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Me=n356G Consortium

MonB5G proposes a novel autonomic management and

orchestration framework, heavily leveraging distribution of
operations together with state-of-the-art data-driven Al-based

mechanisms.
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Men35G6 MonB5G Overview

 Vision: Hierarchical, distributed, scalable, and Al-based management
of a massive number of network slices across domains, towards zero-
touch management.

e Technical approach:

e Distribute the management functions over all entities in charge of
the Life Cycle Management (LCM) of network slices

* Delegate service-level management functions to be on-boarded within the
network slice

e Distributed closed control loops that assist the LCM entities with
state-of- the-art Al-based and data-driven mechanisms

* MS: Monitoring Systems; AE: Analytical Engine; DE: Decision Engine

* Two use-cases will be demonstrated
e Zero-Touch Network and service management with end-to-end SLAs
* Al-assisted policy-driven security monitoring & enforcement



Men35@ Project High-level vision

Centralized Element (Global Scope)
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H. Chergui, A. Ksentini, L. Blanco and C. Verikoukis, "Toward Zero-Touch Management and Orchestration of Massive
Deployment of Network Slices in 6G," in IEEE Wireless Communications, vol. 29, no. 1, pp. 86-93, Feb. 2022

Al-enabling Global scope closed loop



Men35@ Project High-level vision

Centralized Element (Global Scope) Al-enabled Global Scope control loop
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End-to-end Network Slice

8k-S specific components

10




M=n356 MonB5G: Main functional blocks

4 ) 4 )

Distributed Closed control loop (Data driven .
Management algorithms) Security and
& Energy
: itori : .. M t
Orchestration M: r;:ceor::g Analysis Decision maezzgi?;fnns
Architecture y Engine (AE) Engine (DE)

_ ) -l

(1) Distributed
monitoring

(2) Graph-based data
representation

N /

(1) Distributed Reinforcement
Learning for slice orchestration
(2) Data-driven inter-slice
management

Defining a scalable & Zero-touch
service management architecture
for massive network slice

(1) Distributed ML
(Federated Learning)
Distributed Inference

(1) Zero touch security management
architecture

deployment _ (2) Trust management
(1) Use-case refinement (2) Al-driven network fault (3) Al-based Security management
(2) AE/DE requirement MEIEEETIE. mechanisms
(3) Slice-level KPI
(3) KPI orediction (4) Al-based Energy management

mechanisms
11




Me=n35G Timeline
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M&=n35G

ITU-T SG13 Contributions

Orange Poland, in the name of the consortium has made
contributions and proposals to ITU-T
ITU-T: Contribution about MonB5G scalable architecture

ITU-T Study Group 13
Future Networks and emerging technologies

Questions: Q20,21/SG13

Question 21/13

Question 20/13 Networks beyond IMT-2020:
Networks beyond IMT-2020 and Network softwarization
machine learning: Including software-defined networking,
Requirements and architecture network slicing and orchestration

13
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ITU-T journal paper recently accepted!

ITUJournal FREE | FAST | FORALL

Future and evolving
technologies

Special issue
Integrated and
autonomous network
management and
control for 6G ,
time-critical applications

AI-DRIVEN PREDICTIVE AND SCALABLE MANAGEMENT AND
ORCHESTRATION OF NETWORK SLICES

Stawomir Kuklifiski'2, Lechoslaw Tomaszewski!, Robert Kolakowski'2, Anne-Marie Bosneag®, Ashima Chawla®,
Adlen Ksentini?, Sabra Ben Saad?, Xu Zhao®, Luis A. Garrido®, Anestis Dalgkitsis®, Bahador Bakhshi?, Engin
Zeydan”

