slicing," IEEE Communications Magazine, vol. 55, no. 8,
pp. 112-119, 2017.

[14] B. Han, D. Feng and H. D. Schotten, "A Markov Model of Slice Admission Control," IEEE Networking
Letters, vol. 1, no. 1, pp. 2-5, 2019.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 97

[15] A. Banchs, G. de Veciana, V. Sciancalepore and X. Costa-Perez, "Resource Allocation for Network Slicing
in Mobile Networks," IEEE Access, vol. 8, pp. 214696-214706, 2020.

[16] T. Kuo, B. Liou, K. C. Lin and M. Tsai, "Deploying chains of virtual network functions: On the relation
between link and server usage," in IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference
on Computer Communications, 2016.

[17] Q. Zhang, F. Liu and C. Zeng, "Adaptive Interference-Aware VNF Placement for Service-Customized 5G
Network Slices," in IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, 2019.

[18] M. A. Tahmasbi Nejad, S. Parsaeefard, M. A. Maddah-Ali, T. Mahmoodi and B. H. Khalaj, "vSPACE: VNF
Simultaneous Placement, Admission Control and Embedding," IEEE Journal on Selected Areas in
Communications, vol. 36, no. 3, pp. 542-557, 2018.

[19] A. Fendt, S. Lohmuller, L. C. Schmelz and B. Bauer, "A Network Slice Resource Allocation and
Optimization Model for End-to-End Mobile Networks," in 2018 IEEE 5G World Forum (5GWF), 2018.

[20] A. Othman and N. A. Nayan, "Efficient admission control and resource allocation mechanisms for public
safety communications over 5G network slice," Telecommun. Syst., vol. 72, pp. 595-607, 2019.

[21] J. Salvat, L. Zanzi, A. Garcia-Saavedra, V. Sciancalepore and X. Costa-Perez, "Overbooking Network Slices
through Yield-Driven End-to-End Orchestration," in Proceedings of the 14th International Conference
on Emerging Networking Experiments and Technologies, New York, NY, USA, 2018.

[22] B. Han, V. Sciancalepore, D. Feng, X. Costa-Perez and H. D. Schotten, "A Utility-Driven Multi-Queue
Admission Control Solution for Network Slicing," in IEEE INFOCOM 2019 - IEEE Conference on Computer
Communications, 2019.

[23] B. Han, J. Lianghai and H. D. Schotten, "Slice as an Evolutionary Service: Genetic Optimization for Inter -
Slice Resource Management in 5G Networks," IEEE Access, vol. 6, pp. 33137-33147, 2018.

[24] P. T. A. Quang, Y. Hadjadj-Aoul and A. Outtagarts, "A Deep Reinforcement Learning Approach for VNF
Forwarding Graph Embedding," IEEE Transactions on Network and Service Management, vol. 16, no. 4,
pp. 1318-1331, 2019.

[25] M. Bunyakitanon, A. P. da Silva, X. Vasilakos, R. Nejabati and D. Simeonidou, "Auto-3P: An autonomous
VNF performance prediction and placement framework based on machine learning," Computer
Networks, vol. 181, 2020.

[26] D. Bega, M. Gramaglia, A. Banchs, V. Sciancalepore, K. Samdanis and X. Costa-Perez, "Optimising 5G
infrastructure markets: The business of network slicing," in IEEE INFOCOM 2017 - IEEE Conference on
Computer Communications, 2017.

[27] T. V. K. Buyakar, H. Agarwal, B. R. Tamma and A. A. Franklin, "Resource Allocation with Admission
Control for GBR and Delay QoS in 5G Network Slices," in 2020 International Conference on
COMmunication Systems NETworkS (COMSNETS), 2020.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 98

[28] V. Sciancalepore, X. Costa-Perez and A. Banchs, "RL-NSB: Reinforcement Learning-Based 5G Network
Slice Broker," in IEEE/ACM Transactions on Networking, 2019.

[29] C. Song, M. Zhang, X. Huang, Y. Zhan, D. Wang, M. Liu and Y. Rong, "Machine Learning Enabling Traffic -
Aware Dynamic Slicing for 5G Optical Transport Networks," in 2018 Conference on Lasers and Electro-
Optics (CLEO), 2018.

[30] N. Salhab, R. Rahim, R. Langar and R. Boutaba, "Machine Learning Based Resource Orchestration for 5G
Network Slices," in 2019 IEEE Global Communications Conference (GLOBECOM), 2019.

[31] J. Kuo, S. Shen, H. Kang, D. Yang, M. Tsai and W. Chen, "Service chain embedding with maximum flow
in software defined network and application to the next-generation cellular network architecture," in
IEEE INFOCOM 2017 - IEEE Conference on Computer Communications, 2017.

