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Executive Summary 

Motivated by the increased attack surface of slicing-enabled beyond 5G environments, MonB5G aims at 

providing a secure and trusted environment for network slice deployment and management. The distributed 

nature of MonB5G elements and their AI-based features are instrumental in achieving these objectives. By 

applying advanced data analysis and Machine Learning (ML) techniques, early and accurate identification of 

attacks will be possible via the automatic application of localized, self-healing mechanisms to mitigate them, 

taking advantage of the distribution of security management tasks and security enforcement points across 

the architecture.  

Security functionality in MonB5G is provided by a security orchestrator (SO) entity, which examines security 

requirements and provides the adequate closed loops (Security as a Service - SECaaS), leveraging the slice 

template, the Security Service Level Agreemen (SSLA), and the threat modelling. SO instantiates and deploys 

SECaaS and relies on the SSLA manager to monitor and check that the security requirements of network slices 

are met. SECaaS is defined as a selected combination of MSs, AEs and DEs deployed on-demand to provide a 

Zero-touch security management of security. SECaaS features AI algorithms, at the AE, that automatically 

protects the running network slice by detecting anomalies and attacks and mitigates these threats with 

appropriate action through DE. Besides, the MonB5G system focuses on protecting AI-driven solutions run at 

Analytical Engine (AE) against the presence of misbehaving decentralized elements, knowing that the 

produced model can provide a calamitous output when trained based on corrupted data. Hence, the design 

of new approaches to secure AI-based training is envisioned.   

Meanwhile, energy consumption reduction is another objective pursue by MonB5G. Indeed, MonB5G aims 

at providing all the necessary mechanisms that will allow the reduction of power consumption. Building on 

the MonB5G distributed network slicing architecture, where the three key components, i.e., MS, AE, and MS, 

will be instantiated at each technological domain, and for each network slice, several energy-aware artificial 

intelligence (AI) techniques are envisioned. The proposed energy optimization techniques will be envisioned 

for AEs and DEs. For AE, constrained federated learning (FL)-based is considered to reduce the amount of raw 

data exchanged between local AEs and the end-to-end AE, aiming at reducing the transmission overhead and 

thereby the underlying energy consumption. Regarding DE, distributed multi -agent Deep Reinforcement 

Learning (DRL)-based DEs are considered to perform cross-domain joint slice VNF placement and energy 

control. Finally, MonB5G considers a dynamic RAN offloading via a data-driven base-station (BS) switching 

OFF/ON. 

The deliverable provides the first report of MonB5G contributions and work plan to, on one hand, secure 

network slicing by introducing the SO entity that provides SECaaS relying on MonB5G key components MS, 

AE and DE targeting zero-touch security management; on the other hand, to reduce energy consumption 

through ML techniques covering AE and DE components. The deliverable covers the following security 

aspects: the SO architecture and functions relying on the MonB5G reference architecture detailed in D2.1; 

AI-based security management introducing the concept of SECaas that relies and the key MonB5G elements 

(MS, AE and DE), a threat study on attacks on network slicing mapped to two representative use -cases, the 
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attack detection and mitigation using MonB5G key elements and the SO mapped to two representative use -

cases. Regarding energy consumption, the deliverable provides the first contributions of the project to reduce 

energy consumption using optimized AI algorithms for AE and DE as well as a first approach to turn on -off 

Radio Access Network (RAN) components according to network slice traffics.   

It is important to note that this deliverable is a merge of the deliverables D5.1 and D5.2. Accordingly, this 

impacted the content of the initial deliverable, as now it contains two different and separate sections, one 

for security covering Tasks T5.1 and T5.2 activities, and another section covering energy optimization 

covering the activities of T5.3. Besides, the deliverable content is covering only 7 months of activities in 

WP5, hence covering mainly the initial design and description of the envisioned solutions, as the due date 

has been shifted from M24 to M17 per the officer’s request.    

The following highlights the key achievements in this deliverable: 

- A review of state of the art on security orchestrators as proposed by phases 2 and 3 projects funded 
under the 5GPPP program.  

- A review of existing solutions that are envisioned to protect AI algorithms against attacks.  

- A detailed description of the SO and SECaaS adopted in MonB5G, which rely on the MonB5G reference 
architecture described in D2.1. 

- A detailed description of MonB5G key elements and their role to detect and mitigate attacks on 
network slices using AI-based algorithms targeting zero-touch security management.  

- A comprehensive study of conceivable attack threats and their respective mitigation actions when 
used in a virtualized environment is provided, focusing on two representative use-cases covering the 
activities of WP5.  

- A formal model for security threats, with application on the two representative use-cases.  

- A first description of the MonB5G key elements MS, AE and DE functions and their interaction to 
detect and mitigate attacks mapped to the two representative use-cases considered in WP5.  For 
each, component examples of envisioned algorithm and mechanism are provided.  

- A comprehensive review of start of the art techniques to reduce energy consumption. 

- First MonB5G energy-efficient approaches leveraging AE and DE using ML techniques, Federated 
Learning and Deep Reinforcement Learning, respectively.  
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1. Introduction 

1.1 Scope 

MonB5G steps in the deployment of a novel autonomic management and orchestration mechanism 

framework by heavily leveraging the distribution of operations together with state -of-the-art AI-based 

mechanisms. The MonB5G approach focuses on the design of a hierarchical, fault -tolerant, automated, and 

data-driven network management system that incorporates security as well as energy efficiency as key 

features in order to orchestrate a high number of parallel network slices and significantly higher types of 

services in an adaptive and zero-touch way. 

The deliverable provides the first report of MonB5G contributions and work plan towards Zero-touch security 

management and efficient energy consumption relying on AI. First, the deliverable introduces the MonB5G 

security architecture featuring the SO entity that provides SECaaS relying on MonB5G key components MS, 

AE, and DE targeting zero-touch security management. Second, it details devised ML techniques leveraging 

AE and DE components to reduce energy consumption.  

The deliverable covers the following security aspects: the SO architecture and functions relying on the 

MonB5G reference architecture detailed in D2.1; AI-based security management introducing the concept of 

SECaas that relies and the key MonB5G elements (MS, AE, and DE), a threat study on attacks on network 

slicing mapped to two representative use-cases, the attack detection and mitigation using MonB5G key 

elements and the SO mapped to two representative use-cases. Regarding energy consumption, the 

deliverable provides the first contributions of the project to reduce energy consumption using optimized AI 

algorithms for AE and DE as well as a first approach to turn on-off RAN components according to network 

slice traffic prediction. 

1.2 Structure 

The main structure of this deliverable is summarized in the following table, linking each section with the 

corresponding task.  

Section Description Task(s) Starting Month 

2 Dedicated to state of the art on security-oriented architectures in 5G, 
reviewing different H2020  5GPPP projects. Besides, this section reviews 
the security threat modelling methodology, which is needed to understand 
security threats in 5G and beyond networks. Finally, this section review 
state of the art techniques to protect ML algorithms 

T5.1 & T5.2 M13 

3 Presents the MonB5G envisioned security architecture for Network 
slicing and the AI-based components (MS/AE, DE) of MonB5G to 
address 5G security threats. 

T5.1  M13 
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4 Details the MonB5G approach to detect and mitigate attacks on 
Network slices considering two representative use-cases. 

T5.1 & T5.2 M13 

5 Dedicated to energy-efficiency solutions. Besides reviewing the existing 
methods for energy-efficient5G and beyond networks, this section 
presents an initial approach of MonB5G to reduce energy consumption 
efficiently leveraging AE and DE with AI algorithms. In addition, it 
introduces first approach to turn off/on RAN relying on network slice traffic 
prediction. 

T5.3 M13 

 

 

2. Related work 

2.1 Security architectures in 5G and beyond 

This section presents a state of the art of security management in different EU projects targeting security 
orchestration in 5G networks. 

2.1.1 INSPIRE-5GPLUS  

INSPIRE-5Gplus is an ongoing project aiming at revolutionizing the security in 5G and beyond networks by 
implementing a fully automated end-to-end (E2E) smart network and service security management 
framework. To meet this goal, INSPIRE-5Gplus leverages a set of emerging trends and technologies, including 
Zero-touch network and Service Management (ZSM), SECurity as a Service (SECaaS), Software-Defined 
Security (SD-SEC), and AI/ML techniques.  

The project is in the progress of implementing a fully automated, trustworthy and liability-aware security 
management framework for multidomain 5G and beyond networks. Figure 1 describes the conceptual 
architecture, where security is provided at the domain and E2E levels by the Security Management Domain 
(SMD) and E2E SMD, respectively. Each SMD guarantees security management within its scope using several 
domain components such intelligence engine and security orchestrator. While the E2E SMD spans multiple 
domains in order to coordinate the different domains and handle the E2E slice security management.  

The term domain domain refers to the different technological domains that compose a mobile network. The 
set of modules in the SMD and E2E SMD operate in an intelligent closed loops fashion to enable software 
defined security (SD-SEC). The services provided by the different modules are connected within the domain 
and cross domains using domain integration fabric and cross domain integration fabric respectively.     

In contrast to MonB5G that provides a full FCAPS network management, INSPIRE-5Gplus focuses only on 
security-related management. Regarding the security architecture, although the intersection between the 
security modules is similar, the approach in MonB5G is completely different.  First, in terms of vertical 
management levels, INSPIRE-5Gplus provides security management in two vertical levels (domain and end-
to-end), while MonB5G has a more sophisticated dynamic management levels that consider the particularity 
and the distinctive needs of slices, in addition to enhance the sub-slices isolation and their dynamic nature. 
Besides the static modules (domain and inter-domain), MonB5G instantiates dynamically with each slice the 
following three management vertical management levels: (i) Inter-Domain Slice Manager (IDSM) for slice 
management from end-to-end perspective; (ii) Subslice MLaaS for sub-slice management; and (iii) Embedded 
Element Manager (EES) embedded in all the nodes for the node internal management.   
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Second, INSPIRE-5Gplus introduced several components in the SMD:   

 Similar to MonB5G (MS, AE, DE) closed-loop, INSPIRE-5Gplus has security data collectors, a security 
analytics engine, and a security intelligence. As the names indicate, these components 
are purely security-related in contrast to MonB5G that its closed-loops are more generic thus 
MonB5G manage multiple instances of MS, AE, and DE in a dedicated layer Monitoring Layer (MonL), 
Analytics layer (AL), and Decision layer (DL).   

 

 

Figure 1.  INSPIRE-5Gplus architecture and main components 
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 Security Orchestrator (SO) covers the security configuration enforcement in the corresponding 
management domain based on the decision policies. The SO intervenes between the security 
intelligence decision and the different Software Defined Networking (SDN) controllers, Network 
Functions Virtualization (NFV) MANO and the security management services through the integration 
fabric. Mapping to MonB5G architecture, the SO exists as a statistic component but with a different 
role. To clarify, the SO in MonB5G manages the security-related atomic components such as MS, AE, 
DE, and Actuation (ACT). In fact, the ACT can be seen as a lightweight and distributed version of the 
INSPIRE-5Gplus SO. Since the ACT translates and enforces the DE security policies. The roles of 
MonB5G's security orchestrator will be described in Section 3.1 . 

 Policy & Security Service Level Agreement (SSLA) management negotiates the protection and 
security requirements level with the consumer’s and provider's needs. Moreover, this component 
provides the monitoring specification that defines the SSLAs. The latter provide the mean to specify 
the security requirement and assessing their fulfilment. In MonB5G, a similar role is guaranteed by 
subcomponents in the security orchestrator.   

 The Trust Manager (TM) ensures the trust in the framework involving various internal trust services, 
including: (i) a Trust Reputation Manager (TRM) service that assigns reputation values to monitored 
5G entities; (ii) a Certification Service Conformity Certification Services (CCS) that evaluates the 
different 5G network components based on measured metrics that define the trustworthiness 
properties exposed by the components. Similarly, for trusting a slice, using a slice-related data (static 
and dynamic properties) and scores from a 5G slice; and (iii) an Ordered Proof of Transit (oPoT) service 
to trust in how data flows traverse a network [1]. 

In order to validate the project concepts, INSPIRE-5Gplus defined 9 test cases, among them:  

 “Definition and assessment of Security and Service Level Agreements and automated remediation” : 
In this test case, they are planning to monitor that the SSLA is ensured by monitoring Key performance 
indicators (KPIs) and metrics such as Data and service availability, Isolation access from other slices, 
and Security enforcement techniques.  

 “Network attack detection over encrypted traffic in the Service Based Architecture (SBA)”: As the SBA 
is tending to use end-to-end encryption such as DNS over the HyperText Transfer Protocol Secure 
(HTTPS), this use case aims to detect the type of attacks, as an example, attack against anti-malwares 
that can be evaded using encrypted traffic.  

 “Intelligent and Secure Management of Shared Resources to Prevent the Distributed Denial-of-
Service ((D)DoS)”: This test case shows how to detect Indirect Distributed Denial-of-Service (IDDoS) 
attack in which an attacker targets a critical service slice (Indirect victim) by initiating a DDoS attack 
against another vulnerable slice (Direct victim) sharing the same infrastructure resources with the 
targeted one [2] . 

INSPIRE-5Gplus introduced an architecture to secure and ensure trust in the 5G networks. Nevertheless, the 
current INSPIRE-5Gplus architecture appears to remain centralized in a per domain level, lacking slice-specific 
security management and isolation.  

2.1.2 ANASTACIA 

ANASTACIA is a framework built on top of an Internet of Things (IoT) infrastructure targeting the network 

security and leveraging SDN/NFV-based security enablers. It is designed to manage security policies and 
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defines relevant security controls to be orchestrated in Mobile Edge Computing (MEC) and Smart Building 

Management [3]. Figure 2 represents the reference architecture divided into the following set of planes: 

 

Figure 2. ANASTACIA reference architecture  [3]. 

 Security Enforcement Plane: Includes Control and management domain, which is responsible for 

supervising and managing the resource utilization and tun-time of security enablers. This plane 

connects the control data plane to the security orchestration plane. Three interfaces were defined in 

this scope: 1) SDNI (SDN Interface) in order to improve the overall security, the security orchestrator 

can enforce new flow rules on the SDN controller; 2) NFVInt (NFV Intefce) for Virtual Network 

Functions (VNF) management, the security orchestrator also requests the NFV MANO either to 

instantiate new security VNF or configure an existing one; 3) IOTI (IoT Interface) through which the 

security orchestrator may apply security controls on the IoT infrastructure through IoT controller.  

 Security Orchestration Plane: manages the enforcement plane resources. It incorporates a Security 

Orchestrator, which chooses the security enablers as an outcome of a policy refinement. A security 

enabler provider contains a list of security enablers able to satisfy the security policy requirements 
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such as authentication, authorization, confidentiality, privacy and anonymity, traffic diversion, 

Quality of service, data aggregation. 

 Monitoring and Reaction Plane: Collects security-related data from the IoT platform through 

monitoring agents. This plane also checks the satisfaction rate of the security policies by examining 

threats signature, security models, and data parsing for anomalies detection. Based on the detected 

anomalies, reactions can be scheduled.  

 User Plane: Incorporates a policy editor user interface that facilitates modeling security policies. 

 Seal manager domain: provide a graphical illustration of the system status to the end-user.  

In ANASTACIA, Artificial Intelligence (AI) is mainly used in the monitoring and reaction plane, more specifically 

at the Data analysis engine to identify compromised devices. In this scope, ANASTACIA is using an approach 

based on Constraint Satisfaction Problem (CSP) and declarative programming. This detection mode l was 

designed through three main steps: building an initial model, learning the best model, and finally verification 

of the best model. The AI-based reaction agent uses different ML algorithms such as J48, Byes Net, 

RandomForest, Hoeffding, Support Vector Machine (SVM), and deep learning, for detecting different attacks 

related to IoT behaviors and/or network patterns [4]. The tests showed the effectiveness of this model against 

multiple advanced attacks such as Man-in-the-middle and flooding [5]. 

2.1.3 5G-ENSURE 

5G-Ensure is 5G-PPP phase 1 project, paving the way to the 5G networks security by designing a trustworthy 

security architecture that extends the existing 3rd Generation Partnership Project  (3GPP) architectures, such 

as 3G and 4G, to fit the 5G environments and covers the concept missing such softwarization,  virtualization, 

slice concept, and trust models involving all stakeholders. In addition to developing security enablers for the 

core of the 5G Reference Architecture.  