'Orange Polska, Orange Innovation Poland, ul. Obrzezna 7, 02-691 Warszawa, Poland, ?Warsaw University of
Technology, Faculty of Electronics and Information Technology, ul. Nowowiejska 15/19, 00-665 Warszawa, Poland,
3Liricsson Ireland, Network Management Lab, Athlone, Co. Westmeath, N37PV44, Ireland, *Eurecom, Campus
SophiaTech, 450 Route des Chappes, 06410 Biot, France, SNEC Laboratories Europe, Kurfiirsten-Anlage 36, 69115
Heidelberg, Germany, Slquadrat Informatica, S.L, Carrer Doctor Rizal, 10, 08006, Barcelona, Spain, "Centre
Tecnologic de Telecomunicacions de Catalunya, Carrer Doctor Rizal, 10, 08006, Barcelona, Spain

NOTE: Corresponding author: Slawomir Kuklifiski, slawomir.kuklinski@orange.com

Abstract The Julure network slicing enabled mobile ecosystem is expected lo support a wide sel of helerogenous
vertical services over a common infrasiructure. The service robusiness and their intrinsic requirements together with
the heterogeneity of mobile infrastructure and resources in both technological and spatial demain significantly increase
the complerily and create new challenges reganding network management and orchestration. lHigh degree of automation,
Jlexibility and programmability are becoming the fundamental archilectural fealures to enable seamless support for the
modern lelco-based services. In this paper, we presenl a novel management and orchesiration platform for nelwork
slices, which has been devised by the Horizon 2020 MonB5C project. The proposed [mmework is a highly scalable
solution for nelwork slicing management and orchesiration that implements a distributed and programmable Al-
driven management architecture. The cognitive capabililies are provided at different levels of management hierarchy
by adopling necessary dala abstractions. Moreover, the [ramework leverages intent-based operalions Lo improve ils
modularily and genericity. The mentioned fealures enhance the management aulomalion, making the archilecture a
significant step lowards self-managed network slices.

Keywords 5G, 6G, Al, management, ML, network slicing, orchestration, ZSM
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M&n35G  Contribution

To deal with the FL resource provisioning task at the local analytic engines
(AEs), we formulate the corresponding SLA-constrained optimization problem
under the proxy-Lagrangian framework and solve it via a non-zero sum two-
player game strategy.

To ensure scalability under massive slicing, a novel SLA-driven stochastic FL
policy is designed. A subset of active AEs is selected in each FL round, based
on their violation rate (convergence time & communications overhead
improvement, energy efficiency).

Deploy the proposed solution in a containerized in a cloud-native
environment.

16



M&n35G Network model and dataset

! ' TRP
L i ((( l)) Feature Description
. ' : ; . Apple, Facebook, Facebook Messages,
) gé — ; 1 |MS#(Ln) | | AE# (1) *—IFﬁ% OIT Traffics Facebook Video, Instagram. NetFlix,
FLiggregation ™90 fomy g TPl Me— . e HTTPS, QUIC, Whatsapp. and Youtube
CU (1.n 'w CQI Channel quality indicator
AE#n (4.n) i s
‘e ((( ))) MIMO Full-Rank MIMO full-rank uvsage (%)
g . | # Users Downlink Average active users
L |MS #(Kn) | | AE # (Kan) '—|—L$
e fo Output Description
CU (K.n) | CPU Load CPU resource consumption (%)
Slice-level Edge : RAN

 6G RAN-Edge topology under per-slice CU/DU functional split. Each TRP co-located with
its DU.

 Each CU k (k=1,...,n) has a MS and an Al-enabled AE.

* Each CU performs data collection to build a local dataset D;, = {x,gi), y,gi)}?z"‘l of size Dy,.

 An OSS server (at the cloud) plays the role of the FL model aggregator.

 SLA is established between slice n tenant and infrastructure provider so that the CPU

resources not exceed [an, Bn] with a prob. higher than a threshold yn. .




Ma=N35G Resource Prediction under SLA

* Predict slice-level resource usage under SLA constraints,
* For each slice: Multiple decentralized AEs as per the architecture,
* Challenges:
e Extend federated learning framework to include SLA constraints
* Ensure local SLA per slice while using small decentralized local datasets

Global Federated Averaging algorithm (Server) Local Data-constrained Models (Clients)
* Average local models having the same * Local datasets
constraints (same slice) * Local constraints (e.g., congestion rate)

* Send updated global model to clients

Global AE/DE o




M&=N35G  Mini-Datasets and Settings

* 3slices:
 eMBB: NetFlix, Youtube and Facebook Video,
* Social Media: Facebook, Facebook Messages, Whatsapp and Instagram,
* Browsing: Apple, HTTP and QUIC.

