

 871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.2
Final Report on AI-driven Techniques for the

MonB5G Decision Engine

Document Summary Information

Grant Agreement No 871780 Acronym MonB5G

Full Title Distributed Management of Network Slices in beyond 5G

Start Date 01/11/2019 Duration 42 months

Project URL https://www.monb5g.eu/

Deliverable D4.2 – Final report on AI-driven techniques for the MonB5G Decision Engine

Work Package WP4

Contractual due date M31 Actual submission date 30.06.2022

Nature Report Dissemination Level Public

Lead Beneficiary ORA-FR

Responsible Author Fabrice Guillemin (ORA-FR)

Contributions from Luis Blanco (CTTC), Farhad Rezazadeh (CTTC), Engin Zeydan (CTTC), Hatim
Chergui (CTTC), Josep Mangues (CTTC), Sarang Kahvazadeh (CTTC), Fabrice
Guillemin (ORA-FR), Sławomir Kukliński (ORA- PL), Robert Kołakowski (ORA- PL),
Rafał Tępiński (ORA-PL), Michał Rosiński (ORA-PL), Jerzy Jegier (ORA-PL),
Thrasyvoulos Spyropoulos (EUR), Pavlos Doanis (EUR), Adlen Ksentini (EUR),

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 2

Lanfranco Zanzi (NEC), Francesco Devoti (NEC), Mohamed Rahali (b<>com),
Anestis Dalgkitsis (IQU), Anne Marie Bosneag (LMI), Ashima Chawla (LMI)

Revision history

Version Issue Date Complete (%) Changes Contributor(s)

V0 June 13, 22 60% Compilation of the contribution ORA-FR

V1 June 15, 22 80% Integration of the different
contributions

ORA FR, CTTC, ORA-PL, EUR,
IQU, LMI, NEC,
b<>com

V2 June 20, 22 90% Stable version ready for
reviewing

ORA FR, CTTC, ORA-PL, EUR,
IQU, LMI, NEC

V3 June 27, 22 99% Version for final polishing ORA FR, CTTC, ORA-PL, EUR,
IQU, LMI, NEC

V4 June 29, 22 100% Final version ORA FR, CTTC, ORA-PL, EUR,
IQU, LMI, NEC

Disclaimer

The content of the publication herein is the sole responsibility of the publishers, and it does not necessarily
represent the views expressed by the European Commission or its services.

While the information contained in the documents is believed to be accurate, the authors(s) or any other
participant in the MonB5G consortium make no warranty of any kind regarding this material including, but
not limited to the implied warranties of merchantability and fitness for a particular purpose.

Neither the MonB5G Consortium nor any of its members, their officers, employees, or agents shall be
responsible or liable in negligence or otherwise howsoever in respect of any inaccuracy or omission herein.

Without derogating from the generality of the foregoing neither the MonB5G Consortium nor any of its
members, their officers, employees, or agents shall be liable for any direct or indirect or consequential loss
or damage caused by or arising from any information advice or inaccuracy or omission herein.

Copyright message

© MonB5G Consortium, 2019-2022. This deliverable contains original unpublished work except where clearly
indicated otherwise. Acknowledgement of previously published material and of the work of others has been
made through appropriate citation, quotation, or both. Reproduction is authorised provided the source is
acknowledged.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 3

TABLE OF CONTENTS

List of Figures ... 6

List of Tables .. 9

List of Acronyms ..10

1 Executive summary ...13

2 Introduction and Problem Scope ...15

2.1 Problem Scope ..15

2.2 Deliverable Scope ...16

2.3 Outline and focus ...16

3 Positioning of the DE in the MonB5G architecture ..19

3.1 Generic Description ..19

3.1.1 zsm closed loop control...19

3.1.2 DECISION ENGINE IN THE MONB5G ARCHITECTURE ..20

3.2 Interfaces ...22

3.3 Cross-Domain Operations ...24

4 Slice Admission Control ..27

4.1 Introduction ...27

4.2 Heuristically assisted DRL for slice placement ..27

4.2.1 Problem description ..27

4.2.2 SOLUTION TOOL ..31

4.2.3 Fit into the de distributed architecture ...34

4.2.4 Validation results ..34

4.3 Time-of-day aware slice admission control ...36

4.3.1 TASAC concept description ..38

4.3.2 TASAC algorithm ...39

4.3.3 TASAC simluation results ...42

5 Intra-slice Orchestration ...47

5.1 Introduction ...47

5.2 SCHEMA: Service Chain Elastic Management with Distributed Reinforcement Learning47

5.2.1 Problem description ..47

5.2.2 Solution tool ...47

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 4

5.2.3 Fit into the de distributed architecture ...50

5.2.4 Validation results ..50

5.2.5 Monb5g related checkboxes/kpis ..53

5.3 SafeSCHEMA: Multi-domain Orchestration of Slices based on SafeRL for B5G Networks53

5.3.1 Problem description ..53

5.3.2 Solution tool ...53

5.3.3 Fit into the de distributed architecture ...57

5.3.4 Validation results ..57

5.3.5 Monb5g related checkboxes/kpis ..60

6 Inter-slice Orchestration ...61

6.1 Introduction ...61

6.2 Independent DQN agents for end-to-end slice reconfiguration ...61

6.2.1 Problem description ..62

6.2.2 Solution tool ...65

6.2.3 Fit into the de distributed architecture ...68

6.2.4 Validation results ..69

6.2.5 Monb5g related checkboxes/kpis ..73

6.3 Specialization of FDRL Agents for Scalable RAN Slicing Orchestration ...73

6.3.1 Problem description ..73

6.3.2 A MULTI-AGENT ARCHITECTURE FOR RAN RESOURCE ALLOCATION ...75

6.3.3 Local RAN slicing via DDQN agents ..76

6.3.4 Federated DRL for RAN slicing ...79

6.3.5 Dynamic Traffic-Aware Agent Selection ...79

6.3.6 Validation RESULTS ...81

6.4 Statistical methods for VNF bottleneck localization ..85

6.4.1 Problem description ..85

6.4.2 Solution tool ...86

6.4.3 KRS: Kubernetes Resource Scheduler for resilient NFV networks ...87

6.4.4 Validation results ..90

6.4.5 Monb5g related checkboxes/kpis ..91

7 Control loops coordination ...92

7.1 Introduction to control loops ..92

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 5

7.2 Example instantiation of the Coordination Framework ...94

7.3 Fisher Market Model ..95

7.4 The HFMM algorithm ..96

7.5 HFMM BEHAVIOUR EXAMPLE ...98

7.6 Final remarks concerning the Coordination Framework .. 100

8 Conclusions .. 101

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 6

List of Figures
Figure 1: Block diagram of a closed loop in the ZSM framework. ... 19

Figure 2. Generic structure of MonB5G single domain slice (composed of SFL and SML). It shows the MonB5G DE
Positioning with MS, AE and ACT. .. 21

Figure 3. Interfaces between the different triplet MS-AE-DE elements and the actuators. ... 23

Figure 4. MS/AE/DE triplet instances at different technological domains .. 25

Figure 5. Distributed sliced MonB5G Architecture with multiple domains and slices. ... 25

Figure 6. Physical Substrate Network (PSN) ... 28

Figure 7. Execution times of the algorithms. .. 31

Figure 8. Blocking rates and data center resource consumption. ... 31

Figure 9. Architecture of the algorithm (initial DRL and enhanced DRL accounting of the network state). 32

Figure 10. DRL (based on A3C algorithm) and eDRL applied to slice placement. ... 33

Figure 11. Heuristically Assisted DRL algorithm. .. 33

Figure 12. HA-DRL (the Z function is modified by the heuristic). ... 34

Figure 13. Slice acceptance ration for HA-DRL, DRL and the heuristic. ... 35

Figure 14. Acceptance ratio of the algorithm in case of load increase at training episode 108. .. 36

Figure 15 Time-of-day traffic curves for several areas (example) ... 37

Figure 16: Concept of ToD aware Slice Admission (TASAC). ... 38

Figure 17 High-level concept of DQN ... 40

Figure 18 Real (a) and predicted ToD curve (b) of the eMBB traffic.. 43

Figure 19 DQN-based slice admission (not aware of ToD) ... 43

Figure 20 TASAC-based slice admission (ToD aware) ... 44

Figure 21 Comparison of a number of slice admissions during the period of two weeks: low resource pool Rl (left), large
resource pool Rs (right) ... 44

Figure 22. Comparison of resources utilisation during the period of two weeks: low resource pool Rl (left), large resource
pool Rs (right) .. 45

Figure 23. Comparison of exceeded bandwidth during the period of two weeks: low resource pool Rl (left), large resource
pool Rs (right) .. 45

Figure 24. The Auction Mechanism architecture ... 49

Figure 25. Performance of SCHEMA (service latency and rejection ratio)... 51

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 7

Figure 26. SCHEMA compared with other algorithms (latency). ... 52

Figure 27. SCHEMA performance (occupancy and migration). ... 52

Figure 28. SafeRL-based local domain architecture. ... 54

Figure 29. Overview of the multi-domain and distributed Auction Mechanism. .. 56

Figure 30. Performance of SafeSCHEMA (service latency). .. 58

Figure 31. SafeSCHEMA (slice latency). .. 59

Figure 32. Comparison of SafeSCHEMA with other algorithms. ... 60

Figure 33. Graphical Illustration of the system model ... 63

Figure 34. Link to MonB5G architecture... 69

Figure 35. Convergence speed comparison for IDQN, DQN and QL algorithms (scenario 1 - small scale problem). 70

Figure 36. Cost comparison of (D)RL algorithms with optimal and baseline policies (scenario 1 - small scale problem) 71

Figure 37. Convergence speed comparison for IDQN and DQN algorithms (scenario 2 - larger scale problem). 72

Figure 38. Cost comparison of IDQN with baseline policies (large scale scenario). ... 73

Figure 39 Federated DRL architecture for RAN slicing. ... 75

Figure 40 Illustration of DDQN workflow. ... 78

Figure 41 Comparison between Euclidean distance and Dynamic Time Warping distance over traffic demand time series. .. 80

Figure 42. The convergence performance of different local decision algorithms and an FDRL approach for a single decision
agent. .. 82

Figure 43. Comparison of global performances for different dynamic and non-dynamic federation approaches. 83

Figure 44. Communication overhead per federation episode for different federation strategies (top-part) and for different
number of BSs deployed (bottom-part). RR and BR federation strategies are referred as Representative. 84

Figure 45 Service Function Chaining architecture... 85

Figure 46 : Solution deployment and call flow. ... 86

Figure 47. Kubernetes cluster components .. 87

Figure 48: Different CNF deployment configurations ... 88

Figure 49: Comparing the accumulated penalty for KRS and the best effort Kubernetes mode for different node number in the
cluster ... 91

Figure 50: Comparing the computing time for KRS and the best effort Kubernetes mode for different node number in the
cluster ... 91

Figure 51. Example of conflicts of DE-driven functions (a) and the proposed approach to Functions coordination (b)........... 93

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 8

Figure 52. A generic message exchange chart between FC and CAs .. 94

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 9

List of Tables

Table 1. Summary of each chapter’s content in this deliverable. .. 17

Table 2. DE interfaces and the associated roles ... 24

Table 3. Parameters for TASAC. ... 42

Table 4. List of main used variables .. 89

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 10

List of Acronyms

Acronym Description
3GPP Third Generation Partnership Project

AE Analytic Engine

AE-F Analytic Engine Function

AE-S Analytic Engine Sublayer

AI Artificial Intelligence

CLA Closed-loop Automation

CNF Cloud Native function

DE Decision Engine

DE-F Decision Engine Function

DE-S Decision Engine Sublayer

EEM Embedded Element Manager

eMBB Enhanced Mobile Broadband

eTOM Enhanced Telecom Operations Map

ETSI European Telecommunications Standards Institute

ECA Event Condition Action

ENI Experiential Networked Intelligence

FCAPS Fault, Configuration, Accounting, Performance, Security

ISM In-Slice Management

ITU International Telecommunication Union

KPI Key Performance Indicator

LCM Lifecycle Management

ML Machine Learning

MANO Management and Orchestration

MaaS Management as a Service

MAN-F Management Function

mMTC Massive Machine Type Communications

MEO MEC Orchestrator

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 11

MNO Mobile Network Operator

MLaaS MonB5G Layer as a Service

MS Monitoring System

MS-F Monitoring System Function

MS-S Monitoring System Sublayer

MEC Multi-access Edge Computing

NFVO Network Function Virtualization Orchestrator

NSD Network Service Descriptor

NSO Network Service Orchestrator

NSP Network Service Provider

NSI Network Slice Instance

NSMF Network Slice Management Function

NSSMF Network Slice Subnetwork Management Function

NST Network Slice Template

NSSI Network sub-Slice Instance

NGMN Next Generation Mobile Networks

NFVI NFV Infrastructure

OAI Open Air Interface

ONAP Open Network Automation Platform

OSM Open-Source MANO

OSS Operation System Support

PaaS Platform as a Service

PoC Proof of Concept

QoE Quality of Experience

QoS Quality of Service

RAN Radio Access Network

SON Self-Organizing Network

SLA Service Level Agreement

SFL Slice Functional Layer

SML Slice Management Layer

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 12

SM Slice Manager

uRLLC Ultra-Reliable Low-Latency Communication

VIM Virtual Infrastructure Manager

VNF Virtual network Function

VNFM Virtual network Function Manager

ZSM Zero-touch network and Service Management

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 13

1 Executive summary
Decision Engine (DE) is one of the key elements of the closed-control loop devised in the MonB5G project
aiming at achieving zero-touch management of a massive number of network slices in Beyond 5G networks.
DE oversees the decision-making process of the closed-control loop, mainly using AI and relying on the
Analytical Engine (AE) inputs during the Lifecycle (LC) of network slices. WP4 is dedicated to studying and
devising distributed and scalable AI-Driven algorithms for DE to manage a massive number of network slices.
This deliverable contains a final version of the devised DE algorithms that either complements and improves
the initial versions introduced in D4.1 or introduces new algorithms. It is worth noting that we improved D4.1
solutions by putting efforts toward covering not only a single domain but multiple technological and
administrative domains and improving the scalability of the different solutions. We also added a new
algorithm that particularly focuses on DE conflict resolution.

This deliverable comprises five key parts that summarize the achievement of tasks T4.1, T4.2, and T4.3. The
integration and implementation results will be presented in a separate document D4.3. However, initial
performance evaluation results of the different schemes and algorithms are also included in this deliverable.

The first part of this deliverable details and recalls the role of the DE in the MonB5G architecture, particularly
focusing on the specifications, functions, interfaces, and cross-domain operations. It is important to
understand the interaction, particularly how DE communicates with the AE, Monitoring System (MS), and
other DE to achieve decentralized management. Indeed, one of the key achievements in this deliverable is
the distributed AI-driven solutions, which in addition to the algorithmic part, need communication interfaces
across domains to ensure the end-to-end DE.

The second part is dedicated to admission control algorithms that can support massive numbers of slice
arrival events. Admission control is a vital function of the LC Management (LCM) of network slices as it allows
managing the resources efficiently while guaranteeing SLA. Knowing the diversity of slice types, the
complexity of VNF/PNF chain configuration and placement options, and the inherent uncertainty in future
slice requests, we explored in MonB5G solutions that are model-free and based on both regular and deep re-
enforcement learning. We aim at maximizing the number of co-existing slices while minimizing SLA violations.
In D4.1, we have devised algorithms for admission control based on Deep Q-reinforcement Learning (DQL)
and Regret Machine (RM) solution for RAN and Cloud domains, while we identified several potential
algorithms for slice component placement. In D4.2, we introduce two other slice admission approaches. The
first one is based on Deep Reinforcement Learning (DRL) approach, which has been combined with a heuristic
to reduce the learning period of the DRL. The second solution is based on the Time-of-Day (ToD) traffic curve
that reflects the human activity, which has been used to predict eMBB and use a DQL for admission control.

The third part is devoted to intra-slice orchestration consisting of intra-slice reconfiguration and resource
allocation. In D4.1, we devised solutions by organizing them into (i) domain-specific, such as VNF
configuration, reconfiguration, and migration; (ii) cross-domain, such as e2e VNF and slice placement using
multi-agents Reinforcement Learning (RL). Unlike D4.1, where we focused mainly on domain-specific
solutions, in this deliverable, we envision particularly cross-domain solutions. To this end, we devised a
solution for service chain management in a multi-technological domain using a Distributed RL algorithm.

The fourth part concerns the inter-slice orchestration that lies at a level above its intra-slice counterpart and
requires a wider picture of the network and its performance. In D4.1, we presented the first algorithmic

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 14

approaches, focusing mainly on domain-specific inter-slice orchestration. The proposed solutions included a
RL algorithm for VNF placement and reconfiguration, a Multi-Armed Bandit algorithm for RAN resource
allocation, and a probing scheme for VNF bottleneck localization. In D4.2, we build on to either provide
extensions to the solutions of D4.1 (aiming mainly at increasing their scalability and at supporting many slices)
or to apply them in more practical use cases. More specifically, we extended from D4.1: (i) the VNF placement
and migration algorithm; (ii) the RAN resource allocation algorithm; (iii) the probing scheme for VNF
bottleneck localization.

The final part of the document is dedicated to a new challenge that was not integrated in D4.1, which is
related to the control loops coordination. This issue arises when different functions (or sometimes DE) are
trying to optimise a single goal, which can lead to suboptimal results or chaotic system behaviour. To this
end, we devise a novel coordination framework compliant with the MonB5G architecture that aims at
predicting reconfiguration’s impact and hence generating recommendations to minimise conflicts related to
network or slice configuration parameters.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 15

2 Introduction and Problem Scope

2.1 Problem Scope
MonB5G proposes a fully data-driven decision engine and algorithm stack. Recent works and related EU
projects addressing the introduction of AI solutions into the 5G/B5G architecture, either focus primarily on
data analytics or target specific components of the orchestration architecture in a piecemeal fashion. In
contrast, MonB5G explores data-driven algorithms as a key element of all slice lifecycle management
operations, from admission control, to scaling and migration operations both for a specific slice (“intra-slice
operation”) involving one or more technological (e.g., RAN, MEC, core, cloud) and/or administrative domains,
to end-to-end orchestration operations involving a large number of such slices (“inter-slice operation”). The
Decision Engine (DE), the main architectural component targeted by WP4, has as its main objective to react
to sophisticated KPI predictions or anomalies reported by the AE (and sometimes directly connected to the
Monitoring System, e.g., for training), to both improve the network resource usage (across all slices) and (and
perhaps more importantly) to meet the diverse Service Level Agreements (SLAs) per slice.