5G-Ensure provides 4 basic concepts in its security architecture: domains, strata, security realms, and security 

control classes.  

Domain: 5G-Ensure begins with dividing the 5G reference architecture into different domains . A domain in 

the context of the project means network entities grouped using physical or logical aspects. This concept was 

leveraged from TS 23.101. As shown in Figure 3, the architecture is divided into three horizontal groups of 

domains:  

1. Infrastructure domains: focusing on the physical aspects of the network.   

2. Tenant domains: logical domains running on top of the infrastructure domains.  

3. Compound domains: defined to capture higher entities groupings. It consists of a collection of other 
domains determining a 5G aspect such as slice domains, core domains, etc [6]. 

Then, the infrastructure domains, are divided into three types, namely: (i) Universal Integrated Circuit Card 

(UICC) Domains (ii) Mobile Equipment Hardware (MEHW) Domains (iii) Infrastructure Provider (InfraP) 

Domains.  
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Similarly, the tenant domains is split into 10 domains such as Mobile Equipment (ME) Domains, Serving (S) 

Domains, etc. And the compound domains into 10 domains including slice domains, core domains as defined 

above.  

Stratum: Is a group of protocols, data, and functions related to one aspect of the services provided by one or 
several domains. This concept is leveraged from TS 23.101 [7]. 

Security Control Class (SCC): This concept was introduced by the 5G-ensure project. It refers to a collection of 
security functions to protect the 5G networks. It involves (Authentication, Authorization, and Accounting  (AAA), 
Confidentiality, Integrity, Trust ...etc.)  

Security Realm: Similar to the Security Features group concept as defined in TS 33.401 [6] it captures the security 
requirements of strata or domains. Divided into Access Network, Application, Management, etc. security needs.  

The project provides these three concepts in order to get a detailed overview of the security mechanisms required 
in 5G networks. The Security control classes ensure the protection of the security risk defined by the security 
realms. The latter captures the security concerns in one or more strata or domains. [8] 

 

Figure 3.  5G-ensure security architecture domains 
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5G-Ensure defined 31 use-cases grouped into 11 thematic clusters (AAA, Privacy, Trust, Security monitoring, 
Security management, etc.) based on similarities.  According to these use cases the project implemented a 
number of enablers. Table 1  shows examples. 

Table 1.  Expamles of 5G-ensure enablers 

Category  Enablers  

Authentication, Authorisation and 
Accounting  

Internet of Things; Fine-grained authorisation  

Privacy  Enhanced Identity Protection; Device Identifier Privacy; Device-
based Anonymisation; Privacy Policy Analysis  

Trust  Trust Builder; Trust Metric; VNF Certification; Security Indicator  

Security Monitoring  Satellite Network Monitoring; PulSAR (Proactive Security 
Assessment and Remediation); Generic Collector Interface; System 
Security State Repository; Malicious Traffic Generator for 5G 
protocols  

Network Management and 
Virtualisation  

Access Control Mechanisms; Component-interaction Audits; 
Bootstrapping Trust; Micro-segmentation; Flow Control  

Mapping the developed enablers onto the security architecture demonstrates its applicability. The validation of 
the enabler efficiency was evaluated on a testbed environment [9]. 

2.2 Threat modelling 

Threat modeling is a risk-based approach to designing and implementing secure systems based on identifying 
and prioritizing threats with the purpose of developing mitigations to them [10]. 

2.2.1 KEY CONCEPTS 

Key concepts and definitions from the cybersecurity domain, necessary for understanding the basics of threat 
modeling, include: 

• Threat: A threat is an event or object in the environment that has the potential to harm one or more 
assets. 

• Vulnerability: Vulnerabilities are exposures. A vulnerability is the result of an un-mitigated threat. 
• Risk: A measure of damage potential, typically expressed in terms of the probability and loss expectancy 

associated with an event. 
• Threat Actor or Threat Agent: Anything able to perform or use a use case or an abuse case.  
• Threat Vector or Attack Vector: An interface through which an attack can traverse. 
• Attack: Any action that supports a threat motive against a target asset by exploiting a vulnerability.  
• Attack Surface: The set of all possible attack vectors. 
• Asset: Any resource that has an intrinsic value. It does not have to be physical. For example: 

• Hardware 
• Credentials 
• Intellectual property 
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• System availability 
• Business reputation  

• TTP: Acronym (Tools, Tactics, and Procedures) 
• TOE: Acronym (Target of Evaluation) 
• Use Cases: Expected design behavior of a system. 
• Abuse Cases: Manipulation of use cases to achieve malicious objectives of an attacker.  
• Attack Tree: A representation of the relationship between threats, target assets, associated 

vulnerabilities, correlating attack patterns, and countermeasures. Use cases serve as metadata 
associated with assets, and abuse cases serve as metadata for attack patterns.  

 

2.2.2 METHODOLOGIES 

There are numerous threat modeling methodologies of varying maturity and complexity : 

• STRIDE, invented by Microsoft in 1999, is still applied by the Threat Modeling [11] process and respective 
tool of the Microsoft Security Development Lifecycle [12]. The name of the method is actually a 
mnemonic that is based on how threats are categorized: 

• Spoofing identity (System Property: Authentication) 
• Tampering with data (System Property: Integrity) 
• Repudiation (System Property: Non-repudiation) 
• Information Disclosure (System Property: Confidentiality) 
• Denial of Service (System Property: Availability) 
• Elevation of Privilege (System Property: Authorization) 

For more details, please refer to the STRIDE cue cards by ThoughtWorks, linked from [10]. 

• PASTA (Process for Attack Simulation and Threat Analysis) [13]  is a seven-stage risk-centric framework, 
developed in 2012, that quantifies risk that might impact a business or a system, based on context 
associated to the relative importance of the application to the business. 

• TARA (Threat Assessment and Remediation Analysis) [14] is part of MITRE’s portfolio and is used 
extensively by U.S. Department of Defense and Department of Homeland Security.  It uses TTP catalogs 
and is also risk-centric, as it attempts to define risk mappings to threats. 

• Many others: Trike, VAST, SPARTA, LINDDUN, OCTAVE, etc. Most are risk-centric model, like PASTA & 
TARA, while some are more focused, e.g. LINDDUN emphasizes privacy concerns. 

 

2.2.3 THREAT MODELING FORMAL METHOD 

In practice, there is no single correct or best methodology for threat modeling. Most of them are similar in 
their implementation steps, and modern security organizations tend to use a hybrid approach to threat 
modeling that borrows from several different methodologies. 

For the purpose of the analysis per use case that follows, we will be adopting STRIDE as the threat 
classification model due to its simplicity and maturity. 

In terms of the activities involved, the workflow is as follows (each step is elaborated further below):  

1. Review system architecture and requirements 
2. Identify objects in the system under assessment 
3. Identify flows between those objects 



871780 — MonB5G — ICT-20-2019-2020 

Deliverable D5.1 – Initial report on AI-driven security techniques  

 

 

©MonB5G, 2021 Page | 23  

4. Enumerate assets of interest 
5. Enumerate threats 
6. Determine exploitability and risk 
7. Identify and review mitigations 

 

Review system architecture and requirements 

For each use case to be studied, the following items need to be collected and reviewed: 

• System architecture diagrams in sufficient detail to determine system components and interactions, 
including external components & dependencies; 

• Data dictionary, Data classification, and Data flow documents; 
• Business requirements, Security requirements, Use cases/Abuse cases. 
 

Identify objects in the system under assessment 

This involves decomposing the target of evaluation (TOE) as follows:  

• Inventory and classify all data consumed by the TOE; 
• Enumerate all components the TOE consists of and determine their native security controls ; 
• Identify all external entities and dependencies used by the TOE; 
• Inventory actors that interact with the TOE (actors do not necessarily have to be human) . 
 

Identify flows between those objects 

• Identify logic flows between components and other objects identified previously ; 
• Inventory data sources and data sinks; 
• Identify data flows between TOE components and external entities; 
• Identify all trust boundaries and the methods used to enforce trust boundaries . 
 

Enumerate assets of interest 

• Enumerate all assets that must be protected to ensure the confidentiality, integrity and availability (CIA) 
of the TOE (assets do not necessarily have to be physical in nature); 

• Include a brief description of each asset with justification for classifying the object as an asset . 
 

Enumerate threats 

Using a TTP catalog for guidance, identify and document the threats that impact TOE assets. This activity must 
include: 

• A brief description of the threat type; 
• Identifying the entry point for an attack against the targeted asset(s); 
• A description of the attack pattern(s) used to carry out the threat; 
• Mapping of identified threats to the associated asset(s) and threat actors . 

Note on TTP catalogues: Since the inception of the seven-stage Cyber Attack Lifecycle (Kill Chain) by Lockheed 
Martin [15], extensive knowledge bases of adversary tactics and techniques have been introduced. MITRE 
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ATT&CK (https://attack.mitre.org) maintains multiple such matrices that cover preparatory techniques (PRE) 
and Enterprise, Cloud, Network, as well as Mobile domains. But, as more applicable for 5G and beyond 
networks, we will be using the recently released (updated) ENISA Threat Landscape for 5G Networks [16]. 

Determine exploitability and risk 

• Once threats are identified, determine the plausibility of each threat as follows:  
• Conduct attack simulation (kill chain) exercises to determine whether there is realistica lly a path 

to exploitation in the context of the TOE, or… 
• Construct attack trees to model methods by which an attacker may achieve goals ; 

• Complete a quantitative, or at least qualitative, risk assessment for each threat . 
 

These activities are more advanced. A threat model can be prepared without having necessarily to conduct 
attack simulations or construct attack trees, and risk assessment can be qualitative.  

Identify and review mitigations 

• For each identified threat, identify and document appropriate mitigations against the threat; 
• Review mitigation controls applied. Identify and document any gaps between the existing mitigation 

controls and the required mitigation controls. 

2.3 Protection of AI-driven solution 

Despite the incontestable role that AI will play in enabling self-managing capabilities, its use introduces new 
threat vectors that can jeopardise the performance as well as the security of future mobile networks. Indeed, 
AI/ML systems can be fooled to make wrong decisions or leak confidential information [17].  Different 
taxonomies have been developed [18] [19] [20], classifying the attacks against AI/ML techniques into 
poisoning attacks, evasion attacks and model’s API-based attacks. The poisoning attacks targets the training 
phase by tampering with data or ML algorithm. The evasion attacks aim at the inference phase by introducing 
small perturbations to the input samples in order to bypass the learned model. The model’s API-based attacks 
attempt to extract the training data or the model’s architecture leveraging the output of ML -as-a-Service API. 
The aforementioned attacks may lead to integrity, availability or privacy violation. The authors in [20] 
conducted an in-depth investigation of security issues that can be brought by the adoption of AI/ML 
techniques in 5G and beyond networks. The study identifies the potential threats vectors against AI/ML 
systems, while providing concrete use cases showing how the exploitation of these attacks can undermine 
the security of future mobile networks. The authors introduced a set of defenses to safeguard from AI threats, 
while pointing out their adoption challenges and advocating on which components of the ITU-T’s FG-ML5G 
unified architecture1 they could be enforced. Possible defense mechanisms that could be adopted to enable 
robust AI/ML models include input validation, adversarial training, ensemble methods and moving target 
defense [21] . 

From standardisation perspective, the Securing Artificial Industry Specification Group (ISG SAI) 2 has been 
created by ETSI. The group aims to develop technical specifications to tackle threats arising from the 

                                                           

1 https://www.itu.int/en/ITU-T/focusgroups/ml5g/Pages/default.aspx 

2 https://www.etsi.org/committee/1640-sai 

https://attack.mitre.org/
https://www.itu.int/en/ITU-T/focusgroups/ml5g/Pages/default.aspx
https://www.etsi.org/committee/1640-sai
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deployment of AI in ICT field. Recently, the group published their first report [22], describing the challenges 
of securing AI-based systems, including challenges relating to data, algorithms and models in both training 
and testing phases. The report presents a number of different attack vectors and various real -world use cases 
on how these attack vectors can be leveraged. 

Distributed artificial intelligence (DAI) has been leveraged in 5G and beyond networks in order to automate 
the management and support coordination between the different agents, in addition to reducing the costs 
(time, data, etc.) and also preserving privacy and confidentiality. Accordingly, MonB5G promotes the 
distribution of operations and autonomous management, taking advantage of the DAI such as Federated 
learning.  

Federated learning (FL) provides a framework that keeps the training procedure on the data source side such 
as user devices or network slices [23]. With the aim to protect data privacy, FL aggregates only the local 
models' parameters in a centralized model. Nevertheless, FL rises new risk sets since the system does not 
have access to the raw data and gives the malicious agent full control over the training data, training 
procedure, and the outcome parameters. Consequently, traditional methods which protect against data 
poisoning (e.g. Filtering, Remove outliers, etc.) become inapplicable. It may be noted that it is difficult for an 
attacker to comprise all the training data since it is heavily distributed by a massive number of clients. 
Moreover, the attacker does not control the aggregation algorithm. FL is exposed to most of the traditional 
ML threats discussed earlier, a survey can be found in [24]. However, the conventional solutions remain 
effective in FL except for poisoning attacks that need innovative solutions thus we focus on this attack in 
what follow.  

An overview was introduced in [25] about the mechanisms used in the centralized ML methods to detect 
poisoning inputs but a requirement to access the training data is needed. Studies [26] [27] examined the 
poisoning attacks on federated learning . In [26] the authors confirmed that the poisoning in FL is more 
powerful compared to the conventional techniques since FL poisoning influences the model rather than the 
training data. This work has introduced semantic backdoors that cause the model to misclassify inputs 
without perturbations (unlike adversarial examples).  

V. Tolpegin et al.  [27] demonstrated that data poisoning attacks such as label flipping can provoke significant 
drops in the model accuracy and recall, even with a small percentage of malicious participants. Moreover, 
the authors revealed that the adversaries can enhance the attack impact by targeting the availability in the 
later rounds. As a potential solution, they propose a defense strategy based on principal component analysis 
(PCA) to reduce update parameters dimension and cluster them at each round before the aggregation which 
can identify the malicious participants. 

These works stated the potential threats that face the implementation of ML solutions. MonB5G is heavily 
based on ML and it is adopting decentralized techniques (i.e. FL) to detect network slice attacks, and also in 
energy-efficiency techniques. Thus the project considers the FL robustness and protection against the 
misbehaving decentralized elements by enhancing the existing approaches [21] [26] [27] and involving new 
mechanisms such as Blockchain to protect the data and the exchanged parameters in the network. 

 

3. MonB5G Reference architecture instantiated for security management  

MonB5G vision is to manage a massive number of slices using fine-grained management services tailored to 

5G network slice particularities. Slices in 5G are logically isolated networks providing different services in 



871780 — MonB5G — ICT-20-2019-2020 

Deliverable D5.1 – Initial report on AI-driven security techniques  

 

 

©MonB5G, 2021 Page | 26  

distinctive network requirements achieved by varying nodes, resources, localisation, etc. This heterogeneity 

requires specific management per slice. On the basis of these facts, in this section, we will instantiate the 

MonB5G reference architecture described in the D2.1 for security management. 

3.1 Network slicing threats and security requirements management 

In 5G network slicing, every slice is a unique composition of nodes and requirements. Hence, it has its own 

threat set that can be identified based on a threat model to select the slice customized security enablers. The 

threats depend on the service type. For instance, an IoT slice will have different threats when compared with 

a streaming slice.  For this reason, we consider selecting security requirement for the slice dynamically before 

the deployment based on its template and accordingly its specific security management.   

The main threat in network slicing is the weakness of isolation in terms of both resource and security. While 

the lack of resource isolation might lead to resource starvation, the weak security isolation facilitates attacks 

between the coexisting slices, for instance, a side-channel attack [28]. 

However, the slice spans over multiple technological domains composing the 5G network (e.g. Core Network, 

MEC, Tansport Network and Radio Access Network (RAN)) that are exposed to distinct threats: 

 In the Core Network, the core functions are IP-based services and thus, they are target to all the IP 

based attacks, e.g., DDoS attacks. Furthermore, the core leverages a set of technologies such as NFV, 

SDN, etc., which might be immature and bring a new set of threats. 