[32] G. Wang, G. Feng, W. Tan, S. Qin, R. Wen and S. Sun, "Resource Allocation for Network Slices in 5G with
Network Resource Pricing," in GLOBECOM 2017 - 2017 IEEE Global Communications Conference, 2017.

[33] L. Gao and G. N. Rouskas, "On Congestion Minimization for Service Chain Routing Problems," in ICC
2019 - 2019 IEEE International Conference on Communications (ICC) , 2019.

[34] C. Marquez, M. Gramaglia, M. Fiore, A. Banchs and X. Costa-Perez, "How Should I Slice My Network? A
Multi-Service Empirical Evaluation of Resource Sharing Efficiency," in MobiCom '18, New Delhi, India,
2018.

[35] C. Zhang, M. Fiore, C. Ziemlicki and P. Patras, "Microscope: Mobile Service Traffic Decomposition for
Network Slicing as a Service," in Proceedings of the 26th Annual International Conference on Mobile
Computing and Networking, London, United Kingdom, 2020.

[36] D. Bega, M. Gramaglia, M. Fiore, A. Banchs and X. Costa-Pérez, "DeepCog: Optimizing Resource
Provisioning in Network Slicing With AI-Based Capacity Forecasting," IEEE Journal on Selected Areas in
Communications, vol. 38, no. 2, pp. {361-376}, 2020.

[37] H. A. Shah and L. Zhao, "Multiagent Deep-Reinforcement-Learning-Based Virtual Resource Allocation
Through Network Function Virtualization in Internet of Things," IEEE Internet of Things Journal, vol. 8,
no. 5, pp. 3410-3421, 2021.

[38] P. T. A. Quang, A. Bradai, K. D. Singh and Y. Hadjadj-Aoul, "Multi-domain non-cooperative VNF-FG
embedding: A deep reinforcement learning approach," in IEEE INFOCOM 2019 - IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS) , 2019.

[39] S. Messaoud, A. Bradai, O. Ben Ahmed, P. Quang, M. Atri and M. S. Hossain, "Deep Federated Q -
Learning-based Network Slicing for Industrial IoT," IEEE Transactions on Industrial Informatics, 2020.

[40] Y. Sun, G. Feng, L. Zhang, P. V. Klaine, M. A. Iinran and Y. -C. Liang, "Distributed Learning Based Handoff
Mechanism for Radio Access Network Slicing with Data Sharing," in ICC 2019 - 2019 IEEE International
Conference on Communications (ICC), 2019.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page | 99

[41] E. M. D. R. S. H. a. B. A. y. A. H. B. McMahan, "Communication-efficient learning of deep networks from
decentralized data," in Artificial Intelligence and Statistics, 2017.

[42] A. S. A. T. a. V. S. T. Li, "Federated learning: Challenges, methods, and future directions," IEEE Signal
Processing Magazine, vol. 37, no. 3, pp. 50-60, 2020.

[43] C. C. M. S. a. A. T. V. Smith, "Federated multi-task learning," in Advances in Neural Information
Processing Systems, 2017.

[44] C. L. J. K. U. E. a. D. S. N. Carlini, "The Secret Sharer: Measuring Unintended Neural Network
Memorization & Extracting Secrets author={Nicholas Carlini and Chang Liu and J. Kos and {\'U}lfar
Erlingsson and D. Song}, journal={ArXiv}, year={2018}, v," in ArXiv.

[45] A. N. a. A. Ozdaglar, "Distributed subgradient methods for multi-agent optimization," IEEE Transactions
on Automatic Control, vol. 54, no. 1, pp. 48-61, 2009.

[46] C. R. S. W. a. F. N. B. Recht, "Hogwild!: A lock-free approach to parallelizing stochastic gradient descent.
Advances in neural information processing systems," Advances in neural information processing
systems, pp. 693-701, 2011.

[47] A. O. a. W. S. A. Nedic, "Achieving geometric convergence for distributed optimization over time-varying
graphs," SIAM Journal on Optimization, vol. 27, no. 4, pp. 2597-2633, 2017.

[48] K. Y. Q. L. W. Y. a. A. S. T. Wu, "Decentralized consensus optimization with asynchrony and delays," IEEE
Transactions on Signal and Information Processing over Networks, vol. 4, no. 2, pp. 293-307, 2017.

[49] W. Z. C. Z. a. J. L. X. Lian, "Asynchronous decentralized parallel stochastic gradient descent," in
International Conference on Machine Learning, July, 2018.

[50] W. H. a. F. I. P. Bianchi, "A coordinate descent primal-dual algorithm and application to distributed
asynchronous optimization," IEEE Transactions on Automatic Control, vol. 61, no. 10, pp. 2947-2957,
2015.

[51] S. K. a. M. J. T. Vogels, "Powersgd: Practical low-rank gradient compression for distributed
optimization," in Advances in Neural Information Processing Systems, 2019.