The MonB5G architecture (and its WP4 solutions) brings several important innovations:

First, the DE architecture is designed to be flexibly distributable across different administrative domains,
technological domains, and even fine granularities such as one DE per tenant, slice, or even VNF (virtual
network function). Flexible distribution means that the proposed DE can operate in different configurations
as needed. In the solutions provided in this project, we will encounter algorithms that fit a hierarchical DE
implementation, where a “central” DE (e.g., in the cloud or core domain) has control over different “edge”
DEs that are (partially) responsible for different RAN domains, edge clouds (e.g., MEC), etc., or even slice-
specific DEs, as mentioned earlier, all working toward optimal lifecycle management of slices that span all of
these domains. We will also see solutions consisting of multi-agents facilitated by even more decentralized
(or federated) distribution of DEs across domains and/or components.

Second, another important innovation compared to most existing approaches is that the solutions proposed
in MonB5G WP4 can orchestrate slices consisting of multiple VNFs across different technological (and even
administrative) domains. Equally important, the solutions described can handle diverse service level
agreements with sophisticated end-to-end KPIs (e.g., end-to-end delay constraints across an entire, complex
VNF graph).

Third, while several recent works have addressed data-driven solutions for 5G analytics and sometimes slice
orchestration, the solutions described in this deliverable go beyond the state-of-the-art both in terms of (i)
improving the performance of previously proposed data-driven algorithms for such tasks and (ii) distributing
the components of the data-driven algorithms (e.g., multi-agents) or even the components of the neural
network architecture (Distributed DNNs). If DE algorithms are located as close as possible to the network
components for which the decisions are made, decision latency can be significantly improved, especially for
tasks that operate at a much smaller time granularity (e.g., RAN) than traditional data-driven systems (e.g.,
application-level image classification). At the same time, the amount of information that needs to be
collected and transported over the network to enable the intensive use of modern data-driven algorithms is
orders of magnitude larger. Finally, if the trained model used is very large (e.g., modern deep neural network

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 16

architectures used for sophisticated ML tasks, may have millions of trained weights), distributing the actual
model across local DE components is a necessity for B5G architectures.

2.2 Deliverable Scope
This deliverable D4.2 describes progress on Tasks 4.1, 4.2, and 4.3 related to distributed slice lifecycle
management, beyond the preliminary work documented in the deliverable D4.1 and presented during the
midterm review. As planned, our results for Task 4.4 will be documented in a separate, future deliverable
D4.3. In this second and final part of the MonB5G effort to develop algorithms for the Decision Engine, we
have focused our efforts on several key dimensions, considering the suggestions of midterm reviewers:

From single domain to multi-domain solutions: A large portion of the solutions presented in D4.1 worked with
slices that involved a single administrative or even technological domain. We have endeavoured to extend
all the solutions presented in this new deliverable to either support multiple domains or to be
integrable/interoperable with other algorithms covering other domains.

Improved and measurable scalability: We have already documented in DoW why Decision Engine distribution
(and associated algorithms) improves the scalability of baseline/existing orchestration solutions. We have
also provided preliminary validations of our algorithms in D4.1 that support these claims to some degree.
Nevertheless, in this second phase of the project, we have made significant effort to both significantly
improve the scalability of our solutions and clearly validate the scalability of each solution using simulation
scenarios designed to demonstrate this scalability against well-defined baseline solutions.

Integration/Interoperability of different solutions: Although the actual integration is part of Task 4.4, we have
taken initial steps to integrate and/or complement a subset of the proposed algorithms (while also fostering
collaboration between partners). Examples include the SafeRL-based extension of the Schema algorithm
presented in Chapter 5, the multi-agent algorithm from Chapter 6, and the “umbrella” decision conflict
resolver from Chapter 7.

Algorithmic improvements: In addition to the above dimensions, we have improved several the algorithms
proposed in D4.1 in terms of scalability (as mentioned), SLA performance, convergence, etc., but also
introduced some new algorithms.

2.3 Outline and focus
The deliverable begins with an elaboration of the proposed (distributed) Decision Engine (Chapter 3), focusing
on intra-DE interfaces and the interfaces with the Monitoring System (MS) and AE. It continues with three
chapters (Chapters 4-6), each presenting an example of complete algorithms for Tasks T4.1, T4.2 and T4.3.

Specifically, Chapter 4 presents two schemes for slice admission control, the subject of Task 4.1: (i) the
evolution of a multi-domain data-driven scheme, originally documented in D4.1 that combines both modern
Reinforcement Learning (RL) methods and integer program solving techniques to address the problem; (ii) a
new admission control scheme that also introduces a type of “calendaring” and attempts to exploit the
periodicity of human activity (and associated traffic).

We then move to Chapter 5, which deals with intra-slice management (the topic of Task 4.2), e.g., how to
scale up or down the resources of a slice, or migrate the VNFs of a slice chain, in a distributed manner to

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 17

satisfy different types of SLAs, using data-driven mechanisms. These solutions not only consider the current
slice and network status (e.g., via MS and AE), but also optimally consider future evolution. We first describe
the evolution of our previous solution, SCHEMA, focusing on the various improvements that have been made.
We then propose an important extension of this algorithm, SafeSCHEMA, which gracefully integrates the
important SafeRL framework into the scheme to operate in scenarios where the natural tendency of RL
algorithms to explore “any” possible (slice) configuration might be forbidden (or prohibitively expensive) and
therefore the exploration/exploitation components need to be protected.

In Chapter 6, we go a step further and present some algorithms that deal with related reconfigurations and
scaling events when multiple slices, possibly belonging to different tenants, overlap (partially or completely)
across domains (the topic of Task 4.3). Specifically, we first document how our inter-slice VNF placement and
migration algorithm, originally demonstrated for one domain in D4.1 has been extended as follows: (i) it now
supports multiple VNFs per slice, i.e., an arbitrary, probabilistic VNF graph (which also allows for loops); (ii)
various realistic end-to-end performance metrics for the average flow served by such a VNF graph can now
be supported; (iii) a multi-agent solution where a DE (agent) is located at each slice (or even at each VNF of
a slice) radically improving the scalability of the scheme as the number of slices (or VNF host sites) increases,
while still maintaining near-optimal performance.

Finally, Chapter 7 deals with the very important topic of DE conflict resolution. This is a subject of the
overarching algorithms (and DE components) of all Tasks 4.1, 4.2, and 4.3, and proposes a solution to resolve
potential disagreements between the various (local) DEs that might otherwise destabilize the system and
lead to oscillations or crushing.

In Table 1, we summarize the topic of each chapter and how it relates to the WP4 tasks.

Table 1. Summary of each chapter’s content in this deliverable.

Chapter Description Task(s) Starting
Month

2 Problem and deliverable scope and outline T4.1 – T4.3 M7

3 Decision engine architecture evolution T4.1 – T4.3 M7

4
Describe progress in admission control algorithms, both
evolution of already presented ones, as well as new ones T4.1 M7

5 Describe progress in intra-slice orchestration algorithms T4.2 M7

6 Describe progress in inter-slice orchestration algorithms T4.3 M7

7 New work on DE conflict resolution T4.1-T4.3 M7

Finally, we would like to point out that we have chosen to present each algorithm in each of these chapters
in the following format to better focus the reader’s attention on the key messages.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 18

Problem Setup: Each algorithm presented first introduces the detailed problem it is working with. This
subsection helps to clarify: (i) the assumed slice model, (ii) the targeted KPIs or SLAs, (iii) the control variables
of the problem, i.e., what configurable system “knobs” the algorithm is trying to choose; examples of control
variables are resources allocated to specific VNFs (e.g., RAN resource blocks, CPU cores), locations where
slice components (e.g., VNFs) could be placed, etc., and (iv) what kind of additional constraints (in the state
or action space) the problem might impose. Here we also discuss some recent related work per solution.

Solution Methodology: For each algorithm, we then present the solution methodology. In other words, we
describe what kind of tool(s) the algorithm uses to solve the above problem. The tools presented in the
context of the different algorithms include modeling tools (e.g., Markov Chains) as well as optimization tools
such as (Deep) Reinforcement Learning, Online Convex Optimization (e.g., multi-armed bandits), discrete
optimization solvers, etc. The goal is to address both the “why” (this algorithm was chosen for the problem)
and the “how” (algorithm variation, parameter tuning, etc.)

Scalability Validation: In this second phase of the project, we have made significant efforts to both improve
the scalability of our solutions and, perhaps more importantly, to validate and demonstrate that scalability
against well-motivated baselines.

Positioning in the architecture of Decision Engine: In this subsection, we attempt to give an initial idea of
the position of each of the algorithms discussed within the architecture of decision engine. We briefly address
whether the DE implementation implied by the algorithm is hierarchical or more decentralized, what domains
the algorithm covers, and what DE granularity is required (e.g., per BS, per slice, per VNF, etc.).

MonB5G checklist) Finally, we provide a summary of the important MonB5G goals that the specific algorithms
help to achieve, be it distributed operation, latency reduction, convergence speed improvement, types of
data-driven algorithms promised, etc.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 19

3 Positioning of the DE in the MonB5G architecture
The goal of this section is to provide an overview on the MonB5G architectural elements described in [2]
related to the decision engine (DE) and the data-driven decision schemes. This section discusses the Decision
Engine specifications, functions, interfaces, and cross-domain operation. It starts by positioning DE in the
MonB5G architecture and presenting its relation to the other elements of the Monitor-Analyze-Plan-
Execute (MAPE) framework, i.e., the Monitoring System (MS), the Analytic Engine (AE), as well as the
Actuators (ACT). The proposed framework is in line with the recently proposed ETSI ZSM closed loop
automation architecture [1]. The section continues with a thorough description of the different DE
interfaces, either within the slice or with other external elements of the MonB5G distributed architecture,
providing a description of the blocks of the DE in a generic way, which can be instantiated differently
depending on the target scope of analysis (domain, slice, or network function). The section then moves to
show how the distributed architecture of MonB5G can be harnessed for decentralized data-driven decision
making, either intra-domain or cross-domain, involving the end-to-end Decision Engine or the local DEs. This
will be illustrated further through the practical DRL algorithms described in Sections 4-6 to reveal the nature
of cooperation between the different DEs.

3.1 Generic Description
3.1.1 ZSM CLOSED LOOP CONTROL
ETSI has recently proposed some insights on the Zero-touch Service Management (ZSM) framework for Closed
Loop (CL) management automation [1]. CLs may exist in each of the management domains of the ZSM
architecture. Figure 1 presents the CL functional scheme, in which the ‘Decision’ stage plays a key role. The
aim of this section is to briefly present the ZSM framework proposed by ETSI and link it with MonB5G DE.

Figure 1: Block diagram of a closed loop in the ZSM framework.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 20

This Figure is composed by four stages besides the ‘Knowledge’ functional block. The ‘monitoring/collection’
stage is the responsible for gathering and pre-processing the raw data from the managed entities or external
resources (in this context, a managed entity is either a service, a managed resource, or another closed loop).
Since raw data can have different heterogeneous formats, coming from different sources, can be transformed
in a way that it allows to analyze it in conjunction with the data coming from other sources. After this, comes
the ‘Analysis’ stage, which provides insights from the available data obtained from the Monitoring stage.
Then, the ‘Decision’ stage, which governs managed entity, decides the action that must be taken based on
the issues detected by the analysis block. These actions can be reactive, proactive, or predictive. It should be
remarked that the decision stage is only responsible for deciding which actions are necessary, but not for
their execution. This is the competence of the ‘Execution’ stage, which translates the decided actions into
commands. The Execution stage oversees the execution of the necessary workflows in the managed entity to
implement the actions determined by the decision stage. This execution could also involve other
management domains. When this happens, interactions with other CLs are needed. Thus, multiple distributed
CLs are required for the automation of E2E service management. The ‘Knowledge’ block in the functional
diagram presented above is not technically a stage of the CL, it refers to the storage and retrieval of historical,
configuration and operational data that are shared between the stages of a closed loop as well as between
different CLs in the network.

The ‘Decision’ stage involves different primary flows or interfaces:

 A2D interface. It connects the Analysis function with the Decision stage. It provides insights on
historical and/or real-time information provided by the collection/monitoring stage. It can also
provide information for tuning the analytic models and starting/terminating the analytics processes.

 D2E interface. It is used by the Decision stage to provide action plans in form of workflows (e.g.,
configuration changes, onboarding services and resources). It can also be used to provide information
to tune the decision models and start/stop the decision processes.

 E3 external interface represents the data and control inputs and outputs from/to other closed loops
or external entities. It can be used to: i) start/stop the decision processes; ii) change the settings of
the Decisions stage and attributes of the models; iii) retrieve the historical or real-time data of the
function, such as logs, outcomes of the Decision function; iv) provide the resulting data of the
Decision stage to other closed loops or authorized entities outside the ZSM framework, e.g., external
management systems.

 K3 interface is a knowledge-enable flow, which is represented by a double-headed arrow, and is used
for data-related inputs and outputs from the Decision stage. The primary interfaces exposed above
can be augmented by data stored and retrieved from the ‘Knowledge’ functional block. The data can
be historical workflows (generated over the time or coming from external resources) or real-time
workflows (continuously generated by the operations of the Decision stage).

3.1.2 DECISION ENGINE IN THE MONB5G ARCHITECTURE
As depicted in Figure 2, the considered architecture provides several degrees of freedom to deploy advanced
decentralized AI algorithms for scalable and sustainable massive network slicing. In MonB5G, the DE is part
of slice runtime management and is embedded in the slice (and is therefore part of the slice template). Next

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 21

Figure shows the generic structure of the MonB5G slice. Two separate layers can be distinguished: the Slice
MonB5G Layer (SML) and the Slice Functional Layer (SFL).

Figure 2. Generic structure of MonB5G single domain slice (composed of SFL and SML). It shows the MonB5G

DE Positioning with MS, AE and ACT.

The SFL part, built of virtual functions, provides the communications service-related functionality, whereas
the SML part, also built using virtual functions, provides the management. The SML is further divided into
different sublayers, which are responsible for Monitoring System (MS), Analytic Engines (AEs) and Decision
Engines (DE), as well as the Actuators (ACTs). The MS oversees collecting raw performance and configuration
data measurements from the managed resources and contains an internal memory that stores the
measurements as well as the decision story and the AI performance metrics, serving as the ‘Knowledge block’
in the ZSM in framework [1]. The AE then performs time-series predictions as well as feature space
regressions, clustering, and classification to extract insights from the measurements collected by the MS,
while the DE decides on the lifecycle management (LCM) actions that need to be applied to face the issues
detected by the AE. DEs implement control algorithms, such as Deep Reinforcement Learning (DRL)
methods, to take online decisions regarding slice LCM actions that need to be applied to face the issues
detected by the AE and may propose network reconfiguration to solve the detected problems. It may also
control the MS measurement granularity or the AE prediction parameters. Typically, in the management

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 22

systems, multiple goals must be optimized, therefore multiple AEs and DEs can be part of SML. The DEs
decisions are transferred to the ACT, which converts the DE decision into a set of elementary actions.
Furthermore, actuators monitor the execution of this set of actions and provide feedback to the DE.

The DE sublayer in MonB5G is envisioned as a composition of multiple DE entities, which are responsible for
the reconfiguration of the SFL and/or SML. Each of them may pursue a local goal, for instance, resource
allocation optimization, local fault healing, security decisions or energy-aware reconfigurations. The DE
sublayer interacts with the MS and AE sublayers to acquire appropriate information from the ongoing slice
deployments and infrastructure utilization.

The control loop-based management system may generally have multiple goals what justifies, multiple AEs
and DEs as a part of SML. This inevitably leads to conflicts between DEs' outputs. To solve the problem, the
DE Selector/Arbiter component is present, which can be AI-driven. It is involved in the stability of the system
observation and counteracts the ping-pong effect or chaotic system behavior (too many, random-like
reconfigurations). The DEs have not only management, but also orchestration capabilities. They may change
configuration parameters and send new function VNF orchestration requests. In the contrast to the reactive
resource scaling, it may also proactively request an update of resource allocation or scaling, based on number
of slice users' QoE, slice usage trends or spatial distribution changes. The MonB5G DE and its serving
administrative elements (MS, AE, and ACT) are in line with the ETSI ZSM CL framework [1].

These three management components (MS/AE/DE) present different levels of instantiation that can be used
according to the target scope of analysis and decision, where the aim is to minimize the raw data exchange
and allow a fast local analysis and decision:

 Virtual network function (VNF)/physical network function (PNF) level, where MS, AE and DE are
placed close to the monitored resources of a given slice.

 Slice-level, where each slice template includes dedicated AE and DE that may respectively collect
compressed metrics/prediction models or policy weights from AEs and DEs of their VNFs/PNFs to
perform slice-wide analytics and decision via decentralized AI strategies such as federated learning
and multi-agent/federated deep reinforcement learning.

 Domain-level (i.e., RAN, Edge, Cloud), where a dedicated MS, AE and DE triplet can perform domain-
wide AI-driven management by relying on the inputs of the VNFs/PNFs decentralized elements.

 Inter-Domain Manager and Orchestrator (IDMO)-level, which similarly to 3GPP Network Slice
Management Function (NSMF), it manages the lifecycle of end-to-end network slices by carrying out
global end-to-end analysis or decisions at both cross-slice and cross-domain levels. To that end, it
includes high-level AE and DE that leverage local AE/DE inferences and actions to solve wide-scope
issues.

3.2 Interfaces
Figure 3 illustrates the communication between the DE, the MS and the AE. It also includes the actuators
(ACT), which are the entities that translate the DE LCM decision into API calls that involve the different slice
components, i.e., VNFs, PNFs, links, etc., in each of the technological domains (RAN, Edge and/or Cloud) that
the slice is supposed to cross.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 23

Figure 3. Interfaces between the different triplet MS-AE-DE elements and the actuators.

The different interfaces between the MonB5G DE and the rest of control blocks are presented in Table 3.1.

The MS in Figure 4 gathers different metrics from the managed system that the DE controls. This information
can be passed to the AE and DE blocks directly, but it is also stored in a Common Online Memory Store
(COMS), which is illustrated in the figure as a grey cylinder. The COMS entity is considered to avoid hard
synchronization constraints between the MS-AE-DE functional blocks. Proceeding this way provides more
flexibility to the AE and DE in terms of their length of processing, without compromising the granularity at
which the MS can sample the monitoring data form the controlled system. Therefore, it is the MS that defines
how fast the data is sampled. It should be noticed that this COMS block is in line with the ‘knowledge’
functional block in the ETSI ZSM scheme presented in Section 3.1.1.