 The use of edge computing creates new cybersecurity concerns, that require dedicated security. Since 

the network functions hosted on the edge will not be exposed to the same physical and virtual threats 

as the hosted on the core.  To clarify, apart from the physical threats in the user-close management,  

the edge might act autonomously to avoid the backhaul delay leveraging local services (i.e 

authentication) which rise new challenges. 

 RAN threats are often related to the user authentication and authorization system, like Rogue Base 

Stations (RBSs) that can steal user data, tracking or redirecting the user to a malicious endpoint.  

The intersection of both end-to-end slice threats and domain threats results in distinct security requirements 

to be delegated to the sub-slice security manager. In contrast to the end-to-end slice management that does 

not consider the requirements of the technological domain, or the domain centralized management that 

lacks strong isolation between subslices; the subslice dedicated security manager will be efficient and 

optimized to target the specific subslice threat related to the hosting technological domain needs and also 

maintains the isolation between subslice. Yet the subslice security manager can not see the other domain 

subslices (cross subslices management) requirements that cannot be omitted but will be centralised per 

domain. 

3.1.1 SECURITY MANAGEMENT ARCHITECTURE AND COMPONENTS 

The reference architecture of MonB5G was detailed in the D2.1. In this section, we wi ll describe the main 
security management components. Figure 4 represents Monb5G architecture composed of: 

 i) Inter-domain management for the global networks, it also handles the first deployment request from 
Monb5G portal. 
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ii) Domains hosting slices, and a hierarchy of fine granular and higher abstractions management and 
orchestration layers. 

To manage security enablers in MonB5G, we design security orchestrators. In general, a security orchestrator 
(SO) examines security requirements and provides the adequate closed loops defined by the atomic elements 
(MS, AE, DE, and ACT) to deliver security as a service (SECaaS). The SO leverages the slice template, the SSLA, 
and the threat modelling to select the required security instances.  

3.1.1.1 SECURITY ORCHESTRATOR 

 

 

Figure 4. MonB5G Security Management architecture and components 
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Our architecture defines two security orchestration levels: E2E orchestrator  located in IDMO level, this SO 
processes the E2E slice template and its SSLA. To select the IDSM security closed loops, in addition to the 
appropriate partitioning of security responsibilities.  However, at the domain level, the local orchestrator is 
a part of the DMO, managing the subslices’ and nodes’ security closed loops and ensure the cross subslice 
protection of instance resource isolation. 

 Security service manager: Manages the atomic security elements (MS, AE, and DE) by instantiating 
and deploying them in the management platforms. 

 SSLA manager: Translates the SSLA requirements into security actions and KPIs while deploying a sub-
slice to monitor and ensure that the tenant security requirements are met. 

 Conflict manager: The different security loops are working autonomously and independently from 
each other thus to prevent the conflicts between the different component SO provide a module called 
conflict manger. 

3.1.1.2 SECURITY AS A SERVICE 

In MonB5G, we define the pervasive management as Management layer as a service (MLaaS). It is composed 
of three layers: Monitoring, Analytics, and decision layer. Each one hosts a collection of atomic elements. 
These modular elements are interchangeable and reusable to support FCAPS management. In this section, 
we will target exclusively the security management or what we call SECaaS defined as a selected combination 
of MSs, AEs and DEs deployed on-demand to provide a security management service.  

As depicted in Figure 4, SECaaS is distributed on different management levels in the architecture categorized 
into two main locations: (i) Static locations to manage the whole framework slices (ii) Dynamic locations 
related to a single slice and its subcomponents (subslice/nodes). 

SECaaS in the static levels is a part of the security orchestrators. It provides the inter-slice security 
management considering the cross-slice threats and providing the related actions such as  
migrating/quarantine slices, and the intelligence to assist and manage the dynamic SECaaS: 

 E2E security orchestrator (E2E SO): As defined earlier, this component is critical before deploying the 
slice since its main role is to extract the slice security requirements and select the inter-Domain slice 
manager security services. 

 Domain security orchestrator (DSO): manages a single domain's slices. The SECaaS at this level helps 
in managing the inter-subslices security needs and oversees the lower-level SECaaS.  For instance it 
processes the made decisions.  

SECaaS in the dynamic levels is a part of the slice management, their existence depends on the slice lifecycle 
and they are placed in multiple levels defined below:  

 Inter-domain slice manager (IDSM): In the IDSM, SECaaS is responsible for the end-to-end slice 
security management. The components in this layer are selected by the E2E SO. They leverage the 
lower-level SECaaS to provide E2E slice security. 

 Slice management layer (SML): SECaaS in this level manage the security in the domain slice (subslice). 
It is one of the crucial PaaS since it provides the executive layer (ACT layer) that executes the security 
decision policies coming from the same level or higher levels. The execution of the security combines 
the translation of the high-level policy into a low-level configuration then enforcing the configuration 
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in the existing Virtualized Security Functions (VSFs) or requesting the deployment of a new VSF 
(Security enabler).   

 Node: Lightweight SECaaS related to a specific node (VNF) ensuring the protection of the inner 
application and the exposed protocols. It can be deployed in the creation of the VNF image or at the 
instantiation phase where it can be either running inside the VNF or hosted into a separate VNF the 
essential point is that this management loop is limited to a single VNF scope. 

SECaaS components: 

The SECaaS is a combination of the atomic elements defined below: 

 Monitoring system (MS): collects real-time security-relevant data, provides information to the AE, 
and pre-processes the collected data. For instance, an MS might collect the traffic from a specific 
interface and pre-process it by extracting the flows and features needed by an AE attack detector.  

 Analytics engine (AE): based on AI algorithms, it processes the monitored data in order to extract 
high-level security information and events. For example, it could analyse the feature extracted from 
the traffic flows to detect DDoS traffic. Analysing the collected KPIs, network flows and resource 
status will help diagnostic the node and the network to detect or predict attacks and security issues. 

 Decision engine (DE): This is the mastermind that can tell the system what to do as a reaction or 
prevention to protect the network against security threats. The decision can configure an existing 
security enabler in the slice or deploy a new one. In the previous example, the DE might decide to 
block the traffic in an existing FW or deploy a new FW. These decisions are described in an abstract 
model rather than vendor-specific. The DEs are atomic elements that have a specific autonomic 
security function that needs to be carefully selected based on the potential threats existing in the 
slices, VNFs, etc. In other words a single DE cannot be generic to detect all potential threats neither 
the ability to provide all the possible decision; however each DE has different characteristics for the 
set of security events that can manage and their related decisions depending on this the SO choose 
the best DE.     

 ACT: The ACT component is responsible for the final phase in the autonomous loop. It is in charge of 
enforcing security decisions, first by performing a translation from the high-level decision into 
vendor-specific configuration according to the targeted enablers. Then, executing the decision steps 
that can be updating the configuration of an existing VNF/VSF or deploying a new one through 
MANO.  

 Manager (MAN): playing the role of a channel between the three layers hosting the previous 
components in addition to wrapping these layers and expose interfaces to the external entities such 
SO, Higher SECaaS, etc. 

3.1.1.3 INFRASTRAUCTURE SECURITY MANAGEMENT  

MonB5G assumes that the infrastructure needs a programmable management, for this reason it provides 
Infrastructure Domain Manager (IDM) that manages the infrastructure by requesting management functions from 
the DMO to cooperate in the security management. These security management functions manage the resources 
and support cross-slice attacks the detection such as resource starvation. In addition to trust operations for 
instance boot trust.  
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3.1.1.4 ARCHITECTURE INTERFACES 

We introduce bellow the main interfaces and reference point used by the security components:  

 Iid: Os-Ma-Nfvo-like interface, used by the IDMO to manage slices LCM implemented by DMO. It can be 
seen as MANO Os-Ma-Nfvo extended interface.  It may provide LCM abstractions and provides to IDMO 
data and management capabilities of the DMO. Including communication between the E2E Security 
Orchestrator and domain orchestrators   

 Idr: DMO-IDM permit to the DMO  allocating,  updating or  deallocating resources.  This interface is also 
used to exchange between DMO and IDM security related information about the infrastructure, for 
example, free and used resources changes by specific VNF instances.  

 So-Os: The reference point between the SO and the OSS is used by the OSS to delegate the management 
of the security goals of network slice to the SO.  

 Sc-MB5G: The reference point between the security mangers and the MonB5G sublayer components is 
used to interact with MonB5G components to create closed loops for security management.   

 Sc-Sc: This reference point is used for the control communications between two security services. The E2E 
security service has a global view over the activities of slice subnet security platforms and manages the 
E2E security requirements. In turn, the slice subnet security service controls the functional security 
platforms to ensure that each slice subnet instance is well protected.  

 Sc-Ma: The reference point between the security platform and the MANO particularly interactions with 
NFVO to manage and monitor NFVs. It is related to the reference point Sc-Or as defined in ETSI GS NFV-
IFA 033.  

 Sc-Vnf: The reference point between the security platform and the consumer NFV object. The 
functional security platform offers VSFs such as firewall, Intrusion Detection System (IDS), access 
management as protection measures to improve the security of the slice subnet instance.   

3.2 AI-driven security through MS/AE/DE  

As stated earlier, MonB5G advocates for LCM procedures mainly based on ML and AI and relies on three 
distinct entities that collaborate, namely, Monitoring System (MS), Analytic Engine (AE), and Decision Engine 
(DE). The combination of the three elements allows enforcing the concept of zero-touch management (ZSM) 
using ML. MS and AE are used to monitor the system functioning and detect security threats, while DE will 
consider actions to mitigate threats and avoid that the system fails.  In the context of network slicing, ZSM is 
highly needed to mitigate the high complexity to manage network slices, as several components of different 
technological domains (VNF, Physical Network Function (PNF), MANO, NFVI, RAN, CN, etc.) are involved; this 
increases the number of  threats that may come from several sources. MonB5G mitigates this complexity 
with the usage of MS/AE/DE. MS is deployed to monitor  key KPIs from different domains,  AE correlates and 
analyses the monitored data to detect threats, and DE considers and enforces multi-domain decisions.  

In this section, we recall each entity's functioning and its role in the AI-driven security solution provided by 
MonB5G. More details on the three MonB5G key entities are available in D2.1.  

3.2.1 MONITORING SYSTEM (MS) 

The role of MS in MonB5G is to collect critical information on the functioning of a system and provides this 
information, after, for example, aggregation or normalization, to AE, which in turn uses this information to 
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detect and react to Network Slice (NS) Life-Cycle Management (LCM) events, such as performance 
degradation, performance optimization, and security threats.  

MS interacts with different entities that orchestrate and manage the end-to-end NS, i.e., different DMOs.  
Besides, MS interacts with slice-specific VNF and applications, as well as shared VNF and PNF among network 
slices.  

 

Figure 5. MS interaction 

 

As depicted in  Figure 5, we distinguish between information that monitors the state of the infrastructure 
shared by the running slices and the information that monitors the  VNF of tenants and applications state. 

For the infrastructure monitoring, MS has to interact with DMO(s) to collect information on: 

 NFVI: such as computing platforms and hardware; 

 PNF running network functions on dedicated hardware: such as eNB/geNB, router, and UPF;  

 VNFs running common virtualized network functions: such as Core Network (CN) functions or 
Directory Name Service (DNS). 

Regarding Function monitoring, MS has to interact with the VNFs or applications of the tenants. Since there 
is no standard way to enforce such interaction, MonB5G may dictate design guidelines that would allow MS 
to request and collect metrics from VNFs or applications. In this case, MS may collect all information 
considered as service-level metrics, such as Events, Alarms, Logs. 
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The principal consumer of MS information is AE, which is in charge of triggering the monitoring of needed 
information from MS. The latter starts the monitoring process by connecting to the appropriate source, i.e., 
infrastructure and Function. Accordingly, MS exposes two types of Application Programming Interfaces (API): 
control API and data collection API. Control API may be used by AE to request metrics to monitor, the 
periodicity, the duration, etc. While the data collection API is the interface from which data are provided to 
AE as requested through the control API. The control API also indicates how data are provided, i.e., 
publish/subscribe, request/response, the data format, etc.  

Particularly, in the context of security, MS is envisioned to monitor metrics on the computing and network 
resource consumption of VNFs and PNFs to detect overconsumption of resources, which may indicate 
abnormal functioning of the VNF or PNF. Besides, MS should be able to monitor service -level KPI of VNF or 
PNF, such as the attach and detach requests of UEs at the Mobility Management Element (MME), which can 
be used to detect DDoS attacks. 

3.2.2 ANALYTICAL ENGINE (AE) 

 

Figure 6.  AE interactions 

 

As opposed to MS, AE does not store but processes data gathered from the same or lower-level MS or AE  
and exposes the result to any requester (i.e., Decision Engine or other AE) in an on-demand or periodic 
fashion. AE to AE communication is possible, mainly to build a learning model using federated learning 
techniques.  Figure 6 illustrates the interaction between AE and MS and between AE and DE.  

Generally, the main functions of AE are: (i) identify performance degradation of a network slice; (ii) optimize 
the performance of a network slice or the DMO resources; (iii) react to security threats. To this aim, AE 
subscribes for data types to which it is interested in using the control API exposed by the MS. The data type 
will be determined according to the logic of the LCM application execution. Then, AE starts receiving the 
stream of data or use a request/response mechanism, depending on the purpose of the analysis. AE may 
adapt the monitoring data rate or stop the request and request for other related monitoring information.  
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AE is able to complete an inference task locally, extract features, and to analyse these features and send 
alerts and notifications to DE. AE may collaborate with other AE to build distributed learning (based on 
federated learning) model to realize the analysis and notify the DE accordingly.  

In the case of AI-oriented security, AE has a crucial role. AE collects data from several MS, covering a wide 
range of information coming from different domains. The collected data is correlated and  interpreted by AE, 
using ML algorithms. An example of AE relying on ML is anomaly detection using neuronal networks or a 
classifier. 

3.2.3 DECISION ENGINE (DE) 

 

Figure 7. DE interactions 

As depicted in Figure 7. DE interactions, DE is the decision making element of the MonB5G architecture. It 
analyses alerts and notifications from AE(s) and considers a decision to take. The decisions are either derived 
using a local ML algorithm, based mainly on Reinforcement Learning (RL), or a predefined policy enforced by 
the Tenant or DMO through Intent, or a combination of both.  

DE may collect notification from several AEs, which may interact with MS monitoring different TDs to consider 
a global decision on the end-to-end NS. Global decisions are mainly considered at the IDMO level.  

DE interacts with actuation elements (function, DMO, or IDMO) to enforce the considered decisions. For local 
decision, DE interacts with DMO and function; while for global decisions, the DE has to interact with IDMO.  

 

 

4. MonB5G AI-driven security techniques: Attack identification and 
mitigation 

4.1 In-Slice attack mitigation: case of MME/AMF  



871780 — MonB5G — ICT-20-2019-2020 

Deliverable D5.1 – Initial report on AI-driven security techniques  

 

 

©MonB5G, 2021 Page | 34  

4.1.1 INTRODUCTION  

Through this scenario, we will demonstrate the robustness of MonB5G for identifying, detecting, and then 
mitigating the in-slice attacks. The main objective is to define and implement the following MonB5G security 

features: security orchestration through the combination of MS/AE/DE, attack detection, and mitigation 
involving one or two DMO (RAN and CN).  

For this scenario, we consider a subset of UEs that have been attached to a specific Network Slice Instance 
(NSI) and generate malicious traffic towards the infrastructure services, trying to exploit management 
interfaces. A typical example is compromised Machine Type Communications (MTC) devices generating a 
massive number of network attachment requests corresponding to DDoS attacks on the Core Network 
element, namely MME/AMF. This generates events both at the RAN and the core network level, where 
separate monitoring (MS) components are deployed. At the same time, decision (DE) and analytics engines 
(AE) are deployed at the management plan. These attacks need to be quickly identified, and the system 
should ensure that it has not incorrectly classified normal network traffic as malicious (i.e., false positive). 
Moreover, the decision engine should apply the appropriate policy to mitigate them. 

Before detailing the function and the logics of the three MonB5G entities (i.e., MS, AE, and DE), we give an 
overview on existing DDoS attacks and solutions focusing on mobile networks.  