* For each slice: 200 MS/AE instances (clients)

* Local mini-datasets of size = 1000 samples NIID

| Feawe | Descrpn

Includes the hourly traffic for the top OTTs: Apple, Facebook, Facebook Messages, Facebook

e e IR Video, Instagram, NetFlix, HTTPS, QUIC, Whatsapp, and Youtube

cal Channel quality indicator reflecting the average quality of the radio link of the TRP
MIMO Full-Rank Usage of MIMO full-rank spatial multiplexing in %

DLPRB lt;lll;r:kt;er of occupied downlink physical resource

CPU Load CPU resource consumption in %

RRC Connected Users Number of RRC users licenses consumed per eNB

19




M&=N35G  Statistical Federated Learning

* SLA: any assigned resource to the tenant should not exceed a range [«;,, £,]
with a probability higher than an agreed threshold y;,.

e This translates into learning the CPU resource allocation model under empirical
cumulative density function (CDF) constraints

 Amounts to solving the following local optimization task at FL round ¢t

D.L i

> ¢ (siin B (Wi Xkn) )

Hllﬂ
W“' DL )

1 N
). Z ! (HL PR ﬂ’-n) < Yn,

y'y T apoesy

Empirical CDF . Den
ka.n-"-fpk_ﬂ (-"3??] = Z I (y.{ijn > -'5”) E Tn

H. Chergui, L. Blanco and C. Verikoukis, "Statistical Federated Learning for Beyond 5G SLA-Constrained RAN Slicing," in
IEEE Transactions on Wireless Communications, March 2022. 20




Me=N35G  Statistical FL. Results (1/2)

e CPU load distributions

500 4
400+
T 300
=
U 2001
100 1

 cMBB
Social Media
Browsing
= ; T T T T
4 ] B 10 12 14 16 is
CPU Load (%)

o P

o

SR SR A S PR T B R L P S S R S

A T A T Gl AT R TS B g1 B T 3T gl TS T

Time

(a) CPU unconstrained distribution

1.0 : e e
‘-'-‘_-"-1' -
0.8 1
a
0 0.6
o
X
2 0.4
w
0.2 —8— cMBB
Social Media
004 Browsing
4 6 8 10 12 14
CPU Load (%)

H. Chergui, L. Blanco and C. Verikoukis, "Statistical Federated Learning for Beyond 5G SLA-Constrained RAN Slicing," in IEEE

(c) CPU unconstrained CDF
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(b) CPU constrained distribution
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Figure 4: CPU load distributions, with o = [0,0,0], 5 = [4,7,10] % and v = [0.01, 0.01, 0.01].

Trans. on Wireless Comm., March 2022.
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Me=N35G  Statistical FL. Results (1/2)

 CPU average SLA violation rate
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 Dramatic overhead reduction at convergence

Table I: Overhead and energy comparison

Rounds 50 60 70 80
Overhead CCL (KB) 18750

Overhead StFL (KB) 1055 1266 1477 1688
Energy CCL (md) 118.3

Energy StFL (mJ) 6.7 8 9.3 107
Energy Gain x17.8 x14.8 x12.7 X181

H. Chergui, L. Blanco, L. A. Garrido, K. Ramantas, S. Kuklinski, A. Kasentini, S. Kuklinksli, "Zero-Touch Al-Driven Distributed

Management for Energy-Efficient 6G Massive Network Slicing," in IEEE Dec. 2021.
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M&n35G  SLA-driven stochastic AE Selection Policy

SLA violation rate of Probability - selected AEs based on AR Tl AEY
each all AEs — % Distribution —ta Probability Distribution . kP |
M- ViEn Wini--1 MK n ' {ﬁE,nyﬂ' Ry o -'I'IL:E:'..r:l.--'-:-"l|'=:E:."f.1'|.-_II FL training

* GOAL: To ensure scalability under massive slicing, a novel SLA-driven stochastic FL
policy is designed.