The monitoring information is read by the AE from the COMS and processes it to provide insights to the DE
(i.e., it performs predictions, classifications, etc.). The AE might also read the information directly from the
MS, but this is expected to be in more punctual cases, where some synchronization is needed. The prediction
interval needs to be set by from the Externa User Interface (EUI).

Like the Analytics Engine, the DE is expected to read its input from the COMS, even though, it is also possible
to receive this information form the AE or the MS. Based on this information, the DE will take the
corresponding decisions, which will be also stored in the COMS. In addition, it will issue them to the
corresponding actuators, which are the entities that translate the decisions into API calls that implement the
corresponding LCM decision in the managed entity.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 24

Table 2. DE interfaces and the associated roles

Interface Type Role

IAD Tensors/Database
query

DE Reads the predicted KPI from AE (either online or from COMS)

IMD Tensors/Database
query

DE reads raw MS measurements (either online or from COMS)/Store AI
metrics and DE decisions in COMS

IMA Tensors/Database
query

AE reads raw MS measurements/Store AI metrics, predictions in COMS

IUD Database Query EUI reads/Changes DE configuration (e.g., discount factor of a DRL
algorithm)

IUA Database Query EUI reads/Changes AE configuration (e.g., prediction interval, learning
rate)

IUM Database Query EUI reads/changes MS configuration (e.g., granularity)

IUC Database Query EUI reads/changes actuation configuration (e.g., API primitives’
parameters)

IDACT REST API Call DE sends decisions to Actuators

Cross-domain operations between local DEs (i.e., DEs of each technological domains) or with end-to-end
DE passes through the IDMO (Inter-Domain Manager and Orchestrator), while operation between inter-
slice DEs is ensured by the DMO.

3.3 Cross-Domain Operations
A MS/AE/DE triplet is present at each technological domain (e.g., RAN, edge and cloud). Furthermore, a
system might have more instances of the triplet, depending on the control granularity needed for the
management system. Namely, instances of the MS/AE/DE triplet could be per slice, tenant, domain,
infrastructure provider, etc. Given the fact that there might be multiple instances of the Decision Engine, the
design of the DE and its corresponding interfaces need to be agnostic to the technological domain or system
layer in which the DE is deployed. Furthermore, the DEs must cooperate to achieve the corresponding end-
to-end KPIs the system optimization targets.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 25

Figure 4. MS/AE/DE triplet instances at different technological domains

Figure 5. Distributed sliced MonB5G Architecture with multiple domains and slices.

The distributed architecture that MonB5G envisions (see Figure 5) is specially well suited for different types
of decentralized AI-native approaches. To exemplify this, hereby, two of these AI/ML approaches are
exposed:

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 26

 Federated Deep Reinforcement Learning. In this scheme, the local DEs are built upon either value-
based DRL (e.g., DQN) or policy-based DRL (e.g., A2C, DDPG, SAC). The key idea is that, as long as the
action/state spaces of the different DEs are homogeneous, one can dramatically improve the decision
accuracy, and leverage the experiences learned in e.g., other domains or slices, by letting the local
DEs exchange their weights of the embedded decision actor/critic or Q networks, with the E2E DE,
which performs a custom averaging to generate a more accurate model. Next, the E2E broadcasts it
to the DEs, updating their local networks and improving their decision. This approach avoids
exchanging raw data between local and the E2E domain.

 Multi-Agent Deep Reinforcement Learning. Local DEs play the role of Actors and can learn policies,
using only local information (i.e., their own observations in local domain, slice, etc) at execution. On
the other hand, the Critic is in the E2E domain. This allows the policies to use extra information to
ease training, so long as this information is not used at test time. Within this context, actor-critic
policy gradient methods, where the critic is augmented with extra information about the policies of
other agents, are suitable to implement a decentralized decision leveraging MonB5G architecture.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 27

4 Slice Admission Control

4.1 Introduction
In D4.1, we identified several potential algorithms for slice placement, some of which are based on heuristics
and others on ML. In this deliverable, we report on two algorithms for the placement of slices in a network.

Specifically, we present two slice admission approaches in this chapter. The first is based on Deep
Reinforcement Learning and a heuristic. The Power of Two choice (P2C) heuristic was introduced in D4.1. This
heuristic proves to be very efficient in placing slices but requires extensive signalling (due to the availability
of polling resources in data centres). Therefore, a DRL approach was introduced, namely the A3C DRL
algorithm. This algorithm is centralized and can place slices when the rewards are based on the ratio of placed
slices. However, the learning period can be very long, and performance can be limited when the arrival rates
of slice changes. In contrast, P2C is very resilient. To combine the efficiency of heuristics and the sobriety of
DRL in terms of signalling, we developed the Heuristically Assisted DRL (HA-DRL) approach, which achieves
very good performance when the arrival rate of slices varies. The second approach, TASAC, is based on the
Time-of-Day (ToD) traffic curve. This curve, which is typically related to human activity, was used to estimate
the daily eMBB traffic, and based on this, the resource consumption of the eMBB slices was predicted. The
second category of slices analysed in this case is mMTC. Unlike eMBB, the traffic generated by mMTC slices
does not depend on the ToD. The approach is using ToD predictions based on actual observations. The DQN
algorithm was used for admission control.

4.2 Heuristically assisted DRL for slice placement
4.2.1 PROBLEM DESCRIPTION
We consider a network consisting of a hierarchical cloud infrastructure, as is the case in many operational
networks. The lower level consists of edge data centers connected to fog (also referred to as core data
centers), which provide an intermediate-level cloud infrastructure; the fog data centers themselves are
connected to a central cloud infrastructure. This global cloud infrastructure together with the transport
network (consisting of transmission links as well as the switching/routing capacities to interconnect the data
centers), form the substrate network, referred to below as the Physical Substrate Network (PSN). An
illustration of the PSN considered in the following is given in Figure 6. Each data center consists of servers
with RAM and CPU capacities, which are the scarcest resources in clouds, interconnected by switches and
routers, connected to the transport network. Importantly users making slice requests are connected to the
data edge data centers. In other words, when a slice request is issued by a user, the slice is rooted in the
sense that the user of the slice is connected to an edge data center.

The cloud infrastructure is used to host slices. A slice request is called a Network Slice Placement Request
(NSPR), which can be described by a graph with vertices (the compute nodes needed to execute the service
offered by the slice and the links for exchanging messages between these compute nodes). In the following,
a compute node will be referred to as VNF, which should be understood in a broad sense (a Virtualized
Network Function can be hosted in a container, not necessarily in a virtual machine). We also assume that a
slice is a linear chain of services (VNFs) that exchange messages.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 28

The problem of network slice placement can be formulated as follows: Given an NSPR G = (𝑉, 𝐸), arriving at
time 𝑡 ∈ [0, 𝑇] and exiting the network in exit date 𝑡 ∈ [𝑡 , 𝑇] and a PSN graph 𝐺 = (𝑁, 𝐿), find a mapping h: 𝐺 →

�̅� = (𝑁, 𝐿) , 𝑁 ⊂ 𝑁, 𝐿 ⊂ 𝐿, where T is the length of the lifetime of the system. The mapping must take into account
the following constraints:

- the CPU and RAM capacities (𝑐𝑎𝑝 and 𝑐𝑎𝑝), where s is in the set of servers of the PSN and requirements
(𝑟𝑒𝑞 and 𝑟𝑒𝑞), where v is in the set of compute nodes of the NPSR,

- the bandwidth capacities (𝑐𝑎𝑝(,)), where (a,b) is the link between servers a and b in the NSP, and
requirements (𝑟𝑒𝑞(,)), where (a,b) is the link between compute nodes a and b in the NPSR,

- the link latency capacities (𝛿(,)) and requirements (𝑟𝑒𝑞(,)),
- the access latency capacities (𝛼) and requirements (𝛼),
- the E2E latency requirements (𝛿).

Figure 6. Physical Substrate Network (PSN)

Several optimization criteria can be envisaged for the mapping h:

Edge

Data

Centers

Local

Data

Center

Central

Cloud

Platform

National

Data

Center

Core

Data

Centers

Regional

Data

Center

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 29

 maximization of slice acceptance ratio,
 minimization of total resource utilization,
 maximization of node load balancing.

Each problem can be formulated by mean of an Integer Linear Programming problem (ILP). More precisely,

 The placement of VNF (compute node) is controlled by the decision variables
,

 The VNF chaining: ,
 NSPR acceptance:

where 𝑅 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 requests, 𝑁 is the set of VNFs of each request, 𝐸 is the set of VLs of each request.

To solve the placement of slices must account of several constraints (see [3] for details):
 The VNF placement and resource capacity constraints read

 The network slice latency requirement constraints are

 The eligible physical path calculation is

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 30

The minimization of total resource utilization corresponds to the problem

and the maximization of slice acceptance ratio to

 with

The above optimization problems can be solved by using CPLEX. Therefore, a heuristic has been proposed in
[4], which is based on the Power of the 2 choices (P2C). This heuristic runs as follows: For each VNF v of the
NSPR,

 Calculate set S’ of eligible servers
 If S’ not empty, select 2 candidate servers S1 and S2 to place VNF v,

o Calculate substrate network paths P1 and P2 to interconnect VNF v,
o If P1 and P2 are feasible, choose the shortest one,
o If only P1 is feasible, map virtual link to P1,
o If only P2 is feasible, map virtual link to P2,
o If no path is feasible, reject NSPR,
o If S’ is empty, reject NSPR,

 Accept the NSPR
To select servers, we consider two policies: full random (policy 1) and rand with priority to cloud and core
servers (policy 2).

To evaluate the efficiency of the above heuristic, we conducted two online optimization experiments on the
Grid 5000 infrastructure for two objectives: minimal bandwidth consumption (referred to as ILP1 for the ILP
solved with CPLEX) and maximum acceptance ratio (denoted as ILP2 for the ILP solved with CPLEX). Two
server selection policies were also implemented for the heuristic, denoted as P2C1 for policy 1 and P2C2 for
policy 2. We considered three slice categories: Best Effort (BE), uRLLC and eMBB, with the following mix of
traffic: 67% BE, 22% eMBB and 11% uRLLC. The baseline PSN includes 126 nodes and is expandable to 16128
nodes. Each NSPR is a sequence of 5 VNFs chained by virtual links, both with specific requirements. Figure 7
shows that the execution time for the ILPs increases rapidly with the number of servers, while the increase
for the P2C heuristics is limited. Figure 8a) shows that P2C has the best final blocking ratio in the uRLLC
scenario, while this policy concentrates the load on cloud and core data centers to offload the edge data
centers. Figure 8b) displays the resource consumption. We note that the edge and core data centers are
highly occupied while the cloud one is almost not used. This is since VBNFs are placed close to end users to
limit latency.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 31

Figure 7. Execution times of the algorithms.

Figure 8. Blocking rates and data center resource consumption.

The P2C proves to be very efficient to place slice requests and is important in a distributed environment.
However, we need to select two servers for each request and check the availability of resources on each
server. To circumvent this process, which can be very costly in terms of signaling messages, we have
developed an alternative method based on DRL that partially relies on the P2C heuristic.

4.2.2 SOLUTION TOOL
Some recent approaches to network slice placement are based on Deep Reinforcement Learning (DRL), see
[5] for a state-of-the-art review of DRL applied to slice placement in 5G networks. However, these algorithms
are very tedious to train, typically several days, which this training period is not compatible with highly
varying network conditions. Therefore, we developed an alternative approach that combines DRL (namely
the A3C algorithm [6]) and the P2C heuristic presented in the previous section. The architecture of the
algorithm is shown in Figure 9. To account for non-stationary conditions, we introduced an additional module

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 32

to the classical DRL algorithm that describes the state (namely, the load of the network). The resulting
algorithm is referred to as eDRL.

Figure 9. Architecture of the algorithm (initial DRL and enhanced DRL accounting of the network state).

To develop our approach, we make the following assumptions. NSPR are undirected path graphs (namely,
service chains). A training step is the placement of one VNF of an NSPR and the mapping of its associated
Virtual Links (VLs). At each training step t, we select the server to place the VNF based on the policy and map
VLs, record the reward, and update the PSN. At the end of a training episode, we compute the loss function
based on the cumulated rewards and state values. Finally, we update the weights of the network using the
gradients of the loss functions (see [5] for more details). The architecture of the algorithm is shown in Figure
10, the various components are assembled from open-source software to build the algorithm. The PSN is
abstracted in the form of a Graph Convolutional Network (GCN). The function Zϴ maps each state and action
to a real value; the details are given in [5]. This function is provided by the Actor Critic algorithm, as illustrated
in Figure 10.

e
D

R
L D

R
L

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 33

Figure 10. DRL (based on A3C algorithm) and eDRL applied to slice placement.

The preliminary evaluation of the algorithm has shown that the above algorithm is inadequate for
nonstationary network loads. Therefore, we introduce a modification in the computation of the Z-function
by using the P2C heuristic (the formula is given by Equation (21) in [5], where a coefficient β is used to
modulate the weight of the heuristic in the modification of the Z function). The principle of the so-called
Heuristically Assisted DRL (HA-DRL) is shown in Figure 11.

Figure 11. Heuristically Assisted DRL algorithm.

An example of the HA-DRL is illustrated in Figure 12. We have the following steps explains how the heuristic
modifies the decisions taken by the DRL algorithm (see [5] for details):

e
D

R
L

D
R

L
 Policy

State

value

function

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 34

Figure 12. HA-DRL (the Z function is modified by the heuristic).

4.2.3 FIT INTO THE DE DISTRIBUTED ARCHITECTURE
The algorithm presented in the previous section is centralized but the P2C heuristic is compatible with a
distributed architecture. Upon receiving an NSPR, the ingress node (access domain) can run the P2C algorithm
to decide about the placement of VNFs. If placement in the ingress domain is not possible, the remaining
NSPR is forwarded to the fog/core domain and finally to the cloud. Then each domain can make local
decisions. These decisions can then be forwarded to the central HA-DRL algorithm for better slice placement.
A fully distributed algorithm is planned for further studies.

4.2.4 VALIDATION RESULTS
To test the performance of the algorithm presented in the previous section, we performed simulations. The
global framework of the simulation is shown in Figure 12. The NSPRs arrive following a Poisson process. We
considered three scenarios. The first is when the arrival rate is constant. In the second scenario, the arrival
rate is sinusoidal to reflect the daily fluctuations and in the third scenario, there is a sudden termination of
the arrival process. This is to check the capability of the algorithm to adapt to non-stationary conditions. The

 Initial Z function is 𝑍(𝑠 , .) = [1.0,0.6,0.9,1.2]

Action calculated by HEU (the heuristic function) 𝐻𝐸𝑈(𝑠) = 2

Heuristic Function 𝐻(𝑠 , .) = [0.0,0.6,0.0,0.0]

New Z function 𝑍(𝑠 , .) = [1.0,1.3,0.9,1.2] for 𝛽 = 1, 𝝃 = 1, 𝜼 = 0.1

DRL+HEU Policy 𝜋 (. |𝑠) = [0.22,0.30,0.20,0.27]

DRL Policy gives 𝜋 (. |𝑠) = [0.26,0.18,0.24,0.32]

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 35

exact simulation settings can be found in [5], Section VII.A. NSPR are chains of VNFs to be placed on the PNS
with bandwidth requirements between the VNFs.

Examples of simulation results are given in Figure 13, showing that all DRL algorithms can learn the best
placement for slices and that they all converge to an acceptable acceptance ratio after some time. The HA-
DRL with β = 2 appears to converge the fastest and provides the same performance as the P2C heuristic
(HEU). However, further results (see [5]) show that HA-DRL with β = 2 strongly depends on HEU and performs
worse after the training phase for traffic changes. This suggests that HA-DRL with β = 2 should always be run
in combination with HEU. The conclusions are very similar in the case of periodic variations in network load.

 Network load = 80% Network load = 100%

Figure 13. Slice acceptance ration for HA-DRL, DRL and the heuristic.

To test the robustness of the algorithms to sudden changes in traffic load, we ran simulations in which the
arrival rate of NSPR was increased by a certain percentage. The results are shown in Figure 14. Further results
can be found in [7].

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 36

10% increase 30% increase

Figure 14. Acceptance ratio of the algorithm in case of load increase at training episode 108.

4.3 Time-of-day aware slice admission control
Network slicing in 5G networks allows multiple tenants to allocate and share the underlying network
resources of an Infrastructure Provider (INP), that owns the NPS presented in the previous section. Each
tenant generates slice requests specifying the required resources, and the INP collects revenue from the
tenants for hosting the admitted slices. Slices are typically classified as elastic and inelastic, with flexible and
rigid service guarantee requirements. The INP decides whether to accept or reject the incoming slice requests
by considering certain criteria. This decision helps the INP to efficiently manage its underlying resources,
achieve fair resource allocation among different slice types, and increase its revenue while minimising SLA
violations of admitted slices [8]. Typically, Slice Admission Control (SAC) decisions are based on the maximum
resource requirements of the given slice (fixed number of resources). There are numerous research activities
that propose various SAC algorithms, admission policies, resource allocation, resource usage prediction, and
slice modelling [8]. However, defining an efficient resource management strategy is problematic considering
that real network data related to slice orchestration processes does not exist yet.

Several approaches using RL techniques have already been proposed. A framework for slice brokering called
RL-NSB is presented in [10]. The authors formulate the admission control as a NP-hard, geometric two-
dimensional Knapsack problem and propose two heuristic algorithms to deal with the regular and irregular
arrival of network slice requests. In [15], Q-Learning (QL) and DQL algorithms are proposed to solve the SAC
and Resource Allocation (RA) problems. DQL achieves over 3.6% more gain than QL and the baseline methods
(7.9% for the Node Ranking algorithm and 11.7% for the Always Admit Request algorithm). The advantage of
using RL in deriving SAC policies was demonstrated in [9], where QL, DQL and the online algorithm called
Regret Matching (RM) are used to maximise the operator’s revenue from deployed slices. Each of the
algorithms provided satisfactory results, with the highest financial gain obtained with RM, presumably due
to the regret formula, which allows faster policy adaptation in case of negative rewards. Some efforts that
use Markov Chain Process to model the SAC problem can also be found in the literature [14]. In [13], an
analysis of a system modelled as a Semi-Markov Decision Process and the optimisation of the infrastructure

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 37

provider’s revenue, and the design of Deep Reinforcement Learning that maximises revenue and QoS control
was presented. The authors of [18] present a slice admission strategy based on RL in the presence of services
with different priorities. The considered use case is a flexible 5G RAN, where slices from different mobile
service providers are virtualised over the same RAN infrastructure. The proposed policy learns which services
have the potential to provide high profit (i.e., high revenue with low degradation) and should therefore be
accepted.