 

4.1.2 STATE OF THE ART ON EXISTING ATTACK AND SOLUTIONS  

The isolation offered by Network Slicing offers performance enhancements to the applications, but is also 
essential for security. While slicing should ensure isolation, where such that attacks (e.g., data leakage, 
breach, DDoS) remain contained and do not propagate to the network. Yet slices also have many inherent 
vulnerabilities, in the slice selection and isolation mechanisms. 

This sub-section will investigate the state-of-the-art threats affecting specifically in-slice attacks. First, 
through a broader look, utilising the core information security triad; confidentiality, integrity, and availability 
(CIA). Second, by examining threats to specific function assets. 

Network Slicing Threats vs. CIA Triad [29]  

1. Traffic Monitoring 

When an attacker can monitor traffic (north or southbound), they could also understand the slice 
configuration, thus breaching confidentiality. Furthermore, if the attacker can capture a token or 
impersonate an element, this could escalate to a breach of authorization or authentication. 

2. Traffic Injection 

When an attacker can inject traffic into northbound or southbound interfaces, effectively exposing 
them through breach/disruption of the NFV orchestrator, as well as the corresponding subset of 
elements controlled by the network slice management system. Thus, causing breach of integrity or 
availability with varying breadths. 

3. Side-channel Attacks 

If any given slice does not properly allow access to other slices’ data/control plane, it could allow side 
channel attacks through shared resources. These attacks are time-based, and infer the data from 
slices by introducing combinations of data from the cache, until one is processed faster than the 
others. This causes breach of confidentiality of varying severity, but also availability and integrity 
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where a neighbour slice could introduce jitter in a time-constrained service within a shared resource 
with other slices. 

4. Resource Hijacking 

Slices having shared resource quotas can be abused by an attacker disrupting a single slice service, 
then re-shaping its usage to consume resources via the most expensive functions. Thus the network 
slice will be forced to take more resources form the shared pool and thus compromise availability. 

5. End-devices Breach 

Some end devices are vulnerable due to a poor design and are thus susceptible to contamination by 
malware, hardware tampering or sensor errors. These compromised devices could allow inter-slice 
communication unintentionally, and thus cause a breach of confidentiality, and can provide 
unauthorized access to a slice. 
 

4.1.2.1 MOBILITY MANAGEMENT ELEMENT (MME) AND ACCESS AND MOBILITY MANAGEMENT FUNCTION 
(AMF) SECURITY 

 

ACCESS AND MOBILITY MANAGEMENT FUNCTION (AMF) 

The Access and Mobility Function (AMF) in a 5G core network is a control plane function with ma in 
responsibilities of: 

i. Registration Management 

ii. Reachability Management 

iii. Connection Management 

iv. Mobility Management 

Thus, AMF receives all connection and related information from the User Equipment (UE), and handles its 
connection and mobility tasks. Therefore, it presents specific vulnerabilities to the ecosystem, the following 
sub-section will investigate into more details threats that are specific to corresponding AMF assets.  

According to ETSI’s Security Assurance Specification  [30], the identified assets will be classified into one of 
the following six categories: 

1. Spoofing identity 

Identity spoofing is accessing and then using another user's authentication credentials 
(username and password) illegally.  

2. Tampering with data 

Data tampering involves the malicious alteration of data. This includes unauthorized changes 
made to persistent data, as well as the changes in data as it flows between two computers 
over an open network, such as the Internet.  

3. Repudiation 

Repudiation is a threat when a malicious user performs an illegal operation in a system that 
lacks the ability to trace the illegal operations. Non-repudiation refers to the ability of a 
system to counter repudiation actions.  

4. Information disclosure 
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Information disclosure involves the exposure of sensitive information to individuals who 
should not have access to it. For example, an intruder is able to read data in transit between 
two computers. 

5. Denial of service 

Denial of service (DoS) attacks deny service to valid users. For example, making a Web server 
temporarily unavailable.  

6. Elevation of privilege 

Where an unprivileged user gains privileged access, and thus has sufficient access to disrupt 
the system.   

AMF Assets and their corresponding threats according to 3GPP Technical Specifications [31] are presented in 
the flowing table: 

Table 2.  AMF Assets and their corresponding threats according to 3GPP Technical Specifications 

Threat name Threat Description Threat Category Threatened 
Asset 

Resynchronization If a RANDom number (used for 
authentication), and AUT(H) Authentication 
are not included when synchronization fails, 
the resynchronization procedure does not 
work correctly. This can result in a wasting 
of system resources and denial for a 
legitimate user to access the system.  

Denial of Service Sufficient 
Processing 
Capacity 

Failed Integrity check of 
Initial Registration 
message 

If integrity check of attach message fails, 
then the user identity cannot be verified. 
This can result in a wasting of system 
resources and denial for a legitimate user to 
access the system.  

Denial of Service Sufficient 
Processing 
Capacity 

RES verification failure Threat Description: If a malicious UE 
initiates a registration request using a 
Subscription Concealed Identifier (SUCI) and 
this request is followed by primary 
authentication in which an incorrect 
RESponse is sent to the network, then the 
RES verification will fail. In this case, if the 
RES verification failure is not properly 
handled e.g., AMF or Security Anchor 
Function (SEAF) does not reject the 
registration request directly, or initiates a 
new authentication procedure with the UE, 
this would result in the wasting of system 
resources.  

Denial of Service Sufficient 
Processing 
Capacity 

Bidding Down If Security Mode Command (SMC) does not 
include the complete initial Non-Access 
Stratum (NAS) message if either requested 
by the AMF or the UE sent the initial NAS 

Tampering of Data, 
Information 
Disclosure 

 User account 
data and 
credentials 
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message unprotected, the UE can force the 
system to lower the security level by using 
weaker security algorithms or turning 
security off, making the system easily 
attacked and/or compromised.  

NAS integrity selection 
and use 

If NAS does not use the highest priority 
algorithm, NAS layer risks will be exposed 
and/or modified or be open to denial of 
service. 

Tampering of data, 
Information 
Disclosure, Denial of 
Service 

Sufficient 
Processing 
Capacity, 
Control plane 
signal 

NAS NULL integrity 
protection 

If NAS NULL integrity protection is used 
outside of emergency call scenarios, an 
attacker can initiate unauthenticated non-
emergency calls.  

Elevation of Privilege Sufficient 
Processing 
Capac 

NAS confidentiality 
protection 

If security-mode complete message is not 
confidentiality protected, the AMF cannot 
confirm that the SMC is executed correctly. 
This can result in waste of system resources 
and deny a legitimate user access to the 
system.  

Tampering of Data, 
Information 
Disclosure, Denial of 
Service 

Sufficient 
Processing 
Capacity 

Bidding down on Xn-
Handover 

If AMF cannot verify that the 5G security 
capabilities received from source g-NodeB 
(gNB) via the target gNB are the same as 
the UE security capabilities that the AMF 
has stored, the source gNB may force the 
system to accept a weaker security 
algorithm than should be allowed, thus 
forcing the system into lower-security level 
making the system easily attacked and/or 
compromised. 

Tampering of Data, 
Information 
Disclosure 

User account 
data and 
credentials 

NAS integrity protection 
algorithm selection in 
AMF change 

If the highest priority NAS integrity 
protection is not selected by the new AMF 
within AMF change, the new AMF could then 
use a weaker algorithm forcing the system 
into a lowered security level making thee 
system easily attacked and/or 
compromised.  

Tampering of Data, 
Information 
Disclosure 

User account 
data and 
credential 

Threats related to release 
of non-emergency bearer 

If authentication fails in the AMF and the 
non-emergency bearer is not released, the 
UE can continue receiving unauthorized call, 
wasting valuable system resources. 

Denial of Service Sufficient 
Processing 
Capacity 

Invalid or unacceptable                                                                                               
UE security capabilities  

 A flawed AMF implementation accepting 
insecure or invalid UE security capabilities 
may put User Plane and Control Plane traffic 
at risk, without the operator being aware. If 

Tampering of Data, 
Information 
Disclosure 

User account 
data and 
credentials, 
Mobility 
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NULL ciphering algorithm and/or NULL 
integrity protection algorithm of the UE 
security capabilities is accepted by the AMF, 
all the subsequent NAS, Radio Resource 
Control (RRC), and user plane messages will 
not be confidentiality and/or integrity 
protected. The attacker can easily intercept 
or tamper control plane data and the user 
plane data. This can result in information 
disclosure as well as tampering of data. 

Management 
data 

Failure to allocate new 
5G-GUTI 

If a new 5G-Global Unique Temporary 
Identifier (GUTI) is not allocated by AMF in 
certain registration scenarios (i.e. receiving 
request messages of type: "initial 
registration",  "mobility registration 
update", Service Request message sent by 
the UE in response to a Paging message), an 
attacker could keep on tracking the user 
using the old 5G-GUTI after these 
registration procedures. 

Information 
Disclosure 

Mobility 
Management 
data 

 

MOBILITY MANAGEMENT ENTITY (MME)  

Mobility Management Entity is a key control node of the 4G Evolved Pack Core (EPC), as defined by standards 
and has the following responsibilities: 

 Mobility management: Provides the necessary session management for subscriber mobility within 

the network, as well as support for mobility/handovers between networks. It tracks the current 

location of all subscribers including the states of their user device, in order to allow  calls, Short 

Message Service (SMS), and other mobile services to be delivered to them. 

 Authentication and security: Support user access authentication with Home Subscriber Server (HSS) 

and Internet Protocol (IP) packet filtering functionality and prevent unwanted access and fraud 

attempts towards the network. 

Current vulnerability as per National Institute of Standards and Technology (NIST) [32] is the insufficient input 
validation of the Stream Control Transmission Protocol (SCTP) traffic, which poses a threat as a remote 
attacker can create a DoS condition on an evolved Node B (eNodeB) that is connected to the compromised 
device. An attacker could further exploit this vulnerability by leveraging a man-in-the-middle position 
between the eNodeB and the MME and then sending a crafted SCTP message to the MME. If successful, this 
exploit would in turn cause the MME to stop sending SCTP messages to the eNodeB, triggering a DoS 
condition. 

4.1.2.2 SOLUTIONS AND MITIGATIONS FOR MME AND AMF SECURITY  

Distributed Denial of Service (DDoS) attacks are the most commonly used "cyber-weapons" for disrupting the 
proper functioning of victims, and are usually launched using a huge number of distributed, remotely, and 
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controlled devices organized into botnets. The objective is to target computing resources, including computer 
systems, network devices, servers, and web applications, by sending huge traffic to overwhelm these systems 
and cause a temporary interrupt or a suspension of their services. The main well-known DDoS attacks are 
DNS request flood, Internet Control Message Protocol (ICMP) request flood, Session Initiation Protocol (SIP) 
request flood, User Datagram Protocol (UDP) flood, Hypertext Transfer Protocol (HTTP) flood, Transmission 
Control Protocol (TCP) SYN flood.  

It is well established that 5G organizes the supported applications into three network slice types. The first 
type is the eMBB (enhanced Mobile BroadBand) slice, which is basically an extension of the 4G mobile 
broadband service seeking higher bandwidth and data rate. The second is the URLLC (Ultra -Reliable Low 
Latency Communications), which provides low-latency and reliable communication. The third type is the 
mMTC (massive Machine Type Communications), which supports massive IoT devices with narrow bandwidth 
requirements. 

Services belonging to mMTC rely on interconnected things and devices, which communicate automatically 
without any human intervention. Due to the massive number of deployed devices per mMTC service, DDoS 
attacks are more and more using mMTC devices [33] and now considered as one of the main sources of the 
propagation of DDoS attacks. Indeed, the massive number of connected devices (more than a million per km2) 
makes it easier for attackers to launch high traffic using multiple botnets. Accordingly, the mobile core's 
attack surface is significantly larger than it used to be, and the proposed approaches to security are no longer 
adequate. Previously,  DDoS targeted hosts on the internet, but, nowadays, they have started attacking Core 
Network components of 4G and 5G. 

Classically, DDoS attacks are mitigated, especially in the phase of anomaly detection, using ML algorithms: 
such as Naive Bayes, Neural networks, Support Vector Machine, Decision Tree, K-Nearest Neighbor. In [34], 
a system called DeepDefense based on Deep Learning has been introduced. DeepDefense filters network 
traffic using rules and stores detected attacks in a database. DeepDefense filters each packet of real network 
traffic and classifies it either as a DDoS attack or a legitimate one. DeepDefense reacts to a DDoS attack by 
dropping packets tagged as DDoS. Another solution, namely Anti-DDoS Technique, has been proposed in [35]. 
It relies on self-learning Bloom Filter, which is a data structure designed to identify whether an element is 
present in a set rapidly. It has been used to identify DDoS attacks using (1) the advantage of ML to detect 
attacks; (2) the threat mitigation based on Bloom filters. Authors in [36] suggest implementing Bloom filter 
in the routers to block the packets with similar information, such as destination ports and addresses . 

All the previous solutions are limited by centralized data collectors and actors to identify and mitigate the 
DDoS attacks. However, in real situations, the DDoS is a distributed threat as attackers launch distributed 
botnets from different network locations. A cooperative attack detection based on a hierarchical RL was 
proposed in [37] to identify the network attacks. The attack detection is performed using a distributed 
detection system executed at different 5G key network components, such as base stations. The advantage of 
using RL is the ability to detect new misbehaviour and attacks, as RL is an online learning algorithm. 

The work introduced in [37] proposes to deploy distributed IDS (Intrusion Detection System) agents to 
monitor and protect wireless communication of 5G networks. The IDS agents are of two types: First Level 
(FL)-IDS and Second Level (SL)-IDS. The FL-IDS is deployed at each access point and uses a one-class SVM 
algorithm for anomaly detection. If an anomaly is detected, FL-IDS forwards an alert to SL-IDS for further 
verification, including the identity (id) of the suspected user equipment (UE) as well as the related suspected 
features such as packets sending rate and duration of the communication. If SL-IDS detects an attack, it 
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forwards a report to the Security Operation Center (SOC) for further investigation. The report sent by SL -IDS 
includes the infected target's identity, such as user equipment, base station, or servers of Centralized-RAN. 
SoC relies on a set of techniques to detect and predict the new attack patterns, where a human (a security 
expert) is involved in the decision making to reduce the false-positive rate. Although this solution uses a 
distributed monitor, it is partially automated as a security center with human intervention is needed. 

In [38], a novel solution is proposed to mitigate DoS/DDoS attacks using smart contracts and AI in 5G. The 
proposed solution offers an embedded AI module into smart contracts. The latter was used to ensure the 
efficiency and trustworthiness of AI training and its execution, hence eliminating the possibility for any other 
parties to insert backdoors into the AI module. The proposed solution can limit DoS/ DDoS attacks by 
amplifying the cost and forcing rational users not to launch DoS/DDoS attacks, which can avoid them before 
they occur. Also, a distributed infrastructure of the blockchain was used to prevent attackers from evading 
smart contracts auditing.  

Usually, mMTC traffic is of two types. The first one is the periodic update (PU) type, associated with low -rate 
non-real-time devices activity, which regularly transmits data to a central entity. The second type is Event -
driven. In this type, MTC devices transmit data following an event triggered either by the device itself or by 
a remote server. To achieve DDoS attacks when mMTC slices are running, attackers aim to take control of an 
important number of devices connected, using event-driven-based traffic, with a long sleep period [39]. A 
detection algorithm was proposed in [39] using the Markov chain recurrence properties to identify DDoS 
attacks relaying on mMTC devices. Indeed, the recurrence time of mMTC devices is either in ON or the OFF 
state. ON state means that a device is in a transmission mode, while OFF state corresponds to the mode of 
sleep (or idle). When a DDoS attack is happening, it forces the mMTC devices to send extra signalling traffic; 
hence the recurrence time of the active state (ON) will increase. At the same time, the idle state will 
experience a decreased recurrence time during the attack. In order to identify the DDoS attacks, the number 
of visits related to the active Markov state is continuously monitored and compared to a given threshold 
chosen and accommodated according to the characteristic parameters of the 3GPP MTC traffic model [40]. 

 

4.1.3 FORMAL METHOD THREAT MODELING  

In this section we summarize the outcome of applying the threat modeling methodology of section 2.2.3 for 
the use case of interest. 