* Based on the SLA violation rate, a subset of the m out of K AEs participate in the
training (each FL round)

e SLA violation evaluation in test mode:
D,

Vs = f)i Z 1 [(y,(:)n < aﬂ) U (y;(:z,l > Jn)}

T 3—1

* AEs with low SLA violation have higher probability to participate in the FL round
(softmin-based policy)

* The trained model is broadcast to all AEs
23




M&n35G  SLA-driven stochastic AE Selection Policy

SLA violation rate of Probability - Selected AEs based on
each all AE=s »  Diztrbution Ly Probabifity Distribution
Hlor---s VR n Wins-+1 MK n : {-"TE,nju-_—ﬂK.n AE"-.HE"'-.‘

AEx o} FL training

AR

i

Alt]
AR

o e R

..............................

e SLA violation evaluation in test mode:

D
= (i (i
o =2 31 (8 <) U (i
Dn i=1

y =
W

=
N

* A subset of the m out of K AEs participate in
each FL round.

* AEs with a low SLA violation have a higher
probability to participate in the FL round
(softmin function)

S. Roy, H. Chergui, L. Sanabria-Russo and C. Verikoukis, "A Cloud Native SLA-
Driven Stochastic Federated Learning Policy for 6G Zero-Touch Network
Slicing," IEEE ICC 2022.

Algorithm 1: SLA-Driven Stochastic Federated Learn-
ing Policy.

Input: K, m, n», T, L. # See Table II

parallel for Kk =1,..., K do

# Calculate SLA based wiolation rate

AE (k,n) calculates vy, , according to 4 and reports it to the
aggregation server

end parallel for

# Federated Learning

# Server generates probability distribution
using Softmin function

forde=1, K .rl{n }
eXpi—Vi.n
W e M)
kn — K exp{—v )’ i
end

Server initializes W%D) with initial training parameter
fort=0,...,T —1do

# Server selects the m AEs ID using
np.random.choice

AEk’in? - !AEktm o {7'-1:”-! - TKn |
AEin,...,ABg n

Server broadcasts W (%) to the m selected AEs
parallel for k € {k;,...,km]} do

# Local epochs

for{=0,...,L—1do

and get Wy
end
refurn WE:?” = WJ\:,L_]_
Each local AE k sends Wiﬂ to the aggregation server.

T
end parallel for
# FL Server Aggregation
D n yx7 ()

(t+1)
return W, = Eke{kl,‘...km} T el
Broadcasts W,(f""” to all K AEs.

end

Solve the proxy-Lagrangian game between £__ (¢, and £y

24



M&n35G  Docker Implementation. Architecture

e AEs simultaneously run by using Docker compose tool.

 Through REST API, the FL Server and AEs (clients) can communicate with
each other.

* FastAPIl as a REST APl is used in our implementation because it is a modern,
open-source, fast, and highly performant Python web framework used for
building Web APIs.

: FL Server
& (Docker Container)

REST API

Py
\ - FL Agents
i | (Containers)
Client K-1 ClientK
!
(Participated)

25




M&=N35G  Docker Implementation: Communication process

Server (4 APIs):
* POST/client: Registering clients with the Server. Admin
(from Client to Server)
*  GET/select client: Initiate policy for selecting
clients and corresponding FL training. (from
Admin to Server)
* POST/SLA: Clients send their SLA violation rate to
the Server node. (from Client to Server) ey |
* PUT/model-weights: Clients send calculated et | """"""""
model parameters to the Server node. (from ‘ H ——
L | J e HJ | (Containers)

4 FL Server
| (Docker Container)

. RESTAPI

Client to Server)
Client (3 APIs):

*  PUT/SLA: Server requests each of the clients to & as,....As{, @eeced

calculate their SLA violation rate. (from Server to
Client)
*  POST/training: Server requests the selected
clients to start FL training with new model
weights. (from Server to Client)
* PUT/worker model: Update client initial model
parameters. (from Server to Client) 26



M&n35G  Docker Implementation. Workflow

STEP 1: REGISTRATION: All clients register with their IP address in the server node using
POST/client request.