However, most approaches to slice admission do not explicitly consider the dependencies between the time-
of-day (ToD) of slice operation and the number of consumed resources but focus only on the frequency of
arriving slice requests. This relationship between resources, demands and time has been observed and
modelled in previous generations of fixed and mobile networks, and can also be observed on the Internet.
An example of such a curve is shown in Figure 15. The behaviour is mainly driven by human-related traffic
and depends on time-of-day or day-of-week. The approach has been widely used in the past for planning the
network in case of non-elastic traffic (voice calls, etc.). In [11], the authors propose the stochastic Markov
traffic model derived from the traces obtained from the LTE scheduling information acquired in four locations
of one of the European metropolitan cities.

Figure 15. Time-of-day traffic curves for several areas (example)

The other approach is proposed in [12], where the sinusoidal superposition model is introduced. The model
is evaluated using the real data from a dense urban area (park, university campus and business district) in a
city in China and has demonstrated good accuracy. The ToD resource consumption can be efficiently exploited
in SAC:

• For long-lived slices (duration > 24h), by predicting the ToD peak, it is possible to reduce the
probability of congestion during peak hours.

• For short-lived slices (duration < 24h), it is possible to allocate more resources depending on the ToD;
the SAC can be more aggressive with descending slope of ToD and less aggressive with the ascending
one.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 38

• For short-lived slices, it is possible to use the slice-calendaring mechanism, i.e., proposing the users
shift their requests (if possible) to off-peak times. Such a mechanism needs an incentive, which in the
past, in the case of the fixed network voice calls, was fiscal.

The above mechanisms lead to a much more efficient and realistic SAC than approaches that ignore the ToD
resource consumption pattern. In this section, we describe and demonstrate the behaviour of a SAC approach
for long-lived network slices that takes ToD into account.

4.3.1 TASAC CONCEPT DESCRIPTION
To propose a new SAC mechanism based on ToD, it is necessary to make some assumptions about slice-
related traffic. The consumption of resources of each network slice depends on two main factors:

• Resources needed for the deployment of the slice (i.e., slice footprint) and its primary operations in
an “idle” state.

• Resources needed to support the activities of the terminals connected to the slice, some of which
may be human-operated.

The human-related network traffic is ToD dependent - at night, networks are typically lightly loaded only.
Unlike human-operated terminals, IoT devices or Industry 4.0 terminals and security cameras can transfer a
similar amount of data in a 24/7 cycle. Therefore, their activity is independent of ToD and time-of-week. In
our analysis, we consider both types of traffic and refer to the first as eMBB traffic and the second as mMTC
traffic. Each request must be specified in terms of the above slice types and additional parameters.

Figure 16. Concept of ToD aware Slice Admission (TASAC).

The ToD Aware SAC (TASAC) concept is depicted in Figure 16. It is compliant with the MonB5G architecture.
Slice tenants send Slice Admission Requests (SARs) via the MonB5G Portal that contain the high-level
information of the desired slice (i.e., duration, deployment time, capacity). The high-level intent is transferred
to the Resource Mapper entity, whose task is to map and scale the generic requirements into the slice
resource requirements, priorities, etc. (a similar approach to GST/NEST [20] according to the capacity
preferences and slice type. Then, the mapped slice request is placed into Requests Queue (priority queue) to

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 39

be analysed by the Slice Admission Engine (SAE). The decision regarding slice admission/rejection is taken
based on the following factors:

• Actual resource consumption - aggregate resource utilisation data on system capacity provided by
the MS layer.

• Current system status - information about currently deployed slices in the network, their types, peak
resource requirements etc. This information is stored in the Slice Database and is updated when the
system status changes (SAR acceptance, slice termination).

• Prediction of resource consumption during the period of interest - it is assumed that different
prediction techniques can be used to produce accurate forecasts under different circumstances and
system states.

The slice admission/rejection policy can vary depending on the implemented SAE behaviour. In TASAC, the
DQN [16] approach is used to derive the optimal slice admission policy.

The TASAC concept includes the component responsible for mapping high-level tenant requests, but this is a
different problem from SAC and is omitted in this section. The operations of TASAC require ToD prediction.
For this purpose, the Holt-Winters model-based resource prediction [17] can be used. The model predicts a
typical value (average), a slope (trend), and a cyclical repeating pattern (seasonality). Another practical
approach is a set of so-called ETS (Exponential Time Smoothing) models, i.e., a bundle of time series models
with an underlying state-space model consisting of a level component, a trend component (T), a seasonal
component (S), and an error term (E) [21].

4.3.2 TASAC ALGORITHM
The resources need for slice deployment are typically split into computing, storage, and connectivity
resources. Without the loss of generalization, we will focus on a single resource type only: connectivity, i.e.,
bandwidth. The total resource pool in the system, denoted as R, describes the available bandwidth in the
network (we take the value as a scalar). Each SAR k ∈ K is described by a tuple ⟨bkr, qk , tkd , tkt⟩, which
defines the maximum requested bandwidth by the slice bkr, the slice type qk, slice deployment tk0 and
termination tkt time. Each SAR arrives with a λ rate, and when accepted, its metadata is stored in slice
database i.e., k ∈ K. The optimization goal is to maximise bandwidth consumption, for eMBB-like (qk=0) slice
of which resource consumption is dependent on ToD, and mMTC-like (qk = 1) resource consumption that is
constant during the whole mMTC slice lifetime

The generic concept of DQN is presented in Figure 17.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 40

Figure 17. High-level concept of DQN

The DQN approach is based on the Q-learning method. The main idea behind the Q-learning is that if we
consider a function Q∗: State x Action −→ R, which provides the information regarding the return based on
the current state and the adopted action. Knowing such a function enables easy construction of the policy
that could maximise the rewards of the actions (π∗(s): argmax Q∗(s, a). For complex environments, the Q∗
function cannot be derived analytically. The DQN approach solves this issue by leveraging Deep Neural
Networks to approximate the Q∗ function. The DQN agent consists of 4 blocks: the Prediction Network, the
Target Network, the DQN loss calculation block and the Replay Memory. Each time the agent needs to decide,
it makes it based on the information about the network state st obtained from the environment. The
Prediction Network calculates the Q values for the given states and suggests undertaking action in the
environment at. After the action is taken the reward r is calculated, the network moves to the next state st+1,

and the information about the state and the transition is stored in the replay memory. The role of the Target
Network is to stabilise the learning approach and improve the long-term memory of the agent (the network
updates are done every N-steps of the algorithm with the decay effect applied). The information stored in
the Replay Memory is used during training of the Prediction Network. The training update rule follows the
Bellman equation:

𝑄 (𝑠, 𝑎) = 𝑟 + 𝛾𝑄 (𝑠 , 𝜋(𝑠)),

where γ is a decay coefficient and π is a policy function.

The role of the DQN loss calculation module is to compute the temporal difference error:

𝛿 = 𝑄(𝑠, 𝑎) − 𝑟 + 𝛾 𝑚𝑎𝑥𝑄(𝑠 , 𝑎)

To minimise the error, several functions can be used, however, the Hueber loss is commonly used. To derive
the policy regarding slice admission actions, the DQN agent takes decisions based on an observed network
state st, which consists of:

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 41

• Aggregated Requested Resources

𝐴𝑅𝑅 =
𝑏 (𝑡)

𝑅

• Aggregated Resources Consumption

𝐴𝑅𝐶 =
𝑏 (𝑡)

𝑅

• Predicted Aggregated Resources Consumption

𝑃𝐴𝑅𝐶 =
𝑏 (𝑡)

𝑅

• Ratio of currently accepted mMTC slices

𝑅 =
1

|𝐾|
 𝑖𝑓𝑓 𝑞 = 1

• Ratio of currently accepted eMBB slices

𝑅 =
1

|𝐾|
 𝑖𝑓𝑓 𝑞 = 0

• Relative time of day

ToD = (t mod T)/T

Only two actions a ∈ {0, 1} are permitted for the agent to take, SAR acceptance (a = 1) and SAR rejection (a
= 0). To evaluate agent’s actions, two different reward functions have been used: Equation (1) if no resource
prediction is taken into account (bp(t) = 0) and Equation (2) when resource prediction is used. The used
resource prediction is based on the ToD in the case of eMBB, while in the case of mMTC, where ToD effect is
not present, the prediction is a constant value (i.e., the maximum bandwidth requested in SAR). The number
of bandwidth samples considered in period ⟨td, tt⟩ is denoted as |T|.

(1)

(𝑡 , 𝑡 , 𝑎) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

0 𝑖𝑓𝑓 𝑎 = 0

𝑏 (𝑡)

ℛ|𝑇|

𝒦

 𝑖𝑓𝑓 𝑎 = 1 𝑎𝑛𝑑 ∧ ∈[;]
𝑏 (𝑡)

ℛ

𝒦

≤ 1

−
𝑏 (𝑡)

ℛ|𝑇|
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝒦

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 42

(2)

𝑟(𝑡 , 𝑡 , 𝑎) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

0 𝑖𝑓𝑓 𝑎 = 0

𝑏 (𝑡)

ℛ|𝑇|

𝒦

 𝑖𝑓𝑓 𝑎 = 1 𝑎𝑛𝑑 ∧ ∈[;]
𝑏 (𝑡)

ℛ

𝒦

≤ 1

−
𝑏 (𝑡)

ℛ|𝑇|
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝒦

It is expected that the agent should perform actions that lead the system to the desired final state, i.e., the
state in which the requested (or predicted) network resource consumption in the time frame of concern is
equal to R during the whole period (i.e., the resources are used completely). The various parameters used by
TASAC are given in Table 3.

Table 3. Parameters for TASAC.

Parameter Description

K
br

bc(t)

bp(t)
td
tt
q
T
R

Slice Requests
maximum requested slice bandwidth [bu]
consumed slice bandwidth in moment t [bu]
predicted consumed bandwidth by the slice in moment t [bu]
slice deployment time [tu]
slice termination time [tu]
slice type (SST)
length of the day [tu]
resource pool

a action
s State

4.3.3 TASAC SIMLUATION RESULTS
The presented concept (cf. Figure 16) has been evaluated using an event-driven simulator implemented in
Python using SimPy [19] package. The adopted time unit tu is 1 s. We follow the most popular approach and
model the influx of admission requests as the Poisson process [15] [9] [14]with λ = 720 tu (which corresponds
to 5 slice requests per hour). During the tests, we validate the algorithms under two different resource
constraints: Rs = 2000 ru and Rl = 1000 ru. The requested slice types and demanded capacity follow a discrete
uniform distribution, U{0, 1} and U{1, 10}, respectively. It is assumed that a single eMBB slice consumes ten
times more resources than a single mMTC slice, meaning that the maximum requested bandwidth is in the
range bkrmaxmMTC ∈ ⟨1; 10⟩ for mMTC and bk rmaxmMTC ∈ ⟨10; 100⟩ for eMBB. In the evaluation, we consider both
short-lived and long-lived slices – the slice duration follows the uniform distribution U{60, 86.4 ∗ 103} (1 min
to 1 day). The normalized resource consumption of the eMBB slice is modelled by the curve presented in
Figure 18a, while for predictions, the curve shown in Figure 18b is used. Both curves have been derived from
the real-life data acquired from the operator’s monitoring system.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 43

(a)

(b)

Figure 18. Real (a) and predicted ToD curve (b) of the eMBB traffic

The gains obtained from using the TASAC approach were analysed for two weeks observation time. The
exemplary traces obtained for DQN and TASAC approaches are presented in Figure 19 and Figure 20. It can
be observed that under given conditions, the periods in which resource violations occur are shorter for the
TASAC approach.

Figure 19. DQN-based slice admission (not aware of ToD)

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 44

Figure 20. TASAC-based slice admission (ToD aware)

The benefits of the TASAC method can be observed in several admissions in Figure 21 and resource utilisation
in Figure 22. Under severe resource constraints, i.e., Rl, the TASAC approach enables a much higher admission
rate and effective utilisation of resources (Figure 21 and Figure 22). For a larger resource pool Rs both the
admission rate as well as the cumulative resources consumption is similar. As the resource margin is relatively
high and the rejection rate is very low for both cases, similar performance can be noted for both DQN-based
and TASAC approaches.

Figure 21. Comparison of a number of slice admissions during the period of two weeks: low resource pool Rl

(left), large resource pool Rs (right)

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 45

Figure 22. Comparison of resources utilisation during the period of two weeks: low resource pool Rl (left),

large resource pool Rs (right)

The slice admission policies learned by the agents can lead to wrong decisions that can cause over-utilisation
of the provided maximum resource pool. The penalties (measured as a cumulative exceeded bandwidth) for
both evaluated cases are presented in Figure 23.

Figure 23. Comparison of exceeded bandwidth during the period of two weeks: low resource pool Rl (left),

large resource pool Rs (right)

Conclusion

The TASAC approach offers high advantages in the case of Rs. Despite the similar performance in terms of
admission rate and resources, the penalty is significantly lower than the DQN-based approach. In the case of
low available resources (Figure 19), it must be noted, however, that the method used for the prediction of

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 46

resources consumption is quite inaccurate (cf. Figure 18b). The use of more accurate predictors can
contribute significantly to aggregate resource utilization.

The obtained results are satisfactory since the goal of increasing the admission rate and resource utilisation
using resource prediction has been achieved. Nevertheless, it should be noted that the method used for the
prediction of resources consumption is quite inaccurate (cf. Figure 20). The selection of more accurate
predictors can contribute to better resource utilisation. Moreover, the analysed cases were performed for
the balanced number of mMTC and eMBB slices. It must be emphasised that the number of requested slice
types can vary. The presented TASAC approach aims to maximize the bandwidth utilisation, i.e., the slices
with a high amplitude of activity are not preferred. Therefore, in some cases it might be essential to define
additional policies that consider the resource aspect and the individual priority of the slice to be deployed.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 47

5 Intra-slice Orchestration

5.1 Introduction
The goal of this section is to present an extensive overview of the intra-slice orchestration Decision Engine
(DE) elements. This section introduces SCHEMA, a Service Chain Elastic Management framework, based on a
Distributed Reinforcement Learning algorithm, its extension SafeSCHEMA and the way they integrate into
the MonB5G proposed architecture. First, the problem statement will be discussed, then the proposed
solution and its system model will be presented. Second, the experimental setup and results will be presented
in detail.

In continuation of the previous section, the section continues with a description of the various decentralized
DE modules used to tackle the intra-slice orchestration problem. Finally, the section demonstrates through
experimental results analysis how the proposed architecture can be used efficiently for decentralized
decision making in the MonB5G architecture.

The contribution of this section is threefold:

1. Introducing a modular and flexible architecture that can be deployed in multi-domain networks with
multiple slices and services.

2. Providing a solution to minimize the unsafe actions of the RL-agents, while still allowing enough
autonomy to explore the space.

3. Demonstrating a collaborative agent KPI optimization. Specifically, latency minimization for Ultra-
Reliable Low Latency Communication (URLLC) services will be used as our use-case scenario.

5.2 SCHEMA: Service Chain Elastic Management with Distributed Reinforcement
Learning
5.2.1 PROBLEM DESCRIPTION
The network consists of multiple SDN-NFV-enabled technological domains that accommodate slice VNFs. The
domains are connected through a WAN that we model as a link, the users connect to the edge domains and
request access to the network services that are operated by slices. Each slice is a Service Function Chain (SFC)
with flows between the VNFs. Some VNFs are shared among the slices and may need vertical scaling
depending on the number of requests. Due to the limited resources of the domain hardware and the number
of hops between the servers, the mapping of the slice VNFs affects the average slice latency. If there are
available resources on the network, the network accepts the incoming slice requests.

5.2.2 SOLUTION TOOL
Overview
The proposed solution responds dynamically to the traffic load fluctuation by initiating re-configurations in
predetermined time-steps only when required to avoid additional costs or load to the network. Unlike similar
frameworks where there is a centralized entity responsible for the slice VNF orchestration even for multiple
domains, we employ a distributed system of agents that can operate per-se. Instead of utilizing a global
network algorithm responsible for the orchestration of the slice VNFs, we employ a local VNF placement and
orchestration algorithm for each domain to share the enormous problem state space of the VNF management

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 48

and orchestration problem. The domains are performing VNF orchestration and VNF clustering internally,
without affecting the rest of the slice in the other domains. When there is a need for VNF migration between
the domains, an Auction takes place in which each local agent bids with its Confidence metric to receive and
place locally a VNF from another local domain. The agents are bidding in the VNF auction through a
confidence metric and only the highest bidder receives the VNF to place and orchestrate it locally.

Deep Reinforcement Learning-based solution
We formalize the intra-domain VNF placement and orchestration problem as a Markov Decision Process
(MDP) by representing the problem environment through Actions, States and Rewards. In this specific
problem we define them as follows:

 As State we define the intra-domain computational resources of the servers that are able to host the
slice VNFs (the available CPU cores, GBs of RAM and storage), the available bandwidths and latencies
of the intra-domain links.

 The Action of the local domain agents is the Confidence metric which is a float number indicating the
willingness to receive the VNF of the slice that is auctioned through the Auction Mechanism.

 As Reward we define the optimization function of the RL algorithm. The Reward is common
between all local domain agents to enable cooperation as stated in [22]. The goal of SCHEMA is the
dynamic orchestration of the slice with a distributed algorithm while keeping the service latency
low and it is defined as follows:

𝑅𝑒𝑤𝑎𝑟𝑑 = ∑
⋅

,

where 𝑛 is the total number of VNFs, 𝑇 is the minimum service throughput and 𝐿 is the maximum service
latency and 𝑤 is the weight of 𝐿 in the reward.

Local Deep Q-Network RL agents
For the domain RL agents, we utilize a DQN agent as defined in [23]. The agents interact with the network
through the Observations, Actions and Rewards of the network. The goal of the agents is to select placements
or Actions that maximize the Reward and thus, minimizing the service latency. We use a Deep Neural Network
(DNN) to approximate the optimal action-value function, also known as Q-value function defined as:

𝑄∗(𝑠, 𝑎) = max 𝐸[𝑟 + 𝛾 + 𝛾 𝑟 + ⋯ |𝑠 = 𝑠, 𝑎 = 𝑎, 𝜋]

The Q-value function can be defined as the maximum sum of all rewards 𝑟 , discounted by the parameter 𝛾
at each time-step 𝑡 . The maximum sum of all rewards 𝑟  is achieved by a behavioral policy 𝜋 = 𝑃(𝑎|𝑠), after
an Observation 𝑠 and taking an Action 𝑎 .