4.1.3.1 SYSTEM OVERVIEW 

The diagram of  Figure 8 provides a high-level overview of the system and target of evaluation (TOE). For 
simplicity, we have only included components of 4G or 5G networks that directly or indirectly participate to 
the attack scenario, as well as components of MonB5G involved with the attack mitigation solution.  

The diagram also discriminates between: 

• components that may be affected (assets, in yellow); 

• components not on the security critical path (in blue); 

• MonBG entities introduced for detection and response (in green); and 

• entities external to, or not in control of, the TOE (in grey). 
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Figure 8. System Diagram of mMTC Use Case 

4.1.3.2 SCOPE 

Aligned with the use case of interest, the threat model herein mainly focuses on threats against the 
Availability properties of the TOE. To avoid repetition, the following are not included in the scope of the 
presented threat model: 

• General threats against network slicing, outlined in section 4.1.2 and the literature referenced therein 

• Threats against AMF and MME, already covered earlier in sections 4.1.2.1 and 4.1.2.2 of this deliverable  

 

4.1.3.3 COMPONENTS 

Table 3 details the different network and MonB5G components.   

Table 3.  Components 

ID Classification Layer Description 

UE (MTC) External User Plane User Equipment, devices with a mobile terminal attached to the 
4G or 5G network, in this case of MTC/IoT variety 

gNodeB/eNodeB Asset User Plane 4G/LTE or 5G base stations 
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UPF / S/PGW-U Asset User Plane 5G User Plane Function node on the data path, or the equivalent 
for 4G/LTE (Serving Gateway User plane function (SGW-U) & 
Packet Data Network Gateway (PGW-U)) 

IoT Service External Internet Internet Service that remotely controls and receives messages 
from MTC/IoT devices 

NSSF Component Control Plane Network Slice Selection Function (NSSF), leveraged by AMF to 
select the network slice instance(s) that the devices attach to 

AMF / MME Asset Control Plane 5G Access and Mobility Management Function, or the equivalent 
4G/LTE Mobility Management Entity 

SMF / S/PGW/C Asset Control Plane 5G Session Management Function (SMF), or the equivalent for 
4G/LTE (Serving Gateway Control plane function (SGW-C) & 
PGW-C) 

PCF / PCRF Component Control Plane 5G Policy Control Function (PCF), or the equivalent for 4G/LTE 
Policy and Charging Rules Function (PCRF) 

UDM / HSS Component Management 
Plane 

5G Unified Data Management function (UDM), specifically the 
subset that maps to the 4G/LTE Home Subscriber Server 
database 

EM Component Management 
Plane 

Element Manager for AMF / MME 

MAN MonB5G Management 
Plane 

Manager for the MonB5G MS / AE / DE / ACT components 

MS MonB5G Management 
Plane 

An instantiation of the MonB5G Monitoring System component 

AE MonB5G Management 
Plane 

An instantiation of the MonB5G Analytics Engine component 

DE MonB5G Management 
Plane 

An instantiation of the MonB5G Decision Engine component 

ACT MonB5G Management 
Plane 

An instantiation of the MonB5G Actuation component 

DMO / DSO MonB5G Orchestration Domain Security Orchestrator component of MonB5G Domain 
Manager and Orchestrator 

IDMO / E2E SO MonB5G Orchestration E2E Security Orchestrator component of MonB5G Inter-domain 
Manager and Orchestrator 

 

4.1.3.4 ASSETS 

Table 4 includes the vulnerabilities per component. 
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Table 4.  Assets 

ID Component Layer Vulnerabilities 

C1 AMF / MME Control 
Plane 

To conserve battery power, MTC devices will frequently detach and re-attach to the 
mobile network. Relevant requests by base stations are handled by the AMF / MME, 
which can be overwhelmed by the high request rate, when large numbers of devices 
perform this in synchrony. 

C2 gNodeB / 
eNodeB 

User 
Plane 

Base stations are vulnerable to performance (throughput/latency) degradation, 
when large numbers of mobile terminals excessively utilize resources. Proportional-
fair sharing algorithms have their limits in addressing this. In the case of mMTC, 
these limits do not relate to high per-UE throughput demands, but to an enormous 
number of terminals that compete for base station frequency or time-domain 
resources, causing them to fail in achieving low latency in message transmissions.  

C3 UPF / 
S/PGW-U 

User 
Plane 

Compared to base stations, these entities on the data path between the mobile 
network and the Internet are considered less vulnerable to resource utilization 
pressure, at least when it has to do with MTC devices that typically have low 
throughput needs. However, given that they have to handle the aggregation of 
messages from potentially millions of devices, in a distributed denial of service 
scenario they will have to scale to handle huge spikes in packets per second rates.  

C4 SMF / 
S/PGW/C 

Control 
Plane 

Reflecting on the potential resource pressure on the corresponding data plane 
components, the control plane counterparts have been included as a TOE asset. 
However, they are less vulnerable to availability threats in MTC case, since they are 
involved only on a per session basis, not on a per packet basis, as the above.  

 

4.1.3.5 ACTORS 

Table 5 displays the different actors and their role. 

Table 5.  Actors 

ID Role 

A1 The actor identifies a security flaw of the UE (MTC) hardware/firmware/software, or manages t o inject 
such a firmware/software vulnerability, by participating to the software supply chain and exploiting the 
regular updates these devices tend to receive. The actor then exploits the security flaw to establish a 
command & control channel that manipulate the network communication behaviour of these devices. 

A2 The actor identifies a security flaw in the IoT Service that remotely manages the UE (MTC) devices. The 
actor then exploits this security flaw to gain control of the network communication patterns of these 
devices, for example by controlling the message triggering frequency and synchronization between them.  

 

4.1.3.6 ENTRY POINTS 

Table 6 shows the entry point of the system. 
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Table 6.  Entry points 

ID Components Protocol Description 

E1 UE (MTC) - 
gNodeB/eNodeB 

Next Generation Radio 
Access technology 
Network (NG-RAN)/ E-
UTRAN (LTE 
Category  protocol  (LTE 
Cat), Long-Term 
Evolution for Machines 
(MTC) (LTE-M), 
Narrowband IoT (NB-
IoT), …)  

Network attachment and message transmission interface 
between the UE (MTC) and the system 

E2 UPF/PGW-U - 
IoT Service 

IP / Application Layer 
(HTTP, Message 
Queuing Telemetry 
Transport (MQTT), 
Constrained 
Application Protocol 
(CoAP), …) 

Connection-less or connection-oriented IP-based E2E transport 
between UE (MTC) and IoT Service 

 

4.1.3.7 BOUNDARIES 

The diagram of Figure 8 depicts some of the security and trust boundaries of the system. If we exclude the 
boundaries that correspond to the entry points above, there are additional boundaries, such as between: 
i) the (user plane, control plane, etc.) layers of the system, ii) the instances of the components provisioned 
for different network slices and iii) the (RAN, Edge, CN, etc.) technological domains that a network slice spans. 
Given the broad range of these boundaries and the differences in implementation between 4G & 5G (“legacy” 
vs service-based architecture), we will not be extensively listing and analysing them in this threat model.  

4.1.3.8 THREATS AND MITIGATIONS 

Table 7 summarizes the threats and litigation of mMTC use case. 

Table 7.  Threats and Mitigations of mMTC Use Case 

ID Attacker Entry 
Point 

Asset Type Threat Likeli-
hood 

Impact Risk Mitigation 

T1 A1, A2 E1, E2 C1 Denial of 
Service 

An attacker exploits security 
flaws of UE (MTC) devices or 
IoT Service to cause excessive 
distributed and synchronized 
network attach and detach 
requests that degrade the 
performance and affect the 
availability of AMF / MME. 

M H H See section 4.1.4 
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T2 A1, A2 E1, E2 C2 Denial of 
Service 

In a scenario similar to the 
above, base stations can be 
led to resource starvation, 
deteriorating their latency 
and affecting their ability to 
serve other mobile terminals. 

M M M Indirectly by the 
same mitigation 
as T1 

T3 A1, A2 E1, E2 C3 Denial of 
Service 

In a scenario similar to the 
above, when it is distributed 
to a large number of devices, 
disproportionate capacity of 
assets can be occupied by 
having to process enormous 
packets/s rates from devices. 

L L L Indirectly by the 
same mitigation 
as T1 

T4 A1, A2 E1, E2 C4 Denial of 
Service 

In a scenario similar to the 
above, when it is distributed 
to a large number of devices, 
the number of concurrent 
packet data sessions assets 
will have to handle will spike. 

L L L Indirectly by the 
same mitigation 
as T1 

 

4.1.4 MITIGATION USING MONB5G AI-DRIVEN SECURITY TECHNIQUES  

 

 

Figure 9.  In-Slice attacks detection using MonB5G system 

 

Figure 9 illustrates a simplified view of the envisioned system architecture representing the MonB5G 
elements and their interaction with the network components running a mMTC network slice. In this scenario, 
we assume a mMTC network slice deploying a high number of devices connected through different eNB/gNB.  
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The mMTC network slice is composed of a dedicated network slice instance running the network slice owner 
applications and a shared network slice subnet instance managed by the infrastructure owner. The shared 
network subnet instance is composed of eNB/gNB and the core network running on top of a virtualized 
infrastructure. The eNB/gNBs are considered as shared PNF, while the core network elements are VNFs 
shared among the run network slices. MS/AE/DE role is to detect in-slice DDoS attacks and mitigate these 
attacks. According to the security architecture shown in Figure 4, MS/AE/DE correspond to the SECaaS, but 
they are permanent and not instantiated on demand. They are configured and handled by the infrastructure 
manager. They ensure zero touch management for the shared network instance. After each enforced 
decision, SECaaS informs the DMO. The DMO in this case covers the CN and RAN domain or only the CN 
domain that is run as VNF. In both cases, it is owned, managed, and controlled by the infrastructure owner.  

It is important to recall that the MS role is to monitor the key elements to detect the attack, AE includes ML 
models to detect an attack, and DE mitigates the attacks and enforces decisions. Now we will detail the role 
of each element in the system.  

MS: 

In the case of the considered scenario, we assume that the MTC devices are controlled by an attacker that 
launches DDoS attacks on the MME/AMF element of the core network. As the objective is to overload the 
MME/AMF, an attacker should continuously generate a high number of attach and detach requests. Indeed, 
the MME/AMF needs to handle each request separately. Each request will generate several control plane 
messages; if the number of requests is very high, the MME/AMF may be overloaded, and the provided service 
is disturbed. Therefore, the number of attach and detach requests should be continuously monitored and 
collected by the MS. These metrics are considered service-level metrics and need to be extracted from the 
MME/AMF. Usually, a service-level metric should be provided by the managed element (here MME/AMF) 
through the Element Manager (EM). To do so, the EM exposes an API, to request the metric via HTTP 
request/response, or subscribe to the event if a communication bus is used.  

AE: 

In order to detect attacks in a mMTC network slice it is important to understand how the MTC devices 
communicate and generate traffic. MTC devices are generating traffic using a specific pattern according to 
the type of used application. We can distinguish between three cases:  

1. Event-based, where the MTC devices connect if an event happen (like fire-detection, earthquake, 
etc.). They connect (attach to the network) and send a small amount of traffic (few packets);  

2. Trigger-based, where a remote server trigger a connection to the device to gather data (measure of 
temperature, or humidity, etc.); 

3. Periodic, where the MTC devices connect periodically to send data (temperature, humidity, etc.).  
 

While type two and three can be easily predicted using information from the slice owner, type 1 is very 
difficult to predict. 3GPP in [41] introduces two traffic models to characterize type 3, namely based on Beta 
distribution (3,4) and Uniform distribution (0,1).  

 Model 1: Uniform distribution over a duration T in which MTC devices access the network uniformly 
over a period of time, i.e., in a non-synchronized manner. This model does not take account of the 
correlation between the transmissions of the devices.  

 Model 2: Beta distribution over T in which a large amount of MTC devices  access the network in a 
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highly synchronized manner. This model generates correlated traffic in a specific time interval.  

 

 

Figure 10.  MTC traffic model [42] 

 

Table 8. Parameters of the 3GPP model 

Characteristics  Model 1  Model 2 

Number of device N 1000, 3000, 5000, 10000, 30000 

Distribution f(t) over [0,1] unifrom beta(3,4) 

Period T 60s 10s 

 

Figure 10 and  Table 8 illustrate and detail the 3GPP traffic model, respectively.  

Knowing that the MTC traffic is well specified, different options can be considered when defining the attack 
detection algorithm to be run by AE. Obviously, using a trained Neuronal Network is one of the solutions. The 
Neural Network (NN) (Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), or an association 
of both) can be trained using the normal traffic generated by MTC devices belonging to mMTC slice. Either 
by using synthetic data generated using one of the models specified by 3GPP or real-traces. Then, the trained 
algorithm can run as an IDS by analyzing the attach requests monitored by MS and classifying the traffic as 
normal or abnormal. If the traffic is abnormal, AE notifies DE by including the International Mobile Subscriber 
Identity (IMSI) or GUTI suspected as belonging to the attacks.  

DE: 

The DE algorithm considers the alerts sent by the AE to mitigate the attacks. Before applying the appropriate 
decision, the DE algorithm may apply filters such as Kalman Filter to reduce the probability of false positives. 
Regarding the decision enforcement, DE can request the MME/AMF to detach the concerned IMSI or GUTI 
involved in the DDoS attacks and communicated by the AE.  It should be noted that the GUTI is assigned by 
the MME/AMF to a UE at the first attach to avoid sending the IMSI each time a UE initiates an attach request. 
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In addition, the MME may ban the concerned IMSI (and GUTI) in the HSS database. In order to enforce these 
decisions,  DE communicates with MME/AMF by using the  API exposed by EM of the latter.  

Involved technologies:  

Table 9 summarizes the different that can be used to validate the components described in this use-case 
scenario. 

Table 9. Technological tools 

Element Technology 

MME/AMF OpenAirInterface (OAI) 

Traffic generator Magma OAI 

EM MME/AMF To be implemented on OAI 

MS/AE/DE To be implemented 

 

Validation of the MonB5G: 

In order to validate the effectiveness of using the MonB5G system to detect in-slice attacks in the case of 
mMTC, we will collect KPI. They cover two categories. The first one includes KPIs related to the performance 
of the system to detect quickly in-slice DDoS attacks and mitigate the attacks. Here we can mention the 
following KPI:  

 The time taken from the start of the attack/anomaly until its detection by the MonB5G system. This 
KPI will be compared to a vanilla solution that might be relying on existing  IDS, such Snort 

 The time taken from the start of the attack/anomaly until it detections. This KPI will be compared to 
a vanilla solution that might be relying on existing IDS, such Snort.   

The second category covers the KPIs concerning the ML algorithm used by AE. We can mention:  

• False positive rate in attack classification (percentage of false classification of events as attacks). The 
MonB5G system will be compared to a vanilla solution based on IDS, such as Snort.   

  Learning robustness that covers precision, recall (true positive rate), fall-out (false positive rate), 
Area Under Curve values above/below specific thresholds. Again the MonB5G system will be 
compared to a vanilla solution based on IDS. 

 

4.2 Traffic steering and Security VNF instantiation  

4.2.1 INTRODUCTION  

To protect network slices against cyber security attacks, it is highly important to follow useful guide lines for 

managing the security life cycle from international bodies such as ENISA or NIST or another government 

security agency. These guidelines lead to a convergent approach to building cyber security capabilities, which 

is divided in several stages: Preparation, Reaction, Improvement. The initial phase, the Prepa ration focuses 

on capturing the customer's security needs and understanding the network slice structure to identify the 
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assets to be protected.  It then assesses the vulnerabilities, threats and risks associated with these assets and 

prepares and implements appropriate protection measures. The Reaction phase starts with a cyber sec urity 

incident that is occurring or has occurred, the containment must be then carried out to limit the spread of 

the attack and its impact, following by the eradication of the cause of the incident. The recovery of the system 

to normal functioning completes this second stage. In the last stage, the Improvement, deeper investigation 

is conducted to identify emerging vulnerabilities, threats and risks, lessons learned from the incident 

response contribute to improving the defence in place.  