STEP 2: START: After registration, server sends a request to all the registered clients to
start the client selection process through POST/select-client request.

STEP 3: COMPUTE SLAs: All clients compute and send their SLA violation rate to the
server through PUT/SLA & POST/SLA.

STEP 4: COMPUTE PROB. DISTRIBUTION: Server generates the probability distribution
of the clients using the softmin function and selected clients using np.random.choice.

STEPS 5-6: TRAINING: Server sends POST/training requests to the selected clients and
start FL training.

STEPS 7-8-9: COMPUTE & UPDATE WEIGHTS: Model weights of each selected client are
sent to the server through PUT/model-weights, and then Server averages the weighs

and update the weights of the clients using PUT/worker-model & repeat same
procedure next FL rounds (GO TO STEP 3).

27



M&n35G  Docker Implementation Workflow

L

@ Calculate

Selected
Clients

AGGREGATION
SERVER

(@) REGISTER

@ SLA Violation

— h

%l

@ TRAINING

(Selected
Clients)

@ MODEL

WEIGHTS

@ Update
Weights

LOCAL
TRAINING
(Selected
Clients)

__________________

SELECTED AEs
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M&n35G  Scalability

Marmalized MSE

e Select 25 AEs out of (40, 50)

204 —8— eMBB_with _policy —e— Simulated with policy
=8 Social Media_with_policy 20004 . ~~ Emulated 50 clients_with_policy
L894—m ' [ Browsing_with_policy =p— Ermulated 40 clients_with_policy
—&- eMBE without_paolicy —@— Emulated 50 clients_without policy
1.6+ l‘ T [ —- Social Media_without _policy 1500 - |
s § ¥ X
5 w= Browsing without polic
1LA4—— W - 2 ot @
g
s 1000 +-
500
04—
T T I ! I ! ! T T T T T T T
o 5 10 15 20 25 30 0 5 10 15 20 25 30
Rounds Rounds
Faster convergence Scalability

S. Roy, H. Chergui, L. Sanabria-Russo and C. Verikoukis,

"A Cloud Native SLA-Driven Stochastic Federated

Learning Policy for 6G Zero-Touch Network Slicing," IEEE ICC 2022.
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Me=Nn35G S|A

* Select 50 AEs out of 100 (Simulated)
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Men35G  Visualization Setup

% kaika AGGREGATION . :

e SERVER
.
logstash Log Transformer

kibana

elasticsearch
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Mz=n356 Demo and Kibana Dashboard

© M
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Dashboard = Editing monb5g-to-visualization

Mi=N35G

[monb5G-to-visualization] Count Clients @

20 20

No Policy (w/ 20-20) - # of Clients Policy (w/ 20-15) - # of Clients

20 15

No Policy (w/ 20-20) - Selected # of Clients Policy (w/ 20-15) - Selected # of Clients
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Mz=n356 Kibana Dashboard

[monb5g-to-visualization] NMSE [eMBB Slice] @ :
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Mz=n356 Kibana Dashboard
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Me=n35G Kibana Dashboard & Overhead

* Uplink Overhead = # FL Rounds x # Selected Clients x # Weights x # 32 bits
Convergence at round 21 (SLA violation reaches 0.01 and Loss variation is low)
->
e Policy uplink overhead is = 30.2 KB
* No Policy FL uplink overhead is = 40.3 KB
* Reduction in overhead compared to non-policy FL (or vanilla/traditional FL)
=> %25

[monb5g-to-visualization] Violation Rate [eMBB slice] @

0.4 @ No Policy (w/ 20-20)
@ Policy (w/ 20-15)

Convergence point

Average Violation Rate

22
2
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