To avoid instability during the training of the agents, we employ the Experience Replay technique, which
randomizes the Observations and removes the correlation between them during the early training phase to
force the agent to embrace exploration. We store the experiences 𝑒 = (𝑠 , 𝑎 , 𝑟 , 𝑠) of the agent at each
time-step in the dataset 𝐷 = 𝑒 , … , 𝑒 , that we later use to retrieve them. We apply Q-learning value updates
on mini-batches of experience (𝑠, 𝑎, 𝑟, 𝑠), 𝑈(𝐷), drawn uniformly at random from the dataset 𝐷 of stored
experiences to perform learning of the agent. The Q-learning update during iteration utilizes the following
loss function:

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 49

𝐿 (𝜃) = 𝜖 , , , 𝑟 + max 𝑄(𝑠 , 𝑎 ; 𝜃) − 𝑄(𝑠, 𝑎; 𝜃) ,

where 𝛾 denotes the discount factor that determines the agent's horizon, 𝜃 the parameters of the Q-network
during iteration 𝑖 and 𝜃 are the network parameters used to compute the target value at iteration 𝑖 .

Every local domain is served by a VM instance of the RL agent and is responsible for the internal re-
configuration, by selecting the host that the VNF will be migrated to. In addition to the placement Action, a
Confidence metric can be extracted as a percentage of how confident the agent is for the chosen placement
decision. The Confidence metric is obtained before applying the arguments of the maxima, also known as
argmax function, in the output vector of the DNN, which is described with the following equation:

argmax ∈ 𝑓(𝑥) = {𝑥|𝑓(𝑥)  ≥ 𝑓(𝑦) ∀𝑦  ∈ 𝐷|},

where 𝑓(𝑥) is the set of inputs 𝑥 from the DNN output 𝐷 that achieves the highest function value. The
Confidence metric is extracted from the set 𝐷 as max(𝐷), whereas 𝑓(𝑥) denotes the placement.

Inter-domain communication: The Auction Mechanism
We propose a multi-domain, distributed and non-cooperative scheme to enable scalability in the SFC
placement problem while keeping the benefits of using RL. See Figure 24.

Figure 24. The Auction Mechanism architecture

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 50

We introduce the Auction Mechanism, an entity that performs an Auction of all slice VNFs at every time-step
in a serialized manner. Each local domain agent places a bid with its placement Confidence metric to receive
a VNF of the given slice and only the highest bidder can receive it to perform an internal placement, as the
output of the agent denotes. Domains have only knowledge of their own resources making them autonomous
to the intra- domain placement procedure. Local domain agents do not communicate with each other to
determine the optimal solution, but rather use the global Reward to introduce cooperation between the
agents, as proposed in [22].

5.2.3 FIT INTO THE DE DISTRIBUTED ARCHITECTURE
The proposed framework SCHEMA utilizes a set of distributed agents instantiated in every domain, making it
compliant with the distributed architecture of MonB5G. SCHEMA agents perform local placement in each
domain and share the enormous problem state space of the placement problem. The domains perform VNF
orchestration and clustering internally in a closed loop, without affecting the rest of the slice. When VNF
migration between the domains is necessary, an Auction takes place in which each local agent bids with its
Confidence metric to receive and place locally a VNF from another local domain. The agents are bidding in
the VNF auction through a confidence metric and only the highest bidder receives the VNF to place and
orchestrates it locally.

5.2.4 VALIDATION RESULTS
We have performed multiple experimental scenarios with groups of 𝑈 = {100,500,1000,1500,2000} users
uniformly scaled per slice, and 𝐷 = {3,5,7,9,11} domains. The inter-domain links were assigned a random
latency following a normal distribution 𝑙 ∈ [2,3] ms. The intra-domain network is composed of servers with
32 Cores, RAM 128 GB, 1TB storage and the intra-domain links are assigned a random latency value between
𝑙 ∈ [1,2] ms. Users are connected through a 5G mmWave wireless link to a base station connected to a
server of the inter-domain network with a 2% to 10% loss. The slice VNFs have 1 to 2 CPU cores, 2 to 4 GB
RAM and 1 to 80 GB storage as computational resource requirement for placement. In our experiments, we
examine the performance of the proposed algorithm SCHEMA by comparing both the average user service
latency and the average number of rejections.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 51

Figure 25. Performance of SCHEMA (service latency and rejection ratio).

(a) Average service latency of accepted services for 3 domains. (b) Rejected services by the number of users
for 3 domains.

As we can observe in Figure 25, increasing the number of users per slice in the network also increases the
average service latency due to insufficient computing resources in servers within the local domains.
Specifically, in the case of 3 domains, SCHEMA was able to outperform both baseline solutions by offering
considerably lower service latency by almost 60.54% in the case of 1000 users.

Accordingly, SCHEMA rejected less users compared to the DQN by 54.25% in the case of 1500 users,
demonstrating better SFC placements for the same infrastructure. As the number of users increases, we can
see reaching the limit of insufficient resources, near the 1600 users.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 52

Figure 26. SCHEMA compared with other algorithms (latency).

(a) Latency variation in 500 and 1000 user scenarios for 3 domains. (b) Average service latency of 500 users
for 3 domains.

Figure 27. SCHEMA performance (occupancy and migration).

(a) VNF Occupancy index or the average hosted VNFs per total VNFs of 100 simulation iterations for 500
users. (b) Migration operations of simulation iterations and 50 SFCs with 125 VNFs.

Moreover, Figure 26a) outlines the service latency variation for the cases of 500 and 1000 users. After
training, SCHEMA was able to conceive a better placement than the DQN, leading to consistently lower
service latency by almost 63.33% in the case of 5 domains. It is evident that the DQN is heavily affected by
the number of users comparing the height difference in the boxes. With the help of Figure 26a), we can
conclude that SCHEMA gravitated towards consolidating the slice VNFs in the same server to further reduce

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 53

the number of hops to the end user. In Figure 27b) we have further evidence that due to the introduction of
the Auction Mechanism, the local agent of the depicted Domain in Figure 27a) was keeping the same
placement to avoid inter-domain slice VNF re-configurations.

5.2.5 MONB5G RELATED CHECKBOXES/KPIS
✓Intra-slice re-configuration and resource allocation.

✓Reconfigure VNF location and chaining dynamically.

✓Utilize key inputs (capacity, load of links, congestion level of local and alternative computing resources,
history thereof, and KPI predictors from the distributed AEs.

✓Propose reinforcement learning algorithms running locally.

✓Receive KPI predictions from the AE (periodically or event-based) and attempt to identify feasible local
reconfigurations (i.e., affecting only a part of the chain) that could reconcile the slice SLA or apply a specific
intent policy, without the need for global reconfiguration or migrating the entire chain.

✓Quantify the confidence in the ability of the locally optimized/reconfigured slice to resolve the potential
problem.

5.3 SafeSCHEMA: Multi-domain Orchestration of Slices based on SafeRL for B5G
Networks
5.3.1 PROBLEM DESCRIPTION
Safe interaction of the AI agents with the network is one of the predominant challenges, especially when
Reinforcement Learning (RL) is used in critical environments. Slice management is one of the major features
that operators want to automate, to offer future services at large scales with manageable complexity to the
operator. However, during the exploration phase, RL agents can cause significant performance degradation
during operation and possibly introduce irreversible damage to the service being offered. To address this
major challenge, we propose a multi-agent, modular, SafeRL architecture for distributed slice orchestration,
called Safe RL-based Service Chain Elastic MAnagement or SafeSCHEMA for short.

5.3.2 SOLUTION TOOL
Overview
We propose an extension of the previously proposed algorithm SCHEMA. A modular architecture for safe and
automated slice management in multi-domain networks. Similar to SCHEMA, the proposed framework
consists of multiple distributed agents that co-operate to orchestrate the slice elements. The RL-enabled
agents are wrapped with a Safety Shield, which prevents the execution of unsafe placement actions that can
be proven dangerous for the operation of the End-to-End (E2E) slice performance.

Intra-Domain Distributed Orchestration with Safe Distributed Reinforcement Learning

In this work, we deploy Safe RL agents per each domain to orchestrate the slice VNFs inside the borders of a
domain 𝑛 . Additionally, a module called the Auction Mechanism that enables inter-domain migration is
developed. During the operation, the Auction Mechanism circulates through the slice VNFs and the domain

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 54

Safe RL agents bid to win the auction and receive the VNF in auction. The goal is to use multiple distributed
Safe RL agents, one per domain to orchestrate slice VNFs with respect to a specific KPI, e.g., E2E average slice
latency in this work, in a scalable way.

The domains are responsible to orchestrate the hosted VNFs locally and asynchronously, to avoid
unnecessary migrations. The local agents consist of multiple modules that cooperate to perform the task of
safe inter-domain, intra-slice VNF placement. Our approach is a SafeRL-enabled agent based on the work of
Aumayr et al. [24] that uses a modular shield architecture and a safe baseline. The action proposed by the RL
agent is benchmarked against a safe baseline through a Safety Shield that chooses the safest action to be
performed on the environment.

Figure 28. SafeRL-based local domain architecture.

Briefly, the Local Agent architecture and components, as shown in Figure 28, are:

1. Environment: This component represents the environment that the agent is interacting with, modeled
as a standard RL problem. It provides interaction with the local domain 𝑛 part of the network
infrastructure which was described in the previous section.

2. RL Agent: The RL agent is continuously trained during the interaction with the Environment to
improve their future recommended actions for VNF placement. The agent indirectly interacts with
the Environment by proposing actions to the Safety Shield and getting feedback on the actual action
performed.

3. Safe Baseline: The Safe Baseline provides a default action, usually sub-optimal in terms of
performance, yet safe with regards to what safety indicates for the system at hand. In our scenario,
we define safety as an action that does not lead to breaking any service SLAs. Safe Baseline is a rule-
based algorithm that recommends actions satisfying safety rules, usually designed by domain experts.
Baselines also receive the current state of the Environment as feedback, to suggest future actions.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 55

4. Safety Shield: This component is the middleman between the RL agent and the Environment. In the
non-Safe RL architecture, the RL agent directly interacts with the environment and receives feedback.
On the contrary, in the SafeRL architecture the Safety Shield is a broker between the RL Agent and
the Environment to protect the environment from unsafe actions. The Safety Shield collects the
actions proposed by the RL agent and the Baseline and selects a final safe action to be performed in
the Environment. The environment feedback includes the action that is performed by the shield on
the environment and is fed back to RL agent and the Baseline, so that they are aware of the new state
of the Environment before the next iteration.

1. Safety Logic: The logic provides constraints to the Safety Shield. It includes the logic used to
determine what is the safest action between the one proposed by RL agent and the Safe Baseline at
any time. Due to the modularity of this architecture, it supports various implementations.

Local Deep Q-Network RL agents
We model the intra-domain VNF placement and orchestration problem as a Markov Decision Process (MDP)
which consists of a State, an Action Space and a Reward Function. The MDP problem space can be defined as
follows:

1. State Space: Consists of the intra-domain computational resources of the domain nodes 𝑢 . The local
domain state space 𝑆 is defined as a set that contains the VNF hosting computing requirements, the
slice SLA and the domain computing and networking utilization ratio for each network element.

2. Action Space: The Confidence Vector 𝐴 , a vector that contains an offer ∈ [−1,1] for each domain
server 𝑢 to receive the VNF currently to be placed. The maximum of this local action indicates an
intra-domain VNF migration.

3. Reward: The objective of all domains 𝑛 is to maximize the sum of the reward function in every
iteration and thus, converging in a common state-action that enables cooperation among the
domains:

𝑅 =
⋅

+ 𝑃,

where 𝑤 is the weight of the total slice delay 𝐷 .

In addition, we define a penalty function that is applied when the SLA of the slice 𝑠 is violated:

𝑃 =
−𝑤  𝑖𝑓 𝜑

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

where 𝑤 expresses the penalty weight.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 56

Inter-Domain VNF Orchestration & Auction Mechanism
The Auction Mechanism (see Figure 29) is a system that enables inter-domain VNF migration. It acts as an
auctioneer between the domains who bid with their actions to receive a slice VNF to their domain.

Figure 29. Overview of the multi-domain and distributed Auction Mechanism.

All local domains can orchestrate VNFs in parallel and exchange VNFs only during an auction.

The Auction Mechanism repeats the following steps in every iteration:

1. Selection: The Auction Mechanism circulates through the slice VNFs during an interval, a predefined
time frame. As an auctioneer, it selects the next VNF in round robin fashion for the auction process.

2. Participation: The per domain 𝑛 Local Agents act as bidders that generate their bid, an action 𝐴
produced by the Local RL Agent and secured by the Safety Shield as previously described.

3. Auction: The mechanism receives all domain bids and selects the highest bidder (the domain with the
highest bid). The candidate domain is notified to initiate the migration.

4. Orchestration: If the candidate domain is not the current domain, the inter-domain migration is
initiated. Otherwise, the domain agent performs an intra-domain migration based on the safeRL
action to the node with the highest bid.

The Auction Mechanism is only responsible for the inter-domain communication. It is non-essential for the
local domain orchestration. The Auction Mechanism can be deployed quickly as a stateless container at any
node of the network, eliminating the single point of failure.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 57

5.3.3 FIT INTO THE DE DISTRIBUTED ARCHITECTURE
In this work, we deploy Safe RL agents per each domain to orchestrate the slice VNFs inside the borders of a
domain. Additionally, a module called the Auction Mechanism that enables inter-domain migration is
developed. During the operation, the Auction Mechanism circulates through the slice VNFs and the domain
Safe RL agents bid to win the auction and receive the VNF in auction. The goal is to use multiple distributed
Safe RL agents one per domain to orchestrate slice VNFs with respect to a specific KPI, e.g., E2E average slice
latency in this work, in a scalable way.

5.3.4 VALIDATION RESULTS
Configuration

As Safe Baseline we use an algorithm called Compu that migrates the VNF to the local server with the most
resources available as a default action. This action is deemed safe, as the inter-domain servers are in
proximity and introduce less latency than servers located in different domains, leaving computational
resources as the major source of additional delay.

Overloaded servers introduce software delays; thus, resource utilization should be a decisive factor and be
prioritized compared to the server distance when it comes to designing a baseline action which is applied in
case of an unsafe action proposed by the RL Agent. We use it as a demonstration of custom rules.

Baselines

The performance of SafeSCHEMA is compared with three main baselines:

1. SCHEMA is a non-safeRL version of SafeSCHEMA. Comparing it with a flat distributed solution.
2. DQN is a DRL-based orchestration algorithm located in a central location. It is a common type of

baseline approach in related research literature.
3. Static is a placement method adopted by many works as the default baseline.

Performance Evaluation

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 58

Figure 30. Performance of SafeSCHEMA (service latency).

a) Average slice latency per number user. (b) Average slice latency per number of domains. Lower is better
for both figures.

In Figure 30, subfigure a) depicts the average E2E slice latency in milliseconds (ms) for a varying number of
users, uniformly scaled per slice. We observe that the average slice latency increases with the number of
users as they occupy more network resources and limit the possible VNF placement options that satisfy all
users with low latency, no matter of their location in the network. It is apparent that the guaranteed SLA,
defined as 10ms for the slice is respected by SafeSCHEMA. Additionally, it can outperform the distributed
baseline of SCHEMA as it filters any unwanted proposed actions from the agents that will violate the SLA,
thus lowering the average slice latency.

Subfigure b) demonstrates the scalability of SCHEMA and the superiority of SafeSCHEMA as the Safety Shield
module and the Baseline protect the network from unsafe RL agent actions. Introducing more domains in the
network exponentially increases the complexity of the orchestration, but as we can see in the same figure
SCHEMA and SafeSCHEMA were able to resist the degradation of performance as the state space grew with
the introduction of new domains. This behavior can be attributed to the distributed architecture that
orchestrates the slice VNFs locally and exchanges them only when needed by both algorithms. The
performance superiority of SafeSCHEMA can be attributed to the use of the Safety Shield that prevents any
unsafe actions from being executed in the network and replaces them with non-optimal but safe actions that
can keep the average slice latency low.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 59

Figure 31. SafeSCHEMA (slice latency).

(a) Average slice latency per number of slices. (b) Average slice latency per number of chained slice VNFs.
Lower is better for both figures.

Figure 31a) presents the performance of the compared algorithms during the operation of multiple slices,
hence their ability to maintain performance, demonstrating the ability to scale horizontally. We observe again
that both distributed solutions were able to outperform the rest of the baselines. SafeSCHEMA takes the
edge in this scenario by having a 15.38% lower latency than SCHEMA. The reason for this is the divide-and-
conquer approach that drastically reduces the orchestration complexity and tackles it with minimal overhead.

In Figure 31 b) the average slice latency is plotted against the number of chained VNFs on each of 4 slices. It
is clear, especially in the case of 2 and 4 chained slice VNFs that SafeSCHEMA was able to maintain a lower
slice latency by 20.18% from SCHEMA and 126.62% from Static in the case of 8 VNFs.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 60

Figure 32. Comparison of SafeSCHEMA with other algorithms.

(a) Latency deviation per algorithm. (b) VNF Occupancy index represents the average number of hosted
VNFs per total number of VNFs for 100 iterations of simulated traffic.

Finally, in Figure 32 a) we show the latency deviation of all competing solutions of our work for 4 slices. It is
apparent that from the two distributed solutions, only SafeSCHEMA was able to avoid violating the slice SLA
of 10ms as the Safety Shield protects the network from unsafe actions.

Figure 32 b) presents the behavior of SafeSCHEMA that gravitated towards consolidating the chained slice
VNFs to reduce the number of hops to the end-user and thus, reduce the average slice latency.

5.3.5 MONB5G RELATED CHECKBOXES/KPIS
✓Intra-slice re-configuration and resource allocation.

✓Reconfigure VNF location and chaining dynamically.

✓Utilize key inputs (capacity, load of links, congestion level of local and alternative computing resources,
history thereof, and KPI predictors from the distributed AEs.

✓Propose reinforcement learning algorithms running locally.

✓Receive KPI predictions from the AE (periodically or event-based) and attempt to identify feasible local
reconfigurations (i.e., affecting only a part of the chain) that could reconcile the slice SLA or apply a specific
intent policy, without the need for global reconfiguration or migrating the entire chain.

✓Quantify the confidence in the ability of the locally optimized/reconfigured slice to resolve the potential
problem.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 61

6 Inter-slice Orchestration

6.1 Introduction
This Chapter focuses on the problem of inter-slice orchestration, which lies a level above its intra-slice
counterpart and requires a wider picture of the network and its performance. Some of the key characteristics
of this problem, as discussed in D4.1, are that a DE at this level needs to take special care of reconfiguration
costs, diverse SLA agreements, efficient use of network resources, and to be able to handle a large number
of slices. However, this is very challenging to achieve, because multiple slices (possibly spanning across
multiple technological domains) give rise to very high complexity problems that are difficult to solve even for
a very small number of slices.