Thanks to the security intelligence collected, future network slices will be better prepared with a higher level 

of protection. Security operations in all three phases may require directing dynamically suspicious traffic 

through existing security controls or update the network slice with supplementary VNFs providing the missing 

security features. For instance, threat intelligence has identified an emerging vulnerability for a device that 

requires the deployment of a new security function to detect if the device is under att ack. Another case is 

when an indicator has been raised to signal an unusual traffic is being sent by a server, the incident response 

needs then to redirect the flow to an inspection function to confirm it is actually an incident. Dynamic traffic 

steering is a major feature of SFC framework [43] thanks to the concepts of Service Function Forwarder (SFF) 

which allows the application of a sequence of network functions to a particular traffic.  

During the preparation phase, the SO are not deploying security controls to prevent all the threats as some 

of them have low occurrence likelihood or their potential impact are limited. SO relies instead on the Reaction 

to mitigate the residual risks and instantiate dynamically the needed security enablers. 

The NFV-MANO is complement to the SFC, as it manages the lifecycle of VNFs including the security enablers 

that compose the service function paths (SFP). Indeed, through the interfaces offered by the NFV 

orchestrator, virtualized security functions (VSF) are deployed on demand, their capacity adjusted according 

to the actual load. In addition, the NFV orchestrator places optimally VSF instances in the infrastructure 

according to the criteria, and it terminate them when no longer needed to save costs. 

Through scenario aLTEr attack, which will be described in the next section, we will show the interactions 

between the components of MonB5G, the SFC and the NFV MANO how the security life cycle is realized.  

 

4.2.2 STATE OF THE ART ON EXISTING ATTACK AND SOLUTIONS  

4.2.2.1 VNF INSTANTIATION 

VNF Instantiation is the process of deploying an instance of a VNF through an NFV platform, and having it 
ready for handling traffic. The instantiation process includes two steps; provisioning the needed virtual 
resources, and configuring the templates bundled in the same VNF. 

VNFs may have inherent software or system vulnerabilities, or malware designed to perform attacks, 
therefore they could either be the source or the target of a threat or attack. Attacks from within VNF are  
possible due to software vulnerability flaws, where a malicious attacker could exploit a flaw (using snort 1 for 
example) to bypass firewall restrictions or take advantage of a buffer overflow to execute a malicious code.  

                                                           

1 https://www.snort.org/  
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Furthermore, VNFs have virtualization vulnerabilities, according to ENISA’s threat Landscape  [44]: 

1. Network Virtualisation Bypassing  

The improper configuration along with bad network slicing implementation can result in loss of data 
which can harm both confidentiality and privacy. As the networks are shared between different users, 
it should be assured that only legitimate traffic enters or leaves a network slice. Unless traffic is 
isolated, slice trespassing will happen.  
 

2. Abuse on data Centers Interconnect (DCI) protocol  

Whatever system relies on virtualisation is usually deployed within data centers, thus inheriting their 
threats and vulnerabilities. This threat refers to the lack of authentication and encryption. Under 
those circumstances, potential attackers can create spoofed traffic in a way that it makes possible 
traversing DCI links or creating a DoS attack of DCI connections. 
 

3. Virtualised Host Abuse  

In a virtualised environment, physical resources are shared between the different applications and 
their users running on virtualised host. Thus there is a vulnerability that some of those users want to 
overcome the boundaries and the limitations of their virtualised space, invading the neighbouring 
spaces, scavenging information. This threat permits cross-inspection of various tenant’s data flow, 
neighbouring attacks which allow the mapping of topology, thus serving as the initial step for DoS 
attack.  

4. Abuse of Cloud Computational Resources 

In NFV networks, as the compute nodes are outside of the core, it requires the operators to loosen 
the security rules between the controller and the compute nodes. This slackening of the security can 
open up the whole environment to a malicious attacker and thus compromise it, leading to data loss, 
breaches, and loss of service. 
 

Additionally, ETSI’s GS [45] suggests that VNFs’ lack management authentication is a prime vulnerability, and 
that is should be addressed. The report includes the specifications and the requirements for the 
aforementioned problem. Management authentication is essential for any real-world deployment and affects 
every phase of the VNF lifecycle. The existence of an authentication API that can allow only authorised users 
to get access and manage to operate the VNF, will mitigate this vulnerability. 

 

As evident that most of VNF related vulnerabilities lead to DoS disruption, we refer to a detailed survey  [46] 
of SDN-based DDoS attack detection and mitigation solutions aggregated DDoS (flooding) attacks into the 
three categories by the authors:  

i. Reflection-based Attacks  
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These are reflection-based volumetric attacks where the attacker overwhelms the target network by injecting 
a large number of ICMP packets. Two infamous examples of this type of attacks are the Smurf1 and Fraggle2 
attacks.  

ii. Protocol Exploitation Attacks 

Where attackers can exploit the synchronize (SYN) protocol and send large UDP packets to consume more 
bandwidth. Examples are the SYN flooding and UDP fragmentation attacks.  

iii. Amplification-based Attacks  

Where attackers are able to generate large volume of  DNS and Network Time Protocol (NTP) requests to 
jam their servers, rendering the target and surrounding infrastructure inaccessible to regular traffic.  

4.2.2.2 SOLUTIONS AND MITIGATIONS 

A recent report [47] describes a novel mitigation experiment that was performed under the EU H2020 
SoftFIRE project3. The solution designed is called BotsOnFire, and within its report the authors specify the 
implementation of two Virtual Network Functions (VNF) and an SDN application, and their testing as SDN/NFV 
applications. 

Their 3-tier solution is described as follows: 

I. Botnet detection:  

A Snort Deep Packet Inspection (DPI) VNF is deployed for detecting botnets at low level. Snort is one of the 
most widely used Network Intrusion Detection Systems (NIDS) for misuse detection, which is 5G compliant 
due to its ability to analyze GPRS Tunneling Protocol (GTP) packets natively without having to de -capsulate 
them first.   

II. Botnet mitigation.  

A Honeynet4 VNF is created for emulating malicious behaviors of compromised user equipment (UE). The 
Honeynet is a security component chosen to the isolate bots in the compromised UEs by emulating their 
behavior, thus preventing real bots from executing attacks. This mechanism has been because honeynets can 
be used to continuously analyze how botnets evolve over time and advise the monitoring and detection 
modules to adapt their internal processes to the changes observed.   

III. Enabling detection and mitigation procedures in SDN 

An SDN application (called FlowT) has also been implemented to enable security functions of the Snort and 
Honeynet VNFs. Effectively mirroring suspicious flows to the Snort VNF for inspection and diverting network 
flows exchanged between bots and the server for botnet emulation by the Honeynet VNF. FlowT enables 

                                                           

1 https://www.sciencedirect.com/topics/computer-science/smurf-attack  
2 https://www.radware.com/security/ddos-knowledge-center/ddospedia/fraggle-attack/  
3 https://www.softfire.eu/  
4 https://www.honeynet.org/  

https://www.sciencedirect.com/topics/computer-science/smurf-attack
https://www.radware.com/security/ddos-knowledge-center/ddospedia/fraggle-attack/
https://www.softfire.eu/
https://www.honeynet.org/
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both features selectively applying network flow mirroring and diversion rules to the virtual switches 
(vSwitches) being managed by the SDN Controller. 

 

4.2.3 FORMAL METHOD THREAT MODELING  

In this section we summarize the outcome of applying the threat modeling methodology of section  2.2.3 for 
the use case of interest. 

4.2.3.1 SYSTEM OVERVIEW 

The diagram of Figure 11 provides a high-level overview of the system and target of evaluation (TOE). For 
simplicity, we have only included components of the network that directly or indirectly participate to the 
attack scenario, as well as components of MonB5G involved with the attack mitigation solution.  

The diagram also discriminates between: 

 Components that may be affected (assets, in yellow); 

 Components not on the security critical path (in blue); 

 MonBG entities introduced for detection and response (in green); and 

 Entities external to, or not in control of, the TOE (in grey). 

 

Figure 11. System Diagram of aLTEr Use Case 

 

4.2.3.2 SCOPE 
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Aligned with the use case of interest, the threat model herein mainly focuses on threats against the 
confidentiality properties of the UE. 

 

4.2.3.3 COMPONENTS 

 Table 10 details the different network and MonB5G components.   

Table 10. Components 

ID Classification Layer Description 

UE Asset User Plane User Equipment with a mobile terminal attached to the network 

Relay External User Plane Unlawfully intercepts and tampers with data communications 

gNodeB Component User Plane Network base station 

SFC/SFF Component User Plane Service Function Classifier and Forwarder, offloads processing of 
data flows to a chain of network functions 

User Plane 
VNFs 

Component User Plane Virtual Network Functions on the data path 

Control Plane 
VNFs 

Component Control Plane Virtual Network Functions on the control plane 

DNS Server External Internet Domain Name Server under control of A1 

Web Server External Internet Web Server under control of A1 

MAN MonB5G Functional / 
Slice Layer 

Manager for the MonB5G MS / AE / DE / ACT components 

MS MonB5G Functional / 
Slice Layer 

Instantiations of the MonB5G Monitoring System component 

AE MonB5G Functional / 
Slice Layer 

Instantiations of the MonB5G Analytics Engine component 

DE MonB5G Functional / 
Slice Layer 

Instantiations of the MonB5G Decision Engine component 

ACT MonB5G Functional / 
Slice Layer 

Instantiations of the MonB5G Actuation component 

SECaaS / VSF MonB5G Functional / 
Slice Layer 

Virtual Security Function instantiated by MonB5G SECaaS 

NFV / MANO Component Orchestration Management and Orchestration stack that orchestrates VNFs 

DMO / DSO MonB5G Orchestration Domain Security Orchestrator component of MonB5G Domain 
Manager and Orchestrator 

IDMO / E2E SO MonB5G Orchestration E2E Security Orchestrator component of MonB5G Inter-domain 
Manager and Orchestrator 
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4.2.3.4 ASSETS 

Table 11 includes the vulnerabilities per component.  

Table 11. Assets 

ID Component Layer Vulnerabilities 

C1 UE User Plane Communications between UE and base stations are wireless and take place over 
public frequency bands. These communications can be intercepted and relayed by 
an appliance that masquerades as a base station. Even though the E-UTRAN 
protocols have reasonable provisions for encrypting these communications and UE 
enforces them, standard data integrity checks at the Packet Data Unit (PDU) and IP 
level aim at detecting packet transmission errors, rather than protecting from 
tampering. 

 
4.2.3.5 ACTORS 

Table 12 displays the different actors and their role.  

Table 12. Actors 

ID Role 

U1 The actor (victim) normally uses a device (smartphone, tablet, laptop equipped with a mobile  terminal) 
to connect to Internet web sites and services via the operator’s mobile network.  

A1 The actor (attacker) deploys a Relay that intercepts and relays transmissions between U1’s device and 
the operator’s mobile network. The Relay also has functions to tamper with these transmissions at layer 
2. Finally, the actor has control of a DNS Server and optionally a Web Server on the Internet.  

 

4.2.3.6 ENTRY POINTS 

Table 13 shows the entry point of the system.  

Table 13. Entry points 

ID Components Protocol Description 

E1 UE - gNodeB E-UTRAN  Network attachment and packet data communications interface between the 
UE and the system 

 

4.2.3.7 BOUNDARIES 

The diagram of Figure 11  depicts some of the security and trust boundaries of the system. If we exclude the 
boundary that corresponds to the entry point above, there are additional boundaries, such as between: i) the 
(user plane, control plane, etc.) layers of the system, ii) the instances of the components provisioned for 
different network slices and iii) the (RAN, Edge, CN, etc.) technological domains that a network slice crosses. 
Given the broad range of these boundaries and the variety of implementations, we will not be extensively 
listing and analysing them in this threat model. 
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4.2.3.8 THREATS AND MITIGATIONS 

Table 14 summarizes the threats and litigation of aLTEr use case.  

Table 14. Threats and Mitigations of aLTEr Use Case 

ID Attacker Entry 
Point 

Asset Type Threat Likeli-
hood 

Impact Risk Mitigation 

T1 A1 E1 C1 Tampering 
of Data, 
Spoofing of 
IP 

A1 deploys Relay on E1 that 
intercepts communications of 
U1’s device (C1). The Relay 
identifies DNS requests and 
replaces encrypted PDU with 
one that has as destination IP 
the address of a DNS Server in 
control of A1. 

L L L See section  
4.2.4 

T2 A1 E1 C1 Information 
Disclosure 

The DNS Server in control of 
A1 receives DNS requests from 
U1’s device (C1). This reveals 
which Internet web sites and 
services U1 visits, violating 
U1’s privacy. A1 can 
manipulate DNS responses for 
specific sites to redirect them 
to a Web Server under their 
control, to steal credentials or 
other sensitive information. 

L H M Indirectly by the 
same mitigation 
as T1 

 

4.2.4 MITIGATION USING MONB5G AI-DRIVEN SECURITY TECHNIQUES  

The techniques and complexity of cyber-attacks are constantly evolving and diversifying. In this context, AI 
can be a great help for security systems to anticipate, detect and stop threats. ML techniques can collect and 
explore continuously a huge amount of data to learn the updated reports about the security threats in a very 
short time. 

The major limitation of a traditional security system based on expert rules is that it requires a good 
understanding of the attacker's behaviour and the used techniques and then deploy the needed action to 
stop it. Meanwhile, the attacks become so fast and the techniques are evolving and can bring great damage 
in a very short period of time before setting up a defence system. The second limitation of traditional systems 
is that they cannot be easily scaled with large systems. Future networks will be characterized by a high 
number of hosted devices which brings additional vulnerabilities that cannot be handled with a traditional 
approach. 

Future security systems should have the capacity to learn faster the attacker’s behaviour and take good 
mitigation actions. The AI techniques can learn from past human decisions to take future actions faster with 
less error risk. They can also extract more interesting features and non-linear correlations from the collected 
data that cannot be observable by humans. A technique like deep learning allows going deeper into 
knowledge to identify the threads from their first signs. 

The AI model can assist the security system in different tasks. For example, the first and the most important 
step is the fast identification of the attack. Classification models based on outlier detection techniques can 



871780 — MonB5G — ICT-20-2019-2020 

Deliverable D5.1 – Initial report on AI-driven security techniques  

 

 

©MonB5G, 2021 Page | 56  

be useful to detect new attacks or suspicious behaviours that are not already registered in the database. Time 
series analysis models offers also multiple efficient techniques to detect the attack patterns in the traffic and 
stop the suspicious flows. AI techniques can be also useful to make global actions on the network 
infrastructure to enhance security criteria like isolation to reduce risks, or resilience in the event of an 
incident by duplication the critical VNFs. This can be seen as an optimization problem, where the objective is 
to maximize these criteria (isolation, resilience, availability…) with the minimum cost. This task can be very 
complex, especially when multiple constraints should be considered. Reinforcement Learning techniques 
showed great potential in solving such problems. The idea is to have an agent that learns to t ake the 
appropriate action on the network environment that maximizes the global reward.  

 The use case we intend to use to evaluate the effectiveness of the network detection and response 
system using MonB5G AI security the attack aLTEr [48]. The aLTEr attack is a man-in-the-middle 
(MITM) attack type and is carried out between the user equipment (UE) and the gNB. It consists of 
breaking the layer two of the user radio bearer, exploiting the user data integrity protection can be 
missing as a vulnerability to carry out the attack. In 5G System, it is agreed that the use of user plane 
protection (Integrity Protection and/or encryption) is optional and it depends on the operator policy 
as these procedures lead to a higher latency and power consumption. As shown in Figure 12 , the 
attack comprises two stages, the User Redirection and the DNS Spoofing stages. In the first stage, the 
attacker in the MITM position on radio bearer intercepts the DNS look up message in the user plane, 
and replaces the original DNS server IP address by its own instead, the message will be then redirected 
to the rogue name server. Thus, the attacker has an opportunity to spoof the IP address DNS entries 
for a target application server by replacing them with the IP address of a server under his control. To 
conduct the attack, the adversary conducts the following modus operandi:  

 Taking advantage of the encryption algorithm is malleable to modify a cipher-text into another 
ciphertext which will be decrypted as another plaintext. In fact, data confidentiality is based on the 
use of the ciphering algorithm New radio Encryption Algorithm (NEA) to encrypt plaintext by applying 
an XOR operation of the plaintext block and the keystream block. 