[52] J.-B. C. a. M. J. S. U. Stich, "Stich, S. U., Cordonnier, J.-B., and Jaggi, M. (2018). Sparsified SGD with
memory. InAdvances in Neural Information Processing Systems," in Advances in Neural Information
Processing Systems, 2018.

[53] S. S. a. M. J. A. Koloskova, "Decentralized Stochastic Optimization and Gossip Algorithms with
Compressed Communication," in Proceedings of the 36th International Conference on Machine
Learning, 2019.

[54] J. Cao, Y. Zhang, W. An, X. Chen, J. Sun and Y. Han, "VNF-FG design and VNF placement for 5G mobile
networks," Science China Information Sciences, vol. 60, no. 4, pp. 1869-1919, 2017.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page |
100

[55] Z. Yan, J. Ge, Y. Wu, L. Li and T. Li, "Automatic Virtual Network Embedding: A Deep Reinforcement
Learning Approach With Graph Convolutional Networks," IEEE Journal on Selected Areas in
Communications, vol. 38, no. 6, pp. 1040-1057, 2020.

[56] H. Wang, Y. Wu, G. Min and W. Miao, "A Graph Neural Network-based Digital Twin for Network Slicing
Management," IEEE Transactions on Industrial Informatics, 2020.

[57] A. Rkhami, Y. Hadjadj-Aoul and A. Outtagarts, "Learn to improve: A novel deep reinforcement learning
approach for beyond 5G network slicing," in IEEE Consumer Communications \& Networking Conference
(CCNC), 2021.

[58] M. Schlichtkrull, T. Kipf, P. Bloem, R. van den Berg, I. Titov and M. Welling, "Modeling Relational Data
with Graph Convolutional Networks," in European Semantic Web Conference, 2018.

[59] "ETSI ZSM 009-1, “Zero-Touch Network and Service Management (ZSM); Closed-loop Automation;
Enablers”, V0.10.5 (2021-01)".

[60] Y. W. A. T. J. H. P. A. a. I. M. Ryan Lowe, "Multi-agent actor-critic for mixed cooperative-competitive
environments," in Proceedings of the 31st International Conference on Neural Information Processing
Systems (NIPS'17).

[61] GSMA, "Generic Network Slice Template Version 4.0," 2020.

[62] Y. Chen, Y. Gao, C. Jiang and K. J. R. Liu, "Game theoretic Markov decision processes for optimal decision
making in social systems," in 2014 IEEE Global Conference on Signal and Information Processing
(GlobalSIP), Atlanta, GA, USA, 2014.

[63] P. D. Pandey, "Approximate Q-Learning: An Introduction," in Second International Conference on
Machine Learning, Bangalore, 2010.

[64] D. B. a. A. V. A. Jeerige, ""Comparison of Deep Reinforcement Learning Approaches for Intelligent Game
Playing,"," in IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC) , Las
Vegas, NV, USA, 2019.

[65] Q. Yu, J. Chen, Y. Sun, Y. Fan and X. Shen, "Regret Matching Based Channel Assignment for Wireless
Sensor Networks," in 2010 IEEE International Conference on Communications, Cape Town, South Africa,
2010.

[66] J. J. Alves Esteves, A. Boubendir, F. Guillemin and P. Sens, "Heuristic for Edge-enabled Network Slicing
Optimization using the “Power of Two Choices”," in 16th International Conference on Network and
Service Management (CNSM), 2020.

[67] R. A. L. C. Nguyen DD, "Online versus offline reinforcement learning for false target control against
known threat.," in Intelligent Robotics and Applications. ICIRA 2018..

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page |
101

[68] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley and K. Kavukcuoglu, "Asynchronous
methods for deep reinforcement learning," in In International conference on machine learning, 2016.

[69] Z. J. G. Y. W. L. L. a. T. L. Yan, "Automatic virtual network embedding: A deep reinforcement learning
approach with graph convolutional networks," IEEE Journal on Selected Areas in Communications, vol.
38, no. 6, pp. 1040-1057, 2020.

[70] Ltd LM Ericsson, ""Methods and Apparatus for Managing a System that Controls an Environment"". US
Patent 63/058985.

[71] D. M. G. M. F. A. B. a. X. C.-P. Bega, "AZTEC: Anticipatory capacity allocation for zero-touch network
slicing," in IEEE INFOCOM 2020-IEEE Conference on Computer Communications, 2020.

[72] M. Aldridge, O. Johnson and J. Scarlett, "Group Testing: An Information Theory Perspective,"
Foundations and Trends in Information Theory, 2019.

[73] M. Rahali, J. Sanner and G. Rubino, "Unicast Inference of Additive Metrics in General Network
Topologies," in 27th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems, MASCOTS, 2019.