In the corresponding Chapter of the previous deliverable (D4.1) we presented some first algorithmic
approaches, focusing mainly on domain specific inter-slice orchestration. The proposed solutions included a
Reinforcement Learning algorithm for VNF placement and reconfiguration, a Multi-Armed Bandit algorithm
for RAN resource allocation, and a probing scheme for VNF bottleneck localization. We also previewed how
the system model could be extended to possibly incorporate more than one domain.

This deliverable builds on to either provide extensions to the solutions of D4.1 (aiming mainly to increase
their scalability and to support many slices) or to apply them in more practical use cases. More specifically,
each of the following subsections will be dedicated to a different solution related to inter-slice orchestration.

In Section 6.2, the VNF placement and migration algorithm, originally demonstrated for one domain in D4.1
has been extended as follows: (i) it now supports multiple VNFs per slice, namely an arbitrary, probabilistic
VNF graph (allowing also for loops); (ii) various realistic end-to-end performance metrics for the average flow
served by such a VNF graph can now be supported; (iii) a multi-agent solution, where a DE (agent) resides
with each slice (or even with each VNF of a slice) that radically improves the scalability of the scheme as the
number of slices (or VNF host locations) increase while still maintaining close to optimal performance.

In Section 6.3, the RAN resource allocation algorithm has been extended so that: (i) it enables resource
allocation at the edge of the network, thus accounting for more timely and accurate information; (ii) it
dramatically decreases the amount of control information that needs to cross the network to reach the
central controller, thus reducing overhead towards the core network and avoiding bottlenecks; (iii) it enables
the provisioning of federated learning schemes to further enrich the capabilities of the decision agents.

In Section 6.4, the probing scheme for VNF bottleneck localization is now applied in a more practical use case
relying on a docker based Service Chaining Function.

6.2 Independent DQN agents for end-to-end slice reconfiguration
In this Section we propose a multi-agent DRL algorithm for dynamic and efficient end-to-end (e2e) slice
embedding and reconfiguration. We first describe the problem at hand and the system model in 6.2.1. Then,
in 6.2.2, we describe the solution tools proposed by first formulating the problem as a Markov Decision
Process (MDP) and then presenting the candidate RL algorithms. In 6.2.3 we explain how the proposed
solution fits into the MonB5G distributed DE architecture and in 6.2.4 we validate it by simulations, verifying

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 62

the scalability of the proposed algorithm and its superior performance compared to the baselines. Finally, in
6.2.5 we outline which MonB5G goals are achieved by the proposed algorithm.

6.2.1 PROBLEM DESCRIPTION
The problem at hand is to dynamically decide the configuration (embedding) of slices on top of a multi-
domain Physical Network (PN) for unknown/stochastic user generated traffic, in a way that minimizes e2e
SLA violations, operating costs and reconfigurations in the long run. In what follows we will present the
components of the system model; to clearly define the various components, we will often be referring
throughout this Section to Figure 33, which depicts a simple example of embedding 2 slices on top of a multi-
domain PN.

6.2.1.1 MAIN COMPONENTS OF THE SYSTEM MODEL

The system model comprises two main components, the Physical Network, and the Network Slices, which are
commonly represented by graphs in the literature [25], [26]; a similar modeling viewpoint is used here as
well.

Physical Network. It is represented by a weighted undirected graph 𝐺 = (𝒱, ℰ), and possibly comprises
multiple (technological or administrative) domains. Each (physical) node 𝑣 ∈ 𝒱 (𝑉 in total) has a
corresponding capacity 𝑏 to host VNFs of its domain (it can be resource blocks, CPU cores, containers, etc.,
depending on the domain). Some of the nodes may be just routers, so they have 𝑏 = 0. Accordingly, each
(physical) link (or path) 𝑒 ∈ ℇ (𝐸 in total) has some fixed capacity 𝑏 (e.g., bandwidth). In the example of
Figure 33 there are 3 domains (CRAN, MEC, CN) with (3, 2, 3) nodes respectively, where VNFs could be
executed (servers), and associated capacities 𝑏 . These servers are connected either through physical links
(of capacity 𝑏), or paths comprising multiple links and nodes of the network1.

Network Slices. We consider a set of slices 𝒦 (𝐾 in total), which must be embedded on top of the PN. A slice
𝑘 is represented by a directed graph 𝐻 = (𝒩 , ℒ), where the nodes correspond to Virtual Network
Functions (VNFs) and the edges correspond to Virtual Links (VLs). The VNFs process the flows that belong to
this slice and can be viewed as tasks running on host servers, while the VLs indicate the order of how these
tasks must be executed. In Figure 33, Slice 1 is an example of a simple “VNF chain”, where all flows must first
get processed by VNF1 and then by VNF2, to receive the offered e2e service. Our model is generic, allowing
for both loops (e.g., flows passing by the same VNF multiple times), as well as probabilistic routing of flows
(e.g., to capture scenario where not all flows of a slice require all VNFs in the same order). An example of
such a chain is depicted in Figure 33, where for Slice 2, a percentage of flows from VNF1 proceed to VNF2
directly, while the rest must pass through VNF 3, possibly going back to VNF 1 as well.

1 w.l.o.g., and to keep the model simple, we assume that the routing path between any two nodes is given

(predetermined).

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 63

Figure 33. Graphical Illustration of the system model

VNF demands 𝑑 , : Each VNF 𝑛 of slice 𝑘 is associated with a resource demand 𝑑 , (𝑡) at each time 𝑡,
that will be imposed on the physical node where the VNF is executed.

Virtual link (VL) demands 𝑑 , : Similarly, each (virtual) link 𝑙 of slice 𝑘 has resource demand 𝑑 , (𝑡) 2.

Remark: These demands are often unknown, stochastic, nonstationary (correlation between VNFs of the
same slice is also common); the main reason why we require a learning-based optimization algorithm to tackle
this problem.

Demand vector 𝐷 : Let vector 𝐷 denote the VNF and VL demands of all slices at time 𝑡.

Service Level Agreements 𝑞 : Each slice 𝑘 comes with some slice-specific requirement 𝑞 , which defines
the maximum (or minimum) acceptable value for an end-to-end KPI metric (e.g., in Figure 33 each of the
slices has a service level agreement for some maximum e2e queuing delay).

Control variables 𝑥 , , : equal to 1 when VNF/VL 𝑖 of slice 𝑘 is hosted by node/link 𝑗, and 0 otherwise.

2 Note that this load will be added to all physical links along the PN path between the execution nodes hosting

the two VNFs connected by virtual link l.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 64

Configuration 𝐶 : Let vector 𝐶 denote the configuration (embedding) of all VNFs to physical nodes at
time 𝑡. As an example, in Figure 33, VNF 1 of Slice 1 is hosted by Node 2, hence 𝑐 , = 2, and the configuration
is 𝐶 = [𝑐 , , 𝑐 , , 𝑐 , , 𝑐 , , 𝑐 ,].

6.2.1.2 E2E KEY PERFORMANCE INDICATORS AND SLAS

In what follows we will first introduce the functions that determine the “local” performance of a VNF or a VL
(Local key performance indicator functions), which is related to the aggregate demand of the VNFs or VLs
assigned to the host physical node or link and its corresponding resources. Then, we build on that to define
the slice-specific e2e key performance indicators and the associated SLAs.

Local Key Performance Indicator functions. We define a slice-specific local key performance indicator
function 𝑓 (𝐶 , 𝐷), which can be applied on any physical node/link 𝑗 traversed by the slice and gives a local
performance metric as a function of the aggregate traffic demand on the specific node/link and its total
capacity. These functions might even differ among technological domains and could possibly capture any
performance indicator metric. We will give two simple examples by introducing the queuing delay and the
underprovision local performance indicator functions (however more types of KPIs can be also incorporated
in the framework).

 Queuing delay: We assume that the packets for each VNF 𝑛 ∈ 𝒩 and VL 𝑙 ∈ ℒ of slice 𝑘 arrive
according to a Poisson process with rate 𝑑 , and 𝑑 , respectively. Consequently, at each server or
physical link 𝑗 ∈ 𝒱 ∪ ℰ the packet arrivals are Poisson with rate equal to the sum of rates over the
VNFs/VLs assigned on the server/link. Moreover, we model each server and link as an 𝑀/𝐺/1/𝑃𝑆
queue with Processor Sharing scheduling policy and a generic distribution of service times with mean
value 1/𝑏 . We calculate the mean response at each server (queuing delay) by the standard closed
form formula for a stable system [33] 3 :

𝑓 (𝐶 , 𝐷) = 1/(𝑏 − 𝑧 (𝐶 , 𝐷))

where 𝑧 (𝐶 , 𝐷) = ∑ ∑ 𝑑 , ∙ 𝑥 , ,∈𝒩 ∪ℒ∈𝒦

 Underprovision: We assume that the resource demand is the capacity required on a server or a
physical link to serve the user-generated traffic. When the aggregated demand of the VNFs or VLs
assigned on a server or physical link exceeds its nominal capacity, the QoS perceived by the end-
users of the associated slices is negatively affected [34]. The corresponding performance function
can be defined by:

 𝑓 (𝐶 , 𝐷) =
𝑧 (𝐶 , 𝐷) − 𝑏 , 𝑖𝑓 𝑧 (𝐶 , 𝐷) > 𝑏

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

E2E Slice Key Performance Indicators. An e2e key performance indicator 𝑓 (𝐶 , 𝐷) for a slice 𝑘 can be
calculated based on the local key performance indicator functions 𝑓 (𝐶 , 𝐷), and in the simplest case scenario
it is just the sum of their output values when they are applied to all physical nodes and links traversed by the

3 We assume that two VNFs of the same slice cannot be executed in the same node.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 65

slice. As an example, in Figure 33, the e2e queuing delay experienced by slice 1 is the sum of the delays in
node 2, link (2,3), link (3,6), link (6,9), link (8,9), and node 8. In the case of a more complex slice, a Jackson
network type of analysis could be applied to calculate the delay. In the remainder we focus on simple chain
slices without loops.

6.2.1.3 OPERATIONAL COSTS

Given the (usually unknown) demands 𝐷 and the configuration 𝐶 at time 𝑡, we assume that the system
suffers an instantaneous cost related to both the network performance (i.e., direct cost to the operator) and
slice performance (e.g., indirect cost related to SLA violations). We choose to consider the following three
cost quantities in this work (other components can be straightforwardly added to the framework):

Type 1 cost: Node utilization. This is the cost paid by the network operator for operating expenses. It is equal
to the number of servers that are active (host at least one VNF) and relates to the energy consumption of the
network. Minimizing this cost also facilitates the admission of new slices by maximizing the free space of
resources [29].

𝑐𝑜𝑠𝑡 (𝐶) = ∑ 𝛽∈𝒱 ,

where 𝛽 = 1 𝑖𝑓 ∑ ∑ 𝑥 , ,∈𝒩∈𝒦 ≥ 1

Type 2 cost: Reconfiguration. This is the cost for migrating VNFs from their host servers to other servers in
the network. It relates to the overhead generated for reassigning all VNFs and the delays incurred by this
action [30].

𝑐𝑜𝑠𝑡 (𝐶 , 𝐶) = 1/2 ∙ |𝑥 , , (𝑡 + 1) − 𝑥 , , (𝑡)|

∈𝒱∈𝒩∈𝒦

Type 3 cost: SLA violation. When the maximum value 𝑞 defined by the SLA is exceeded, a penalty is paid by
the network operator to the slice tenant. This penalty can take any form that is appropriate to model the
violation of the corresponding e2e KPI, e.g., linear or quadratic. We give as an example the linear form:

𝑐𝑜𝑠𝑡 (𝐶 , 𝐷) = (𝑓 (𝐶 , 𝐷) − 𝑞)

∈𝒦

6.2.2 SOLUTION TOOL
Our goal in the dynamic slice embedding problem is to decide the configuration 𝐶 at every time 𝑡, (i) towards
optimizing the total system cost (consisting of the various cost components) over a discounted infinite time
horizon, while (ii) not knowing a priori how demands 𝐷 evolve over time. This is an online learning and
control problem, for which Reinforcement Learning (RL) schemes are a natural candidate. Towards this
direction, we will first formulate the problem as an infinite horizon discounted MDP, assuming that traffic
demand is discretized and transitions between different levels follow a known Markov Chain. Then we will
present the exact algorithms that can solve this problem optimally (Policy Iteration, Q-learning), and explain
why their application in large scale scenarios is precluded. Finally, we propose two DRL algorithms (DQN and
IDQN) that use approximation in state and action spaces to reduce problem complexity/convergence time
and advance scalability.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 66

6.2.2.1 MDP PROBLEM FORMULATION

To formulate the problem as an MDP we must define the state and action spaces, the transition probabilities
between states (the system’s dynamics), the reward function and the objective function.

States. The state of the system at time 𝑡 is defined by the tuple 𝑆 = (𝐶 , 𝐷), where 𝐶 is the system’s
configuration and 𝐷 the demand vector.

Actions. If at time 𝑡 the system is at state 𝑆 , then the action 𝐴 , taken at 𝑡, deterministically defines the
configuration (𝐶) to be applied at t + 1 (without knowing the demand vector 𝐷 at the next time step).

Transition Probabilities. To facilitate the formulation of the problem as a finite Markov Decision Process, we
will consider the case of discretized VNF/VL demands that take values from a set of demand levels ℬ (with
cardinality 𝐵). The transition to state 𝑆 = (𝐶 , 𝐷) at t+1 depends on the action 𝐴 , and on the
probability distribution of the demand vector in the next time interval. This is assumed to be known and can
possibly capture traffic correlation among VNFs of the same slice but also among slices as well. Since the only
stochastic variable of the system is the demand, the probability of a transition from 𝑆 to 𝑆 is given by:

𝑃(𝑆 |𝑆 , 𝐴) = 𝑃(𝐷 |𝐷)

Reward. It is a function of the state 𝑆 and the next state of the system 𝑆 , and involves the three cost
terms introduced in 6.2.1.3 through the following weighted sum:

𝑟 = −(𝑤 ∙ 𝑐𝑜𝑠𝑡 (𝑆) + 𝑤 ∙ 𝑐𝑜𝑠𝑡 (𝑆 , 𝐴) + 𝑤 ∙ 𝑐𝑜𝑠𝑡 (𝑆))

The three weights 𝑤 , 𝑤 , 𝑤 determine the importance of each term and sum to one. Note that the
immediate cost is equal to the negative reward.

Objective. The objective is to find the optimal policy 𝜋∗(𝑆), meaning the mapping from states to actions that
maximizes the expected accumulated reward over a discounted infinite horizon:

𝜋∗(𝑆) = 𝑎𝑟𝑔 max
()

𝔼 ()(𝛾 𝑟)

Note that the expectation is over the transition probabilities 𝑃(𝑆 |𝑆 , 𝐴) while following policy 𝜋(𝑆).
Moreover, 𝛾 ∈ [0,1) is the discount factor, where for larger values of 𝛾 future costs become more important.

6.2.2.2 POLICY ITERATION

Policy Iteration (PI) is a standard Dynamic Programming algorithm; details about its structure can be found
in most DP/RL textbooks (e.g., [31]). PI computes offline the optimal policy using an iterative procedure of
consecutive policy evaluation and policy improvement stages.

It is applicable in the slice embedding problem when the traffic demand values are discrete, and their
statistics (transition probabilities) are known. The advantage of this algorithm is that it is guaranteed to
converge to the optimal policy. However, traffic dynamics are usually not known beforehand in a realistic
slice embedding scenario. Moreover, PI is plagued by the state and action complexity, which rapidly increases
its computational and memory requirements, while at the same time a key characteristic of the slice
embedding problem is its immense number of states and actions. As an example, let's consider just a single

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 67

domain network with slices that comprise only one VNF each (no virtual links), and all VNFs have the same
number of traffic demand levels 𝐵. Then, the state space consists of |𝑺| = 𝑉 ∙ 𝐵 states, since each VNF/slice
(𝐾 in total) can be placed on 1 out of 𝑉 servers and the corresponding demand of each slice takes 1 out of 𝐵
values. Even in this toy scenario and for a moderate number of servers (𝑉 = 10), slices (𝐾 = 10) and demand
levels (𝐵 = 10), the cardinality of the state space soars to 10 states while there are 10 actions per state.
Consequently, PI is practically applicable only in small sized toy scenarios of the slice embedding problem, as
it suffers from the curse of dimensionality.

According to the above-mentioned characteristics, we utilize PI in the validation section as the optimal
baseline in small sized MDP scenarios, where the traffic demand is discrete. However, to tackle realistic
scenarios we need to employ an algorithm with the ability to work under unknown traffic dynamics and large
state and action spaces.

6.2.2.3 Q-LEARNING

Q-learning (QL) is a standard tabular RL algorithm; details can be found in any RL textbook, e.g., [32]. It is an
off-policy temporal difference method that learns the optimal action value function 𝑄∗(𝑆, 𝐴) through
interaction with the system (training). The optimal action value function is represented by a table, called the
Q-table, with as many entries as the number of possible state-action pairs.

QL is a better fit for the slice embedding problem compared to PI, since it does not require any knowledge of
traffic statistics beforehand. It is also guaranteed to converge to the optimal policy under minimal conditions.
However, QL still suffers from the curse of dimensionality, which renders it not applicable in realistically sized
scenarios (or scenarios where the traffic demand is continuous). Recalling the toy example of 6.2.2.2, the QL
algorithm would have to learn the correct values of 10 ∙ 10 = 10 table entries, which would require a
vast amount of memory and computation time. Note that QL updates only the value of the state-action pair
encountered each time, so many visits at each state-action pair are required for the algorithm to converge.

We utilize QL as another baseline in small sized MDP toy scenarios in the validation section. However, it is
obvious that the tabular representation of the 𝑄 function is an obstacle to be overcome in order to tackle
larger scale problems.

6.2.2.4 DQN

A way to reduce the state complexity of the problem at hand is to use a parametric function to approximate
the action value function instead of the tabular representation in QL. Towards this direction, we apply a DQN,
introduced in [33], which employs a deep neural network for the approximation of the 𝑄 function, and
mechanisms like the experience replay memory and the target network that counteract to any instabilities
caused during the learning process due to the use of a neural network approximator.