 Recognizing a DNS packet by its small size 

 Knowing the original DNS server IP address which is usually well defined by the network operator  

 Preserving IP packet checksum 

 

Figure 12. Overview of the DNS redirection attack [48]  
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The impact of this attack if succeeded is severe as exchanged data and activities are disclosed to the 
adversary.   

This attack cannot be detected at the gNB if the option integrity protection is not enabled, however 
understanding the techniques used by the adversary to accomplish this attack, we propose a defence solution 
based on the MonB5G security framework to prevent the attacker from succeeding his p lanned actions. 

Since the attack is invisible at the radio level, we will build a defensive system in the cloud domain to detect 
and respond to it. At the initial stage, the security orchestrator in the cloud domain captures the security 
needs from the user and the operator and it dedicates security platform SECaaS if it doesn’t exist for the 
protection of network slice subnets, and one per network slice subnet instance to offer security controls for 
its VNFs and virtual links. 

 

Figure 13. Overview of the MonB5G security framework leveraging MonB5G sublayers to defend a network 
slice against the aLTEr attack. The network slice subnet SECaaS (NSS-SECaaS) provides security services to 

the management of network slice subnet instances, while the functional SECaaS (F-SECaaS) dedicates it services 
to the security for the constituent NFV constructs internal to the network slice instance. 

 

As depicted in  Figure 13,  the domain security orchestrator leverages on-demand security services (SECaaS) 
to protect the network slice in all aspects of its lifecycle, from the design phase to the termination of the 
network slice. The SECaaS at the slice management layer (NS(S)-SECaaS) helps the Network Slice (Subnet) 
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Management Function (NS(S)MF) collect the security objectives derived from the customer's requirements, 
the provider's internal policies, and the understanding of the service and network structures. The NSS SECaaS 
satisfies these objectives by specifying the protection solution to be deployed together with the network slice 
instance, and the measures of the solution are offered as services by a security platform dedicated to the 
functional layer, called F-SECaaS. 

The F-SECaaS ignores the meaning of network slice, its purpose is to ensure the safeguards of NFV constructs 
by providing the appropriate security controls. The F-SECaaS uses MonB5G sublayer components such as: 

 The MS to perform the network security monitoring that quietly and unobtrusively collects intra-slice 
IP network traffic, and it interprets them in network protocol transaction logs suitable for analysis  

 Based on the network high level logs received from the MS, the AE uses AI/ML to detect anomalies in 
network protocol transactions. If a sign of an incident is found by the detection meaning a security 
incident will occur in the future, or it is occurring or it has occurred, an alert is raised to trigger a 
response. Narrow down to our attack use case, a DNS request with an unusual DNS server is an 
indicator 

 Intrusion detection systems may produce false positives or incorrect indicators which need to be 
validated. Using the knowledge base of attack tactical and techniques, the DE can conduct hypothesis-
driven investigation to confirm the occurrence of the incident.  The unusual destination DNS server 
can be a result of either a legitimate private DNS server configured in the UE or an attempt to redirect 
the DNS request sent by the user. To obtain the desired IP address of DNS server when the ciphered 
text is decrypted after the gNB, the attacker needs to know the original DNS server address to modify. 
This address is usually disclosed by the network operator via the primary and secondary DNS 
parameters. An approach to confirm the attack is the DE generates an action plan which silently 
replaces the DNS server address for the user by a hidden value.  The user connection needs to be 
restarted to renew the IP settings, and the DE starts to wait for receiving subsequent DNS requests 
from the user. If the DE is triggered again for that UE, it means the aLTEr attack incident is then 
confirmed because the DNS server IP address matches with the XOR result of the hidden and the 
disclosed addresses. The response plan to this attack consists of enabling the integrity protection by 
requesting the SMF to provide user plane security policy for a PDU session to the gNB during the PDU 
session establishment procedure [49].  Otherwise, the hypothesis result invalidates the alert as the 
user is using a private DNS, the SFC classifier is updated to steer the private DNS away from the 
detection to avoid any future false positive alerts. And finally, the DE plan includes the rolls back of 
the network settings for the user.  

 The NS-SECaaS instantiates DE responsible for hypothesis-based investigation to validate aLTEr attack 
after the alert has been raised. Actually, each attack has its own modus operandi, therefore it is more 
appropriate to deploy dynamically the investigation VNF and its policies to adapt to the threat. This 
response function is created on the event the F-SECaaS has escalated when it was not capable to 
handle the alert.  

As for the NSS-SECaaS, it is responsible for supervising network slice instances, it collects security reports and 
events raised by network slice instances, it analyses them to sort out the security issues that can be solved 
locally. As a response, it updates a network slice instance with additional security ena blers as well as it 
controls the life cycle of its VNFs. Finally, the NSS-SECaaS disseminates the knowledge learned from one 
network slice instance to all other instances to improve proactively their protection. The NSS -SECaaS 
leverages the following MonB5G sublayer components: 
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 The MS to collect security reports from each network slice instances and status and LCM information 
of their constituent NFV objects (network services, VNF, connectivity, …)  

 The AE to analyse the collected information to identify emerging vulnerabilities and threats or learn 
lessons from the incidents that have been addressed. Applied to the aLTEr attack use case, the 
hypothesis-based threat hunting VNF needs to be deployed in extension to perform investigation as 
this attack has not been foreseen at the network slice preparation stage. 

 The DE to plan actions to improve the defence in place in the network slice instance. In addition, the 
DE may plan to share lessons learned from one network slice instance and extrapolate the security 
configuration changes to all network slices. According to the level of sensitivity and criticality of a 
device, the DE plan the activation of the integrity protection of the UP prevent the aLTEr attack. 

  The ACT executes the DE output action plan, such as creating security VNFs to be inserted into from 
a network service using the interface SecurityVnf Mgmt.001 of the reference point point Sc-Or 
defined in [50]. 

Through this use case, we highlight the use of the MonB5G components in the security framework and the 
roles they play in the cyber security incident response. They actually contribute to the process of preventing 
the attack from achieving its purpose. The openness of the MonB5G framework to external systems is 
illustrated via the various options of the response plan which includes actions towards entities, such as a) 
customer VNF and b) security VNF to update their configuration, c) the SFC controller to steer user traffic and 
also d) the NFV orchestrator to instantiate a security VNF. Finally, the use of SECaaS offer makes it possible 
the distribution, the delegation-escalation and the adaptability to demands of security services. 

 

5. MonB5G Energy-Efficiency Techniques  

In this section, we present MonB5G preliminary works on energy-efficiency. By leveraging MonB5G 
distributed network slicing architecture, where the three administrative elements, I.e., the monitoring 
system (MS), analytic engine (AE) and decision engine (DE), are instantiated at each technological domain and 
for each slice, several energy-aware artificial intelligence (AI) and design techniques are proposed by MonB5G 
to achieve energy-efficiency vision in MS, AE and DE. Specifically, distributed multi-agent Deep 
Reinforcement Learning (DRL)-based DEs are considered to perform cross-domain joint slice VNF placement 
and energy control by incorporating the energy cost into the DE multi -objective reward function. Moreover, 
to reduce the transmission overhead and thereby the underlying energy consumption, a constrained 
federated learning (FL)-based AE is introduced which makes the analysis and prediction task more energy-
efficient by dramatically reducing the amount of raw data exchanged between local AEs and the end-to-end 
AE, and resulting in more scalability to support a massive number of concurrent slices. Based on slice traffic 
analysis, MonB5G considers also a dynamic RAN offloading via a data-driven base-station (BS) switching 
OFF/ON. Finally, the MS has been designed in such a way to minimize the measurement load by adding an 
internal memory called common online memory store (COMS).  

This section starts by reviewing the main works on energy-efficiency in the context of 5G networks, including 
network slicing. It then delves into MonB5G contributions that cover all the three technological domains, 
namely, RAN, Edge, and Cloud and the three administrative elements, i.e., MS, AE and DE. 
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5.1 Energy-Efficiency in 5G Networks: A Review  

Energy-efficiency (EE) is a major key performance indicator for the sustainability of beyond 5G networks. In 
this regard, network resource management algorithms should achieve the best Quality of Service (QoS) with 
minimum energy consumption. This involves node-level and network-level strategies that require network 
architectures with more flexibility/programmability in resource placement and allocation.  

First, there are multiple approaches to achieve EE at the RAN domain [51]. In the 5G, the strategies for BS 
ON-OFF switching, an approach already used for previous generations of communication systems (LTE)  [52]  
[53] [54] [55], are still very relevant. This technique consists on turning off BS depending on how the traffic 
across the BS varies for EE [56] [57] [58] [59], which is proven to be an NP-Hard problem [ [52] ,  [60],  [61]]. 
To add to this difficulty, the technological enhancements of 5G networks require ON/OFF switching strategies 
to be re-adapted for the new communication technologies [56]. For example, in the 5G RU/CU/DU functional 
split, 5G users are connected to RUs and processing is done by centralized  units (CUs). On-Off switching of 
RUs/DUs is very similar to more traditional ON-OFF switching used for previous communication technologies. 
But given that the RU/DUss are already designed as low-power transmitters in 5G  achieving a 10x reduction 
based on this technique is not viable. Because of this, it is also appealing to look to RU-DU-CU ON-OFF 
Switching. It is possible to turn off CUs if they are underutilized, but then the associated RUs/DUs are left 
without service. In order to prevent users from losing QoS, RUs need to be associated with new CUs 
dynamically, which results into a more complex scheduling and user association problem. In addition, given 
that 5G BSs can use several frequency band layers, the propagation and obstacle loss is more critical, and 
makes the association of users to neighboring BSs a more difficult problem. In this regard, a distributed Q-
learning algorithm has been introduced [62], which chooses how deep a BS can sleep according to the best 
switch-off sleep mode (SM) level policy that maximizes the trade-off between energy savings and system 
delay. Moreover, as cell load impacts its energy-efficiency, a multi-agent online reinforcement learning-based 
traffic offloading algorithm has been introduced [63], which benefits from the awareness about other macro-
cells offloading strategies to improve the quality of the selected traffic offloading action without explicit 
information exchange. This yields 14% improvement in network energy-efficiency. In the same direction, a 
joint energy-aware Deep Q-network (DQN) traffic offloading and demand forecasting strategy has been 
presented [64], which leverages an open dataset from a major telecom operator to train BSs’ control model 
leading to 5% energy-efficiency gain compared to native Q-learning. Since 5G networks intrinsically endure a 
large energy waste resulting from the high redundancy of lightly loaded, always-on, small-cell base stations, 
a game theoretic approach to design a distributed energy efficient bandwidth sharing mechanism for small-
cell networks has been proposed [65]. It invokes a reinforcement learning approach to intelligently and 
dynamically learn good strategies for user-equipment association and orthogonal frequency division multiple 
access (OFDMA) scheduling to strike a balance between energy efficiency and user throughput.  Moreover, 
Feng et. al. [57] propose a solution to maximize the EE of massive Multiple-Input Multiple-Output (MIMO) 
systems in heterogenous networks. Their system considers a macrocell which is a two -tier heterogenous 
network that consists of macro base station (MBS) with a massive MIMO and some small base stations (SBSs). 
They demonstrate the optimality of their Integer Linear Programming (ILP) solution, for which they relax the 
constraints of the problem formulation by allowing the association of users to BSs to be a continuous variable 
in the domain [0,1] instead of a binary variable. They apply a similar approach to the variable that defines 
the ON-FF state of a SBS, defining it as a continuous variable in the same domain. In addition to this, they 
decompose the problem in two sub-problems in order to find the optimal solution, for which they develop 
two solutions: one centralized and the other distributed. Interestingly, they find that the throughput achieved 
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with a BS On-Off switching strategy drops, highlighting a trade-off between this metric and EE [51], [56]. 
Celebi et. al. [58] propose a traffic load definition for dense small cell networks (SCNs) involving randomly 
distributed SBSs and user equipments (UEs). In their model, it is possible for a UE to be within the covera ge 
of multiple SBSs. They provide a centralized (CLB, centralized Load Based On/Off switching) and another 
distributed (DLB, distributed Load Based On/Off switching) solution to establish a compromise between EE 
and network throughput. They compare these solutions with a more complex one called Wake-Up Control 
(WUC) in which a MBS has the ability to wake up any sleeping SBS. In CLB, the SBSs are turned off when they 
present the minimum instantaneous load value as a response to each SBS that had just woken after a specific 
time period. The DLB operates in a very similar way to the CLB, with the difference between them is that DLB 
does not rely on a central controller to decide candidate SBSs to turn off, but rather use the most recently 
woken-up SBS to become the decision maker, and choose candidates for the next SBS that will be turned off. 
The WUC approach is different in this respect, since the MBS controller can decide to wake up any sleeping 
SBS at any time, without requiring specific time windows for this. This allows to service outstanding requests 
a bit faster, instead of letting them wait for the specific time window. Their results demonstrate that the 
blocking probability of all approaches decreases as more SBSs are turned on (higher on ratio) and as the 
tolerable delay gets larger. WUC performs better than CLB/DLB when the on ratio is below 0.5, but they 
become very similar after that point. Similarly, the throughput of CLB/DLB and WUC converge very closely to 
each other for non-sleeping SBS fractions larger than 30%. However, WUC yields less EE even though it has 
larger average throughput. 

On the other hand, in the context of a cooperative multi-operator 5G network based on virtualized radio 
access and core, a sleep-mode and spectrum-sharing strategy to minimize the gNB power consumption has 
been presented [66]. The proposed dynamic inter-operator spectrum–sharing formulation is cognizant of 
inter-RAN traffic volume to motivate mobile network operators (MNOs) to cooperate to achieve energy 
efficiency in their RANs. In this intent, an inter-operator joint optimization problem is formulated to obtain 
power efficient intra- and inter-RAN beamforming vectors for supplementary energy gains and improved UE 
signal reception. On the other hand, by leveraging network function virtualization (NFV) technology, an 
energy-efficient dynamic network functions placement has been proposed [67]. It leverages ILP to adapt the 
joint locations of DU/CU and MEC to the actual distribution of network processing and transport resources. 
This enables to aggregate DUs/CUs into fewer cloud servers, resulting thereby in 20% energy saving.   

Moreover, many works focus on solving the cross-domain energy-efficiency optimization problem with single 
agent reinforcement learning. Most notably, in [68] the authors propose a novel zero-touch framework, 
based on a continuous model-free deep reinforcement learning method to minimize energy consumption and 
virtual network function instantiation cost. They present an Actor-Critic-based algorithm called, twin-delayed 
double-Q soft Actor-Critic (TDSAC) and elaborate on how such system can solve dynamic control and 
optimization problems in network slicing. Similarly, in [69], Li et al. propose a Deep Deterministic Policy 
Gradient (DDPG) based algorithm, aiming to obtain the optimal power control scheme. They evaluate the 
proposed framework with multiple comparisons with the other well-known algorithms, such as Deep Q-
learning. The showcased numerical results imply that the proposed framework was able to significantly 
minimize energy consumption. 

Recently, to accommodate the performance of reinforcement learning algorithms in the gre at scale of the 
edge-cloud systems of the next-generation networks, a lot of attention has been brought to multi-agent 
reinforcement learning algorithms. In recent bibliography, Shah et al in [70], employ Multi-Agent 
Reinforcement Learning (MARL) to solve the Service Function Chaining (SFC) placement problem for Internet 
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of Things (IoT) connected devices. The presented system enables IoT devices to access processing power from 
the Network Function Virtualization (NFV) enabled network by sending requests and gaining access through 
SFCs that are deployed in the network. Their proposed solution is based on multiple  DQN agents that map 
the SFCs to the substrate network and it is considered a resource allocation method. Regardin g energy 
efficiency, in [71] the authors tackle the problem with Dynamic Virtual Machine Consolidation (DVMC). They 
propose a distributed multi-agent reinforcement learning framework that is able to select the most adequate 
power mode and frequency of each host during runtime. According to the presented results, their algorithm 
was able to reduce data centre energy consumption by up to 15% compared to similar works such as [72].   