[74] I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P. Serrano, C. Cano and D. J. Leith, "srsLTE: An
open-source platform for LTE evolution and experimentation," in ACM International Workshop on
Wireless Network Testbeds, Experimental Evaluation, and Characterization , 2016.

[75] M. Agiwal, A. Roy and N. Saxena, "Next Generation 5G Wireless Networks: A Comprehensive Survey,"
IEEE Communications Surveys & Tutorials, vol. 18, no. 3, pp. 1617-1655, thirdquarter 2016.

[76] A. Ksentini and N. Nikaein, "Toward Enforcing Network Slicing on RAN: Flexibility and Resources
Abstraction," IEEE Communications Magazine, vol. 55, no. 6, pp. 102-108, 2017.

[77] A. Ksentini, P. A. Frangoudis, A. PC and N. Nikaein, "Providing Low Latency Guarantees for Slicing-Ready
5G Systems via Two-Level MAC Scheduling," IEEE Network, vol. 32, no. 6, pp. 116-123, 2018.

[78] 3GPP, "Study on Management and Orchestration of Network Slicing for Next Generation Network,"
2018.

[79] D. Bega, M. Gramaglia, A. Banchs, V. Sciancalepore, K. Samdanis and X. Costa-Perez, "Optimising 5G
infrastructure markets: The business of network slicing," in IEEE INFOCOM 2017 - IEEE Conference on
Computer Communications, Atlanta, GA, USA, 2017.

[80] S. Bakri, P. A. Frangoudis and A. Ksentini, "Dynamic Slicing of RAN Resources for Heterogeneous
Coexisting 5G Services," in 2019 IEEE Global Communications Conference (GLOBECOM) , Waikoloa, HI,
USA, 2019.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page |
102

[81] W. Qiang and Z. Zhongli, "Reinforcement learning model, algorithms and its application," in 2011
International Conference on Mechatronic Science, Electric Engineering and Computer (MEC) , Jilin, China,
2011.

[82] J. X. Salvat, L. Zanzi, A. Garcia-Saavedra, V. Sciancalepore and X. Costa-Perez, "Overbooking network
slices through yield-driven end-to-end orchestration," in CoNEXT '18: Proceedings of the 14th
International Conference on emerging Networking EXperiments and Technologies , 2018.

[83] A. Anand, G. de Veciana and S. Shakkottai, "Joint Scheduling of URLLC and eMBB Traffic in 5G Wireless
Networks," IEEE/ACM Transactions on Networking, vol. 28, no. 2, pp. 477-490, 2020.

[84] M. Vincenzi, E. Lopez-Aguilera and E. Garcia-Villegas, "Maximizing Infrastructure Providers’ Revenue
Through Network Slicing in 5G," IEEE Access, vol. 7, 2019.

[85] M. R. Raza, C. Natalino, P. Öhlen, L. Wosinska and P. Monti, "Reinforcement Learning for Slicing in a 5G
Flexible RAN," Journal of Lightwave Technology, vol. 37, no. 20, pp. 5161-5169, 2019.

[86] D. Pandey and P. Pandey, "Approximate Q-Learning: An Introduction," in 2010 Second International
Conference on Machine Learning and Computing, Bangalore, India, 2010.

[87] A. Jeerige, D. Bein and A. Verma, "Comparison of Deep Reinforcement Learning Approaches for
Intelligent Game Playing," in 2019 IEEE 9th Annual Computing and Communication Workshop and
Conference (CCWC), Las Vegas, NV, USA, 2019.

[88] D. D. Nguyen, A. Rajagopalan and C.-C. Lim, "Online Versus Offline Reinforcement Learning for False
Target Control Against Known Threat," in ICIRA 2018: Intelligent Robotics and Applications, 2018.

[89] J. J. Alves Esteves, A. Boubendir, F. Guillemin and P. Sens, "Heuristic for Edge-enabled Network Slicing
Optimization using the “Power of Two Choices"," in 2020 16th International Conference on Network and
Service Management (CNSM), Izmir, Turkey, 2020.

[90] Y. G. C. J. a. K. J. R. L. Y. Chen, ""Game theoretic Markov decision processes for optimal decision making
in social systems," 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP),
Atlanta, GA, 2014.".

[91] O. E. F. M. Ojijo, "A Survey on Slice Admission Control Strategies and Optimization Schemes in 5G
Network," IEEE Access, no. 19313469, pp. 14977-14990, 2020.

[92] "ETSI ZSM 009-1, “Zero-Touch Network and Service Management (ZSM); Closed-loop Automation;
Enablers”, V0.10.5 (2021-01)".

871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.1 – Initial Report on AI-Driven Techniques for the MonB5G
DE [Public]

©MonB5G, 2019 Page |
103