Architecture. We have retained the main architectural elements and features of the DQN as they were
introduced in [33]. The only major difference is that the DNN we use is just a simple Multi-Layer Perceptron
(MLP) comprising three hidden layers. This choice is towards having an architecture that is as simple as
possible for the specific problem but without compromising the algorithm’s performance. The input to the
MLP is the state of the system, represented by the vector 𝑆 as defined in subsection 6.2.2.1. The number of
neurons at the output layer is equal to the number of possible actions (system configurations), and each
output neuron corresponds to the Q-value of an action. As for the hidden layers, each of them is equipped
with 60 neurons while its output is activated by a Rectifying Linear Unit (ReLU) function.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 68

Application scenarios. DQN can be applied in the slice embedding problem to reduce state complexity when
the traffic demands are either discrete or continuous and the number of possible system configurations is
not very large. This algorithm is not suitable for large action spaces because the number of output neurons
of the DNN is equal to the number of possible actions. Since, in realistic scenarios, the problem at hand
demonstrates a high action complexity, a slightly different approach is required to deal with the large action
space and enable the use of DQN.

6.2.2.5 IDQN

One way to reduce the action complexity in Q learning is to use multiple QL agents instead of a single
centralized one [34]. In that way, the central action can be decomposed into several components, each taken
by a different agent. Towards reducing both the state and the action complexity, the most straightforward
approach is to simply combine the multi-agent concept with the DQN algorithm [35]. This results to a multi-
agent scheme with Independent DQN agents (IDQN), which uses approximation both in state and action
spaces, and is the proposed algorithm for better scalability.

Action decomposition. For the slice embedding problem, the decomposition of the action into multiple
components can be realized in different levels, e.g., each agent may be responsible for the configuration of
a slice or even the configuration of a single VNF. In the remainder we consider one agent per VNF to
completely avoid the combinatorial aspect of the action and maximize the algorithm's scalability. Using this
type of decomposition, the action for each agent is to decide the node where the associated VNF will be
placed in the next timeslot. Consequently, the number of possible actions per agent is equal to the number
of nodes that can host the VNF.

Inputs and Outputs. Here we consider Independent DQN (IDQN) agents that work cooperatively towards a
common goal. So, all agents have access to the global state of the system and the global cost of their actions,
but they are independent since they have no information regarding the behavior of the other agents.
Consequently, the input and the reward for all agents is the same as in the centralized DQN version (the input
is the global state and the reward is the negative cost incurred by the collective action of all agents), but the
output is different for each agent, since it corresponds to the Q-values of all possible agent-specific actions.

Architecture. The IDQN architecture for each agent is similar to the single centralized DQN described in
6.2.2.4. So, each agent maintains a DNN and has its own set of parameters, its policy and target networks,
and replay buffer. The important difference is that the number of output neurons is significantly lower now
due to the decomposition of the centralized action (it is equal to the number of nodes where the associated
VNF can be placed).

6.2.3 FIT INTO THE DE DISTRIBUTED ARCHITECTURE
The proposed IDQN algorithm can support multiple slices/VNFs across different technological domains
considering e2e KPIs. Consequently, it could be positioned in the IDMO functional block of the MonB5G
architecture, presented in Chapter 3. As discussed in Subsection 6.2.2.5, the action can be decomposed so
that each IDQN agent is responsible for the placement (embedding) of a slice (e2e) or even for the placement
of just a VNF. Hence, since an IDQN agent can be perceived as a DE, the distribution of the DEs is flexible
(either 1 DE per slice or 1 DE per VNF). In the validation section we consider 1 DE per VNF in order to have
the minimum number of output neurons per agent. In Figure 34 there is an example demonstrating the
distribution of the DEs. In this example we consider a physical network with two technological domains (Edge

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 69

and Core), each of them comprising two servers. There is also one slice with two VNFs to be embedded (one
per domain). A DE is attached to each VNF and is responsible for selecting its host server. Each DE receives
at its input the state of the system and the reward of the collective action by the MS (and possibly the AE).
Note that the agents are conceptually distributed, in order to tackle the high complexity of the problem.
Moreover, the computations can be distributed by assigning each agent to a different CPU core. However,
the agents still require global information to make a decision. So, this is not a fully decentralized algorithm
as the MS and the AE must have a wide view of the system.

Figure 34. Link to MonB5G architecture.

6.2.4 VALIDATION RESULTS
The validation section is divided into two parts. In the first part we examine the scalability of the algorithms
presented in 6.2.2 by comparing both their convergence speed and the optimality of the obtained policies.
After verifying the better scalability of IDQN compared to the centralized solutions, we will apply it in a
realistic large-scale scenario and compare its performance with static baseline policies.

Algorithmic parameters. In the scenarios that follow, all algorithms use the same γ value (𝛾 = 0.9) and their
exploration rate is set constant to 𝜀 = 0.1 during training (to facilitate the comparison of their convergence
speed). Regarding the hyperparameters of the DRL algorithms, we use the following values both for DQN and
IDQN, minibatch size: 32, target network update period: 500 timeslots, experience replay memory size: 5000
timeslots.

6.2.4.1 SCALABILITY OF ALGORITHMS

Setup parameters. We consider a PN that consists of a single technological domain (e.g., the Edge). The
number of servers and the number of slices are both tunable, and we set them according to the size of the
problem we want to examine. Towards keeping the scenario as simple as possible and without loss of
generality, the slices to be embedded comprise just one VNF each. The traffic demand of each VNF/slice
transitions between two levels of demand (it is either 0 or 1) according to the following Markovian transition
probability matrix:

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 70

𝑃 =
0.98 0.02
0.02 0.98

This captures a very simple scenario where each slice has bursty traffic periods followed by long silence
periods, not necessarily coinciding, to better illustrate the optimality of the chosen actions, as well as the
performance of static heuristics. We also assume that traffic demands of different slices are independent
(which can be a realistic scenario since each slice is devoted to a different application). Note that the use of
Markovian traffic in this first part of the validation section facilitates the use of PI algorithm that is guaranteed
to converge to the optimal policy and can provide a benchmark. Using the above dynamics we generate two
different datasets, one for the training of the algorithms (2 ∙ 10 timeslots) and one for their testing (80000
timeslots). As for the SLAs, we consider the underprovision SLA, where 𝑞 = 0 for all slices and a quadratic
penalty is incurred when SLA violations occur.

Tested Scenarios. We will examine two different scenarios towards validating the scalability of IDQN. First, a
small-scale scenario, where we can apply all four algorithms of section 6.2.2 (PI, QL, DQN, IDQN). This will
allow us to compare both the convergence speed of the (D)RL algorithms and the quality of the obtained
policies with respect to the optimal one given by PI. After verifying that both DQN algorithms can obtain near-
optimal policies faster than tabular QL, we will further increase the size of the problem and examine how the
performance of DQN and IDQN is affected.

Scenario 1 – Small size problem. In this scenario we consider a single domain PN with 2 servers and 4 slices.
Each of the algorithms is trained and tested over the respective datasets 10 individual times, with a different
random seed each time. The results are given in Figure 35 and Figure 36. The plot of Figure 35 depicts the
cost incurred by each algorithm (averaged over the 10 runs) as a function of the timeslot during training. This
plot demonstrates the faster convergence of both DQN algorithms compared to QL, despite the small size of
the problem. However, IDQN does not seem to convergence faster than DQN. This is because in this scenario
the number of actions at each state is 16, which is still very small to have any impact on the learning process
of the DQN.

Figure 35. Convergence speed comparison for IDQN, DQN and QL algorithms (scenario 1 - small scale

problem).

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 71

In Figure 36, there is a box plot comparing the average cost per timeslot in the testing stage by each of the
algorithms for the 10 runs. This plot includes the minimum cost given by the optimal policy (PI), as well as
the cost of two static baseline policies (split all and group all) and the cost of taking random actions. Note
that split all policy minimizes SLA violations by splitting the VNFs to all available nodes, while group all policy
minimizes energy consumption by placing all VNFs on the node with the largest capacity. It can be deduced
that despite using Q function approximation, the derived policies by DQN and IDQN are close to the true
optimal. Of course, the cost of IDQN demonstrates larger variance, due to the additional approximation in
the action space. However, IDQN still performs much better than the two static baseline policies used as
benchmarks (split all and group all).

Consequently, this first scenario verifies that DQN and IDQN can convergence to near optimal policies faster
than QL, and those sequential decision-making algorithms can provide dynamic policies that are more efficient
compared to some heuristic baselines (static policies).

Scenario 2 – Moderate size problem. In this scenario we consider a single domain PN with 3 servers and 7
slices. This time we apply only DQN and IDQN, since the high computation and memory requirements of PI
and QL are prohibitive (e.g., QL requires a Q-table with 6 × 10 table entries). We follow the same procedure
as in Scenario 1, and the results are given in Figure 37. IDQN converges roughly 10 × faster than DQN, to a
policy of similar quality. This is due to the size of the action space which is starting to grow large and makes
the training of a centralized agent slower. Note that for this scenario the MLP of a centralized agent requires
2187 output neurons while the MLP of a distributed IDQN agent requires only 3.

All in all, in this section we have verified the scalability of IDQN compared to the centralized solutions (QL and
DQN).

Figure 36. Cost comparison of (D)RL algorithms with optimal and baseline policies (scenario 1 - small scale

problem)

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 72

Figure 37. Convergence speed comparison for IDQN and DQN algorithms (scenario 2 - larger scale problem).

6.2.4.2 APPLICATION OF IDQN IN LARGE SCALE SCENARIO

Setup parameters. We consider a PN consisting of two technological domains, the Edge, and the Core. In this
second part of the validation section, we consider SLAs related to the e2e queuing delay (linear penalty for
SLA violations), so each server is characterized by its mean service rate. The Edge comprises 9 servers while
the Core consists of 3 servers. We made this choice since it is more realistic to have a higher number of
servers with lower mean service rates distributed on the Edge and a lower number of servers with higher
mean service rates in the Core network (large datacenters). Moreover, there are 10 slices with different SLAs
to be embedded on top of the network. Each slice comprises two VNFs, one for the Edge and one for the Core
domain (for simplicity we assume again that there are no VLs involved). The traffic demand of the VNFs is
continuous with unknown time dependence, as we import it from the Milano dataset. More specifically, we
map the timeseries of a different base station to each VNF and choose correlated timeseries for VNFs of the
same slice (to make the setup as realistic as possible).

Results. The results are given in Figure 38, which demonstrates the average cost per timeslot in the testing
dataset (averaged over 10 runs) for each of the policies. Since it is not possible to apply a centralized
algorithm in such a large-scale scenario (a centralized DQN would require 2 × 10 output neurons), we use
only the static baseline policies as benchmarks. According to the results IDQN demonstrates 43% lower cost
compared to the baseline policies.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 73

Figure 38. Cost comparison of IDQN with baseline policies (large scale scenario).

6.2.5 MONB5G RELATED CHECKBOXES/KPIS
The proposed IDQN achieves one of the goals of the MonB5G architecture, which is the use of multi-agent
solutions. More specifically IDQN is employed for the task of inter-slice orchestration and minimizes the
combined cost of energy consumption, SLA violations and reconfigurations in the long run. The most
important attribute of this algorithm is its scalability compared to the centralized solutions, which was
verified in the validation section (roughly 10 × improvement in convergence speed compared to the
centralized DQN). The MonB5G related checkboxes are outlined below:

 Multi-agent algorithm
 Convergence speed improvement (10x improvement according to the validation section)
 Flexible DE distribution (1 DE per slice, or even 1 DE per VNF)
 Handles multiple VNFs across different technological domains
 Supports diverse KPIs and service level agreements

6.3 Specialization of FDRL Agents for Scalable RAN Slicing Orchestration
6.3.1 PROBLEM DESCRIPTION
End-user mobility and temporal variations of the traffic demand deeply complicate resource planning and
allocation tasks, especially in the radio access network (RAN) domain where resource allocation decisions,
e.g., in terms of bandwidth, must cope with the additional variability inherent of the wireless channel.

Traditional RAN slicing solutions envision a centralized controller with a holistic and real-time view of the
network, especially about resource utilization, availability, and real-time wireless channel statistics. However,
similar approaches suffer from scalability issues in real deployments, where the amount of monitoring
information to be exchanged, together with the massive number of deployed base stations (BSs), make it
practically impossible to devise optimal resource allocation schemes in a timely and resource-efficient
manner.

We take on this challenge and propose a distributed architecture for network slice resource orchestration.
Given the variable spatio-temporal distribution of mobile traffic demands [30], we envision the dynamic

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 74

setup of a network of local decision agents (DAs) as virtual software instances able to access local RAN
monitoring information and extract local knowledge without the need of a centralized entity performing
decisions on aggregated information.

Our framework leverages a dynamic agent selection mechanism based on local traffic conditions similarity,
which enables more efficient information exchange and collaboration among groups of local DAs while
specializing their decision policy. The benefit coming from our approach are several:

 it enables resource allocation at the edge of the network, thus accounting for more timely and
accurate information

 the amount of control information that needs to cross the network to reach the central controller
dramatically decreases, thus reducing overhead towards the core network and avoiding bottlenecks

 by allowing information exchange among local DAs, we enable the provisioning of federated learning
schemes to further enrich the capabilities of the decision agents.

Let us introduce a mobile network infrastructure composed of a set ℬ of base stations (BSs), wherein a set of
slices ℐ is deployed. Each BS 𝑏 ∈ ℬ is characterized by a capacity C , expressed in terms of a discrete number
of physical resource blocks (PRBs) of a fixed bandwidth.

This resource availability must be divided into subsets of PRBs, and dynamically assigned to each network
slice according to their real-time traffic demand and SLA requirements. As part of the SLA between the
network operator and the slice owner, we assume each network slice to come with predefined latency and
throughput requirements defined by the variables Λ and 𝜆 , respectively. Let us consider a time-slotted
system where time is divided into decision intervals 𝑡 ∈ 𝑇 = {1, 2, … , 𝑇}. The PRB allocation decisions can be
taken only at the beginning of each decision interval, whose duration ϵ may be decided according to the
infrastructure provider policies, ranging from few seconds up to several minutes.

We assume the presence of a preliminary admission and control mechanism, e.g., the one presented in [36],
to verify the admissibility of the current network slice setup within the available networking capacity, and
focus our effort on meeting the resource allocation for the downlink traffic.

We envision the allocation of radio resources towards the end-users as a two-step process [37]. Initially, once
network slices are admitted into the system, the infrastructure provider schedules the assignment of slots of
radio resources for each of the tenants. Then, based on the slice resource availability, each tenant may decide
to enforce proprietary scheduling solutions towards its end-users, depending on use-case or business
requirements [38].

We focus on the correct and fair dimensioning of the inter-slice PRB allocation. To this aim, we denote with
the variable a ,

()
 the PRB allocation decision for the i-th slice under the b-th BS taken at 𝑡-th decision time

interval, and with σ ,
() the signal-to-noise ratio (SNR) value expressing the wireless channel quality, averaged

over the duration of a decision time interval 𝜖, and over the end-users of the 𝑖-th slice attached to the 𝑏-th
BS. Similarly, we introduce ϕ ,

()
 as the aggregated downlink traffic demand generated by the users of the 𝑖-

th slice under the coverage area of the b-th BS within the t-th time interval.

All together, we can formalize our problem as:

Problem RAN Resource Allocation:

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 75

min lim
 →

 𝔼 ∑ d ,
()

∈𝒥

s. t.:

E ,
()

≤ Λ , ∀ 𝑡 ∈ 𝒯, 𝑖 ∈ 𝒥, 𝑏 ∈ ℬ,

∑ a ,
()

∈𝒥 ≤ 𝐶 , ∀ 𝑡 ∈ 𝒯, 𝑏 ∈ ℬ,

a ,
()

∈ ℤ , d ,
()

∈ ℝ , ∀𝑡 ∈ 𝒯, 𝑖 ∈ 𝒥, 𝑏 ∈ ℬ,

where E ,
()

= 𝔼 ,
()

,
()

,
,

()

,
() defines the expected transmission latency, and Γ(𝑎, 𝜎) is a function that

translates the PRB allocation a in the equivalent transmission capacity, given the experienced channel quality
σ.

The traffic demand generated within a decision interval might not be fully satisfied due to erroneous PRB
allocation estimations, incurring in additional transmission delay due to traffic queuing at the base station.
Therefore, we introduce the variable d ,

() as a deficit value indicating the volume of traffic not served within
the agreed slice latency tolerance 𝛬 , and that is therefore dropped.

6.3.2 A MULTI-AGENT ARCHITECTURE FOR RAN RESOURCE ALLOCATION
Due to fast traffic variations, slice resource allocation decisions at the RAN domain should be taken in a
dynamic, proactive, and flexible way to avoid service and performance degradation.

While advanced admission and control mechanisms could select the set of slices to be admitted to the system
and provide static resource allocation boundaries to satisfy the available capacity, the dynamic nature of the
slice's traffic load and wireless channel statistics may lead to suboptimal performances. Additionally, the
optimization problem underlying RAN resource allocation is a non-linear integer programming problem,
which has been proven to be NP-hard [36], and suffers scalability issues when addressed in a centralized
manner.

Figure 39 Federated DRL architecture for RAN slicing.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 76

For these reasons, we advocate for the adoption of an FDRL-based architecture to address the RAN slicing
scenario. We rely on local DAs running as software instances within the premises of each BS, as shown in
Figure 39. 1. Each agent oversees performing slice PRB allocation decisions based on local monitoring
information coming from the underlying network monitoring system, or BS context.

To concurrently address the above issues, we introduce an FL layer that allows inter-agent information
exchange and expedites the learning procedure local knowledge sharing.

6.3.3 LOCAL RAN SLICING VIA DDQN AGENTS
DQN is a popular reinforcement learning [39] algorithm that evolves from the well-known concepts of Q-
learning and neural network function approximation.

DQN represents a model-free approach. It stores the trajectory of experiences for each interaction with the
environment in a replay buffer, as to update the network parameters without prior knowledge of the
underlying environment statistics.

In the following, we will use the 𝑖 index interchangeably while referring to slices and DAs, assuming a one-to-
one mapping of each DA with the corresponding network slice.

With focus on a single BS and a single decision interval the design choices of our DQN model are as follows:

State Space 𝒮 we define the state of the 𝑖-th agent associated to the 𝑏-th BS as a tuple of local monitoring
information 𝑠()

= 𝜎
()

, 𝜆
()

, 𝜈
()

, ∀𝑖 ∈ ℐ , where σ()
 is the SNR value, averaged over the duration of a

decision time interval experienced by the users of the 𝑖-th slice, 𝜆
() is the aggregated traffic volume

generated by the 𝑖th slice over the time decision duration ϵ, and 𝜈() is the amount of available capacity left
by the previous decisions of other agents.