5.2 MonB5G Energy-Efficiency                                                                                                                  

5.2.1 DECENTRALIZED ENERGY-EFFICIENT DE CONTROL  

To leverage MonB5G distributed network slicing architecture, we have developed a multi-agent 
reinforcement learning framework that can perform intra-slice SFC placement across multiple domains to 
jointly minimize user latency and maximize throughput. We are modifying and extending our proposed 
framework to include cross-domain energy-efficiency maximization as defined in [68]. 

As depicted in Figure 14, we consider a network composed of multiple geographical domains, each with its 
own subnetwork. Each local network is composed of switches, server hosts, and links. All network entities 
have a limited number of resources and their utilization implies running costs. A maximum number of VNFs 
can be deployed on the domain servers with limited processing capability calculated by million operations 
per time slot per central processing unit (CPU). Domains can be classified as edge or cloud. Edge domains are 
considered to have multiple transmission/reception points (TRPs) of the Centralized-RAN (C-RAN) CU-DU 
split-based network, giving connected terminals access to the network through a beamforming solution. We 
split the network into two graphs of different levels. The substrate network graph and the domain level graph.  

 

 

Figure 14. Substrate network and local domain network graphs. 
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The distributed energy efficiency management framework is made of multiple reinforcement learning agents 
located in every domain as shown in Figure 15. A globally accessible VNF enables messaging capabilities 
between the local domain agents and is used for calculating and distributing the global reward. This 
architecture enables scalability of both the problem and action spaces of the defined Markov Decision 
Process (MDP) problem. The problem objective is to achieve lower total costs under strict user QoS, 
predefined thresholds, latency, and computing resource constraints. We define the distributed MDP problem 
as below: 

 Local domain agent state space: The state space provides input data about possible network 
configurations for an agent via the interaction with the environment. At the domain level, the local 
agent state is defined as the CPU, RAM, and storage utilization values of all local servers, the 
intradomain link bandwidth utilization and latency values, each user’s data rate and the maximum 
allowed latency SLA, the number of local arrival requests for each slice corresponding to e ach SFC 
and the domain energy status. 

 Local domain action space: The action space is defined as the decision of the local agent. We define 
it as a discrete value action that defines the server to which every VNF of the SCFs must be migrated 
to ensure higher throughput and energy efficiency, but also lower latency at the same time.  

 Shared Reward: The reward is feedback on how the performed action affected the environment. We 
define a shared reward as the average of all local rewards to enable cooperation [73]. The reward can 
be expressed with the following equations: 

Equation 1 Cross-domain reward 

 

      where D is the number of domains, 

Equation 2 Domain reward 

 

where ts is the offered service throughput, and ls is the service latency, given that each user has 
access to one service. 

Equation 3 Local return 

 

         as defined in [68]. 
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Figure 15. Location of learning agents and domains. 

 

5.2.2 ENERGY-EFFICIENCY AT RAN 

Our contribution in comparison to the BS ON-OFF switching strategies reviewed above relies on time-series 
prediction of the traffic-load [56] at the network slice level using enhanced context- aware traffic predictors 
(ECATP). Whereas the work in [59] implements different design heuristics for their algorithm according to 
domain knowledge in wireless communications, our predictors are designed using Deep Neural Networks 
with enhanced loss functions for training that inject knowledge regarding the resource allocation problems 
for traffic load management in 5G networks.  

Many research works have used prediction in some form to drive ON-OFF Switching strategies [61], [74], [75], 
[76]. In [61], Jang et. al. have implemented ON-OFF Base switching using LSTM-based networks with Root 
Mean Squared Error (RMSE) loss functions considering the user position, without considering network slicing. 
In contrast, our proposal does the ON-OFF switching based solely on the traffic prediction at the slice level. 
Park et. al. , [74]  use a Markov-based prediction scheme to predict the UEs traffic load in the hot region, and 
then drive the ON-OFF Switching of RRH (remote radio heads) based on the traffic prediction and other traffic 
related metrics. Our prediction approach is radically different in all cases, since ECATP allows to use different  
Deep Neural Network (DNN) architectures, and considers different issues related to resource allocation in 5G 
networks. Huang et. al. [76] propose a solution that predicts the UEs traffic load in hot regions of traffic as 
the tidal effect using a Markov-based scheme, and this prediction is used to drive a load balancing-based cell 
association algorithm to optimize UE-BS associations and an ON-OFF strategy for the F-gNBs (Femtocell g-
NodeB). Their prediction procedure is totally different from ours, since they are using an MDP process for it 
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and predicting other aspects of UE behavior in order to calculate the traffic load of the network. On the other 
hand, Mohamed et. al. [75] used a mechanism to predict the time in which a BS should be turned on based 
on the measurement of the pilot signal of the SBS and the times it has been turned on in the past, instead of 
the traffic load.  

In the approach we are proposing, we intend to use the traffic prediction to re-route the traffic of a SBS to 
another SBS [61], or directly to the MBS, assuming the costs of re-routing do not result in service level 
agreement (SLA) violations or even higher energy costs. As previously explained, our prediction is based on 
our ECATP framework, that has context-aware predictors and uses different DNN architectures depending on 
their prediction performance to optimize the usability of the prediction values. If our predictions determine 
that it is feasible to turn off a BS without re-routing traffic, then the BS will be turned off for the time-window 
in which such low-traffic conditions occurs.  

We base the development of this approach on a model of a communication infrastructure that consists on a 
MBS with a number of associated SBSs, similar to Feng et. al. [57], which yields a two- tier RAN architecture 
common in telecommunication network deployments [75]. The prediction is done at network slice 
granularity, which gives a layer of flexibility in how resources are allocated to handle the traffic load. Based 
on the predicted traffic at different time windows, the SBSs will be turned off when their traffic is below a 
certain threshold that allows its traffic to be re-routed without compromising the QoS of other slices. 
Likewise, the SBS will be turned on with some time in advance when the traffic  predicted at a future time 
window increases accordingly, in order to prevent service degradation due to switching delays [75]. 

5.2.3 ENERGY-EFFICIENCY AE AT EDGE  

To ensure energy-efficiency at the edge, dynamic resource allocation for network slicing can leverage 

advanced federated learning (FL) techniques. In this subsection, a new class termed Statistical Federated 

Learning (SFL) for energy-efficient analytic engine (AE) is presented, which can learn resource provisioning 

models over a data distribution in an offline fashion while respecting some preset local  SLA constraints 

defined in terms of long-term statistics over an observation window. The focus here is on resource cumulative 

distribution function (CDF)-based SLA---that is also dataset-dependent and nonconvex non-differentiable---

and the corresponding SFL local optimization task is formulated using the proxy-Lagrangian framework and 

solve it via a non-zero sum two-player game strategy. Numerical results show that the proposed decentralized 

AE resource provisioning approach enables SLA enforcement while significantly reducing the communication 

overhead and energy consumption compared to a centralized setup at the expense of a short delay. 

As depicted in Figure 16, we consider a beyond 5G edge-RAN architecture under the central unit 

(CU)/distributed unit (DU) functional split, wherein each transmission/reception point (TRP) is co-located 

with its DU which is connected to the corresponding CU by a fronthaul link. In this respect, each CU  k (k = 

1,...,K) runs as a virtual network function (VNF) on top of a commodity hardware located at the edge cloud 

and performs slice-level RAN key performance indicators data collection via a monitoring system (MS) as well 

as implements AI-enabled slice resource analytics through the so-called analytics engine (AE). For each CU k 

and slice n (n = 1,…,N), MS (k, n) has a local dataset Dk,n of size dk,n that is generally small and non-exhaustive. 

Therefore, the corresponding local AE participates in a federated learning task—to accurately train its 

resource analysis  model—and is thereby connected to an end-to-end AE located at the core cloud  that plays 

the role of model aggregator without having access to the raw mini-datasets. 



871780 — MonB5G — ICT-20-2019-2020 

Deliverable D5.1 – Initial report on AI-driven security techniques  

 

 

©MonB5G, 2021 Page | 66  

  

Figure 16.  Network architecture with decentralized MS/AE at the edge cloud 

 

As summarized in Table 15, the collected datasets correspond to encoded measurement data from a live LTE-

advanced network with 3200 TRPs. It includes, as input features, the hourly traffics of the main over-the-top 

(OTT) applications, channel quality indicator (CQI), and MIMO full-rank usage. The supervised output KPI 

might be either the number of occupied downlink (DL) physical resource blocks (PRBs), or  the CPU load or 

the number of RRC connected users. Once the slices are defined, the traffic of the underlying OTTs is summed 

to yield the traffic per slice.  

Table 15. Mini-datasets features 

 Metrics Description 

Features OTT Traffics per TRP Includes the hourly traffic for the top OTTs: Apple, Facebook, Facebook 
Messages, Facebook Video, Instagram, NetFlix, HTTPS, QUIC, Whatsapp, 
and Youtube 

CQI Channel quality indicator reflecting the average quality of the radio link 
of the TRP 

MIMO Full-Rank Usage of MIMO full-rank spatial multiplexing in % 

Output DLPRB Number of occupied downlink physical resource 

blocks 

CPU Load CPU resource consumption in % 

RRC Connected Users Number of RRC users' licenses consumed per eNB 

 

According to the SLA established between slice n tenant and the physical operator, any assigned resource to 
the tenant should not exceed a range [αn , βn] with a probability higher than an agreed threshold γn. This 
translates into learning the resource allocation model under empirical cumulative density function 
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constraints, which amounts to solving the following local optimization task at FL round t (t = 0,...,T -1),

 

where ℓ(.) is the squared error loss function, 1(.) stands for the indicator function.  

The local SFL optimization can be solved using a proxy-Lagrangian approach that consists of forming two 

Lagrangians. The first, L 1, is containing the loss function and a smooth approximation of the SLA constraints 
called proxy constraints, where the indicators are replaced with smooth sigmoid functions. The second 

Lagrangian, L 2, is composed of the original SLA constraints. The joint optimization of the two Lagrangians 

turns out to be a non-zero-sum two-player game wherein the first player wishes to minimize L 1 and the 

second player aims at maximizing L 2. This process ends up reaching a nearly-optimal nearly-feasible solution 
to the original constrained problem. The obtained weights are then sent back to the central server (e.g., the 
central AE) to perform averaging. This process is summarized in Algorithm 1. 

 

Algorithm 1. Federated learnig with local proxy-Lagranging two-plyer game for slice n. 



871780 — MonB5G — ICT-20-2019-2020 

Deliverable D5.1 – Initial report on AI-driven security techniques  

 

 

©MonB5G, 2021 Page | 68  

 

To evaluate the energy-efficiency of the proposed SFL, we intent to conduct extensive experiments where 
we consider an additional baseline, namely, a centralized constrained learning (CCL) model that is trained on 
the full dataset composed of the aggregation of the K=200 mini-datasets. The training will be done using 
batches of the same size as the local datasets, i.e., 1000 samples. This means that a communication round in 
the federated setup is equivalent to 100 epochs over a batch in the centralized one.  Based on the overhead 
analysis and datasets sizes, the energy consumption will be calculated as follows: 

 Local Computation energy: Let f = 2 GHz be the computation capacity at each CU, which is measured 
by the number of CPU cycles per second and C = 104 (cycles/sample) is the number of CPU cycles 
required for computing one sample data at each CU, and µ=10 -28 is the is the effective switched 
capacitance that depends on the chip architecture. For the centralized setup we assume the same 
CPU type as well. The local computation energy at each CU is given by [77], 

 

 Transmission energy: We consider R = 1 Gbps transport channels between CUs and the central OSS 
server with transmit optical power of p =-2 dBm [78] . Therefore, the transmission energy is given by, 

 

The final results of the presented concepts will be provided in the next deliverable. 

5.2.4 DE CROSS-DOMAIN CLOUD AND RAN ENERGY-EFFICIENCY 

To tackle the joint energy-efficiency at the cloud and RAN domains, the decision engine (DE) is built upon a 
continuous model-free  DRL scheme that aims to minimize energy consumption and virtual network function 
(VNF) instantiation cost for each slice. The design is based on a novel Actor-Critic-based to stabilize learning 
termed TDSAC. The TDSAC enables the local DE to accumulate the knowledge learned in the past to minimize 
future network slicing costs. 

The whole energy consumption in cloud and RAN domains involves CPU, VNF deployment, and radio optimal 
beamforming transmission, and is given by 

 

where, the objective is to minimize the overall network cost with respect to the incurred computing resources 
and energy consumption under some QoS constraints at each decision time step and thereby the continuous 
model-free DRL optimization is given by, 
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This problem can be formulated from a  MDP perspective, where the objective is to achieve lower total costs 
under user QoS, predefined thresholds, and computing resource constraints. This reflects the correlation 
between energy consumption and CPU usage, where beamforming power for each user af fects SINR that in 
turn influences computing resource consumption. 

Actor-Critic methods are a combination of policy optimization and Q-Learning. Unlike the DDPG [79] and TD3 
[80], the TDSAC benefits from stochastic policy gradient to stabilize the learning and improve time efficiency 
while mitigating very high sample complexity and meticulous hyperparameter tuning: i) The (clipped) double 
Q-learning technique parameterizes critic networks and critic. Unlike the TD3 in TDSAC, the next state-actions 
used in the target come from the current policy instead of a target policy. ii) The target in Q-learning depends 
on the model’s prediction so cannot be considered as a true target. To address this problem, we use another 
target network instead of using Q-network to calculate the target. iii) In TDSAC, the delayed strategy updates 
the policy, temperature, and target networks less frequently than the value network to estimate the value 
with a lower variance to have a better policy. iv) Experience replay enables RL to reuse and memorize past 
experiences to solve the catastrophic interference problem. In our method, we store experiences to train 
deep Q-Network and sample random many batches from the experience replay (buffer/queue) as training 
data. The proposed DE approach is summarized in Algorithm 2. 

 

Algorithm 2.  TDSAC-based Network slicing 
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We use PyTorch [81] interfaced with an OpenAI Gym-based [82] developed B5G simulator as the most famous 
simulation environment in the DRL community and evaluate our method against other State-of-the-Art DRL 
approaches, namely, TD3, DDPG, and SAC [83] with a minor change to keep all algorithms consistent. To 
guarantee a trade-off between CPU resource usage and energy consumption a cross-layer and correlated DE 
cost function is considered. 

5.2.5 OPTIMIZED MS 

MonB5G MS design considers an internal memory called COMS as depicted in Figure 17. It is added in order 
to avoid implementing hard synchronization constraints among the MS, DE, AE whenever information needs 
to be exchanged. In this way, the DE and AE can be more flexible in terms of the length of their processing 
without compromising the granularity at which the MS can sample monitoring data from the controlled 
systems. So, it is the MS (depending on its capabilities and amount of information as well as the granu larity 
set from an External User Interface (EUI)) that somehow defines how fast the data is sampled. Also the stored 
data includes predictions and decisions of AE and DE, respectively. This strategy enables a maximum of data 
reutilization and minimizes the measurement load.  

 

Figure 17. MonB5G MS with COMS 
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Figure 18. MS Request and metrics retrieval from Monitored Element 

 

As described thoroughly in D3.1 and showcased in Figure 18 , the MS measurement is also based upon the 
concept of dynamic Sampling Loops that provides a high degree of flexibility in the monitoring and reduces 
the resulting energy consumption. Advanced results will be provided in the final deliverable D5.2. 

6. Conclusions and next steps (EUR) 

In this deliverable, we summarized the activities conducted by the consortium on security management of 
network slices and energy efficiency. Although only seven months left from the beginning of the activities, 
many achievements have been made. First, we refined the security architecture derived from the reference 
architecture devised in WP2 to achieve Zero-touch security management. In addition, two representative 
use-cases of security attacks on network slices have been identified and detailed in order to illustrate how 
MonB5G AI-based components are used to identify attacks and mitigate them. Finally, the deliverable 
introduced the initial contribution on energy-efficiency in the context of 5G and beyond networks.  

As a perspective, we will continue refining the security architecture of MonB5G by relying on the outputs of 
the two considered examples, which will be defined further, particularly the AE/DE components and the Slice 
Orchestrator (SO). For the latter, a more dynamic role will be further explored and exploited to ensure a full 
distributed security management process.  

Finally, we will consolidate and evaluate the proposed energy-efficient mechanisms. 
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