Action Space 𝒜 without loss of generality, we define 𝜄 as the minimum PRB allocation step, or chunk size,
and assume that the PRB allocation decision of the 𝑖-th agent can only take values that are an integer multiple

of 𝜄, hence = 𝜄 ⋅ 𝑘 | 𝑘 = 0,1, … , .

Such discrete action space allows controlling the dimensionality of the action space and positively influences
the learning process [40].

Reward ℛ we adopt an iterative reward-penalty approach to guide the agent learning procedure, which
translates into maximizing a reward function. An accurate PRB allocation should concurrently guarantee the
satisfaction of transmission latency Λ and the traffic requirements λ

(), while avoiding both under-
provisioning and over-provisioning of resources. Given the instantaneous slice traffic volume λ(), and the

corresponding allocation decision a() ∈ 𝒜, we can identify an allocation gap 𝛼()
= Γ 𝑎

()
, 𝜎

()
− 𝜆

(). To

measure the goodness of the action, we therefore introduce two variables, namely ρ()
 and ρ() , which

characterize the upper and lower boundaries of the allocation gap as 𝜌
()

= 2Γ 𝜄, 𝜎
()

, and 𝜌
()

=

−Γ 𝜄, 𝜎
() . Accordingly, we define the instantaneous reward 𝑟()

∈ ℝ of the 𝑖-th agent as:

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 77

𝑟
()

=

⎩
⎪
⎨

⎪
⎧ 𝛼

()
− 4𝜌

()
, if 𝛼

()
≤ 𝜌

()

1 −
𝛼

()

𝜌
()

𝛼
()

𝜌
()

, if 𝜌
()

< 𝛼
()

≤ 𝜌
()

− 𝛼
()

− 𝜌
()

, if 𝛼
()

> 𝜌
()

Notably, the first case linearly penalizes the occurrence of under provisioning decisions, while the third case
acts in a similar way on the over-provisioning cases. The middle case is the target scenario, which assumes
correct PRB allocation decisions in response to the instantaneous slice traffic request.

We envision the multi-agent RAN slicing problem as a sequential procedure, where at the beginning of each
decision interval t, the different agents perform local decisions according to a priority value𝜇 . Nevertheless,
multiple and independent agents may perform inaccurate decisions and leave the subsequent agents with
no spare resources, especially in the initial training phase. Therefore, at the end of each training period, we

calculate a penalty P
()

= 𝜂 𝟏 a
()

− ν
() , where 𝜂 is the penalty coefficient of the 𝑖-th slice, and 𝟏(⋅)

denotes the logical operator. This penalty overrides the instantaneous agent reward 𝑟 if the decision a()is
greater than the number of spare resources left by the previous decisions of the other agents that in turn
prevents the agents to exceed the available resources at the base station.

Training of agents the training of the local agent implies the characterization of the action-value function
: 𝒮 → 𝒜 . Let us define the policy 𝜋 as a probabilistic function mapping states to actions. The agent makes
decisions and selects the corresponding actions based on π, determining the best action for each state. Under
a given policy 𝜋, the action-value function can be defined as, 𝑄 (𝑠(), 𝑎()) = 𝐸 [𝛾 𝑟()|𝑠(), 𝑎()], where
𝛾 ∈ [0,1] is a discount factor that weights the short-sighted and far-sighted reward, and 𝑛 is the temporal
index. According to Bellman's equation [31], the optimal state-action value function can be expressed as
𝑄∗(𝑠(), 𝑎()) = 𝐸 𝑟() + 𝛾 max

𝑄∗ 𝑠(), 𝑎() | 𝑠(), 𝑎() , and thereby the Q-learning update rule

based on temporal difference (TD) [31] is given by,

𝑄(𝑠(), 𝑎()) ← 𝑄 𝑠(), 𝑎() + 𝜉 𝑟() − 𝛾 max
()

𝑄 𝑠(), 𝑎() − 𝑄 𝑠(), 𝑎()

where 𝜉 is the learning rate. DQN adopts deep neural network (DNN) to approximate the state-action value
and surmount the curse of dimensionality concerning inordinate large state spaces. To limit the catastrophic
interference problem [41], which is the tendency of a neural network to forget about previously learned
information upon learning new ones, we adopt an experience replay strategy. Let us introduce 𝛽 as the
experience buffer.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 78

Figure 40 Illustration of DDQN workflow.

As depicted in Figure 40, in every training interval, we store the tuple (𝑠
()

, 𝑎
()

, 𝑟
()

, 𝑠
()

) describing the
instantaneous experience generated by the agent while interacting with the environment, and sample from
𝛽 a random batch of past experiences to regularize the training. Additionally, DQNs are well known to provide
an overoptimistic value estimation. We alleviate this problem by leveraging an additional DQN network, in
the form of DDQN [42]-[43]. With a slight abuse of notation, let us introduce 𝑄(𝑠(), 𝑎(); 𝜃

()
) and

𝑄(𝑠(), 𝑎(); 𝜃
()

) as the online network and target network respectively, where 𝜃
() and 𝜃

()
 denote the

model parameters. To optimize the parameter set 𝜃() and approximate the optimal action-value function
𝑄∗(𝑠(), 𝑎()), we use the following loss function,

 𝐿 𝜃
()

= 𝐸 𝑦
()

− 𝑄 𝑠(), 𝑎(); 𝜃
()

where 𝑦()
= = 𝑟()

+ 𝛾 max

 𝑄 𝑠(), 𝑎(); 𝜃

()
 and 𝜃()

 is copied from 𝜃()
 at the end of each episode.

Finally, the objective function of the DDQN model can be written as,

𝑦
()

= = 𝑟()
+ 𝛾 𝑄 𝑠

()
, argmax

()
𝑄 𝑠(), 𝑎(); 𝜃

()
; 𝜃

()

where 𝜃
() is a local training model used for selecting actions, and 𝜃

() is used to evaluate their values
according to a different policy, thus mitigating over-estimations issues and improving the decision agents'
performances [42]. The loss function estimates the difference between true action-value and target action-
value. As the overall training procedure aims at minimizing this loss function, we adopt stochastic gradient
descent (SGD) approach [44] to pursue this goal.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 79

6.3.4 FEDERATED DRL FOR RAN SLICING
FL allows training machine learning models across multiple decentralized entities which have access to a
limited set of the overall data available. Conversely to multi-agent reinforcement learning, which defines a
set of autonomous agents that observe a global state (or partial state) of the system, select individual actions
and receive individual rewards, FL allows to collaboratively learn a shared prediction model by iteratively
aggregating multiple model updates, thus decoupling the learning procedure from the need of centralized
data sources. A refined version of the original models, combination of multiple local models according to
specific federation strategies, is then shared to the agents allowing to significantly improve the learning rate,
ensure privacy [45] and provide better generalization [46].

As depicted in Figure 39, within the context of our FDRL-based framework each agent trains a local DDQN
model 𝜃 ,

() and shares its experience, under the form of model hyperparameters, to those entities belonging
to the corresponding federation layer. This iterative training approach enables each federation layer to
aggregate the collected knowledge of single agents into a global updated model Ω(), usually stored into a
cloud platform or a nearby edge platform to allow faster feedbacks.

In order to enhance efficiency and avoid communication overhead, we allow the federation layer to collect
the local models (and share the updated ones) only every T decision intervals, defining this time period as
federation episode.

Different strategies can be adopted to derive the global federated model, each one implementing a
predefined federation strategy function 𝑓 (⋅).

In Average federation strategy, dubbed as FDRL in the following of this work, the collective federation model
for the next time interval Ω() is derived as the simple average of the incoming model weights belonging to
all the agents, as Ω() = ∑ 𝜃 ,

()
∈ ℬ .

Aggregated mobile traffic demands follow repetitive spatio-temporal trends due to human activities [47]. In
this context, it is expected that a good characterization of such processes would allow more accurate
forecasting of the network utilization and, in turn, enable an efficient and even proactive planning of the
resource allocation.

However, as highlighted in [48], it is not enough to leverage the geographical locations and related spatial
proximity of the BS to obtain a comprehensive view of traffic demands, as the land usage of the slice
resources may differ even within base stations belonging to the same geographical areas. This introduces an
additional issue in our framework, as not all the federated agents should exchange knowledge with each
other, nor this should be restricted to only nearby entities. To address this fundamental issue, in the following
we propose a clustering algorithm to guide DA subsets definition, based on network monitoring traces and
their similarity.

6.3.5 DYNAMIC TRAFFIC-AWARE AGENT SELECTION
Given the rapid spatio-temporal variation of the traffic demand due to end-user mobility, we advocate for
the setup of a clustering algorithm to derive the subset of slice agents that should exchange their local
knowledge, while considering both mobility and traffic demand variations.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 80

Let us introduce 𝜏 , as the time series describing the downlink traffic demand of the 𝑖-th slice instantiated
over base station b. Then, for each pair 𝑗, 𝑧 ∈ ℬ, we can compute the similarity of the recorded monitoring
information as 𝐷𝑇𝑊(,) = 𝑓 𝜏 , , 𝜏 , , where 𝑓 (⋅) is the Dynamic Time Warping distance [49], a state-
of-the-art distance metric for time series analysis.

Figure 41 Comparison between Euclidean distance and Dynamic Time Warping distance over traffic demand

time series.

DTW is particularly suitable in our scenario as it allows, conversely to standard distance metrics, e.g.,
Euclidean distance, to calculate accurate similarity value even in presence of differently sized sequences, and
independently of their time shift. An example of DTW distance calculation is depicted in Figure 41, where it
can be noticed how maximum and minimum values of the traces are correctly mapped to each other. The
pairwise distances are then collected into the distance matrix 𝑫 = 𝐷𝑇𝑊(,) ∈ ℝ|ℬ|×|ℬ|, and provided as
input of our clustering algorithm.

DTW has linear space complexity, but quadratic time complexity. To reduce the latter, a number of options
are available. In our case, we limit the maximal shift by setting a fixed time a window of few hours, thus
reducing the complexity even in case of long sequences. Nevertheless, recent work from [50] proposed a
novel efficient implementation which breaks the quadratic time complexity to 𝑂(𝑛 𝑙𝑜𝑔{𝑛}), where n is the
length of the sequence.

To perform the final classification, we rely on an extended version of the Density-based spatial clustering of
applications with noise (DBSCAN) algorithm, introduced in [51]. DBSCAN is a non-parametric density-based
clustering algorithm that allows finding the most representative points within a dataset (also known as core
samples) based on their density in a multi-dimensional space and expands clusters from them. It expects two
inputs: ϵ , representing the maximum distance between two samples for one to be considered as in the
neighborhood of the other, and 𝑛 , which defines the minimum number of samples in a neighborhood of
a point to be considered as a core sample.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 81

Given the above, at the end of each federation episode, we can derive in a dynamic way (and based on
updated mobile monitoring information) the clusters 𝛹 ∈ 𝛹 , 𝑘 = {1, … , |ℐ|}, where 𝛹 is the cluster set.
Each cluster includes the set of base station 𝑏 ∈ 𝛹 that should be involved in the following model update
procedure. Therefore, the framework spawns multiple federation models Ω , one for each detected cluster
k, which evolve in parallel till the next federation episode.

It follows that the updated federation model, combination of the information coming from the elements of
the cluster Ψ , can be derived following the Full-Cluster strategy, namely 𝑓 (⋅), as:

 Ω ,
()

=
| |

ω ,
()

 𝜃̃ ,
()

∈

, ∀ ψ ∈ ψ

where |𝜓 | is the cardinality of ψ , and ω ,
()

=
̂ ,
()

̂ ,
()

∈

 is a weight parameter.

It should be noted that within these settings, the federation step will occur among models with high degree
of similarity, thus favoring the specialization of the agents towards the most common traffic statistics.

6.3.6 VALIDATION RESULTS
To assess the performance of the proposed architecture, we consider 3 different network slices, i.e., URLLC,
eMBB, and mMTC, each one characterized by the SLA latency values of Λ = [10,40,20] ms, and deployed
over a wide area network comprising 50 BSs. The distribution of the BS follows the RAN deployment of the
city of Milan, Italy, collected from publicly available sources4. We simulate user mobility patterns as per [52].
The throughput requirement of each slice depends on its user mobility pattern. Therefore, we set 𝜆 , = 𝜑 ,

()
to let agents adapt to the instantaneous traffic volume. The SNR variability follows a Rayleigh distribution
with average value set to 25 dB. The minimum PRB allocation step is set to 𝜄 = 10 PRBs.

Per each DA we consider a DNN architecture comprised by two fully connected hidden layers with 24 neurons
with ReLU activation function for both the Online and Target networks. Each learning episode consists of 5
decision intervals of duration of 60 seconds, within which local monitoring information is collected to build
the local agent state. For the training, we consider Adam optimizer, a discount factor 𝛾 = 0.99, and learning
rate 𝜉 = 0.001. The replay buffer size of each agent 𝛽 , is set to 20000 samples, out of which a batch of 32
samples is extracted for each episode. We set 𝜂 = 100 as penalty value for all the slices.

6.3.6.1 LOCAL AGENT PERFORMANCE ASSESSMENT

First, we compare the performances of different RL algorithms when dealing with radio resource allocation,
without involving federated learning.

4 see https://opencellid.org

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 82

Figure 42. The convergence performance of different local decision algorithms and an FDRL approach for a

single decision agent.

Figure 42 depicts the training procedure for the eMBB slice, comparing different local decision algorithms. In
particular, we consider the single DQN approach, which implements standard Q-Learning procedures,
discretized Deep Deterministic Policy Gradient (d-DDPG) a popular reinforcement learning algorithm, and our
DDQN scheme. We gradually limit the exploration capabilities of the agents up to a minimum of 2 % in favor
of the adoption of the learned policies.

The variability of the network slicing environment leads to experience learning curves with high fluctuations.
As expected, the DQN approach hardly copes with the definition of suitable PRB allocation policies, providing
lower performances in terms of cumulative reward and convergence time. Similarly, d-DDPG suffers the
temporal periodicity of the traffic demand, resulting in a steep learning curve that saturates to suboptimal
performances. Conversely, the DDQN approach can allocate in a more consistent way correct amount of PRBs
to each slice according to the corresponding real-time traffic and latency demands. It is worth highlighting
that in terms of convergence time, in general, FDRL schemes do not necessarily provide better performances
when compared against standard DRL approaches. In fact, one of the main features of FL is that it allows local
DRL agents to indirectly gain knowledge on a wider state space, extending their local experience with that
coming from other DAs deployed within the same environment. This enables the DAs to provide better
performances when deployed in realistic environments. Nevertheless, Figure 42 provides an overview of the
local model training procedure, with and without the adoption of FL schemes. It can be noticed how DRL
curves present slower convergence time and higher fluctuations when compared against Federated DDQN
approach. Additionally, DRL curves present lower cumulative reward after 400 episodes, suggesting a lower
capability of the DAs to adapt their decisions at the current traffic conditions.

6.3.6.2 COMPARISON OF DIFFERENT FEDERATION STRATEGIES

We consider a dynamic agent selection method based on the time similarity of traffic demands, dubbed as
Dynamic Clustering (DC). In particular, we consider three DC aided approaches, namely Full-Cluster (FC), Best-
Representative (BR) and Random-Representative (RR) and compare their performances against a standard
federation strategy which derives a new federated model by averaging all available local models (i.e., without
DC), dubbed as FDRL.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 83

Figure 43. Comparison of global performances for different dynamic and non-dynamic federation

approaches.

Figure 43 provides a comparison of learning performances for different federation strategies in terms of
average reward. Interestingly, from our experiments it turns out that aggregation of widely heterogeneous
local models limits the capability of the global federated model to converge to a one-fits-all unified model,
motivating our dynamic agent selection approach which favors the specialization of federated agents working
under similar RAN and mobility contexts. From the figure, we can observe how Full-Cluster approach achieves
better generalization of the learning policies, resulting in stable performances. Conversely, Best-
Representative, Random-Representative and FDRL suffer the dynamic behavior of the underlying traffic
conditions, presenting inconsistent reward traces.

6.3.6.3 OVERHEAD COMPARISON FOR DIFFERENT FEDERATION STRATEGIES

Federated Learning aims at building global knowledge from the exchange of multiple locally trained models
towards a centralized entity. Such a frequent model exchange however introduces significant communication
overhead and synchronization issues, especially in wide scenarios as those considered in our work.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 84

Figure 44. Communication overhead per federation episode for different federation strategies (top-part) and

for different number of BSs deployed (bottom-part). RR and BR federation strategies are referred as
Representative.

Figure 44 shows the model exchange overhead per federation episode for a different number of BSs. The
benchmark FDRL approach assumes the exchange of all the locally trained model weights to derive the
federated ones, which implies the highest communication overhead. The BR and RR approaches (referred to
as Representative) allow reducing the uplink information exchange by selecting a single representative of
each cluster, regardless of the dimensions of the group itself, thus minimizing the communication overhead
in each federation episode. Finally, the Full-Cluster approach is characterized by an intermediate average
value but higher variance due to the variable size of the DAs clusters, which follows the real-time traffic
variations, saving communication resources from those base stations that presented peculiar traffic traces
and remain unclustered.

On the lower part of the picture, we differentiate between uplink and downlink model exchange overhead.
The FDRL approach presents a symmetric behavior matching the model exchange of all the running DAs, in
both directions. Conversely, the RR/BR approaches show an asymmetric behavior that favors the upload
communication with respect to the downlink one, as only a single DA per cluster shares its local model during
the federation process, resulting in a logarithmic trend (with respect to the number of BSs) characterizing
the overhead in uplink. This would guarantee better scalability, at the expense of suboptimal performances,
as shown in our evaluation. Finally, the FC approach shows a sublinear trend, with a slower growth rate than
the benchmark FDRL, but with significant better performances thanks to the specialization of the DAs. It is
safe to assert that the proposed dynamic clustering approach enhances the efficiency of the federated
learning scheme, limiting the overall communication overhead with respect to traditional approaches, while
providing better performances.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 85

6.4 Statistical methods for VNF bottleneck localization
In Deliverable D4.1, we introduced in chapter 7.1.2, the concept of Service Function Chaining (SFC), see Figure
45. Then, we presented the theoretical modelling of the SFC monitoring use case and validated the concept
with simulation.

Figure 45 Service Function Chaining architecture

This section explains an application of the described solution in a more practical use case relying of on a
docker based Service Chaining Function.

6.4.1 PROBLEM DESCRIPTION
In 5G networks, the core network functions are deployed with cloud native technologies as containers to
guarantee the scalability and resilience. Even the evolution of the random-access network is going on this
trend with the development of the cloud ran and edge cloud concepts. One of the key enablers for this
evolution are the support of the heterogeneous cloud environment and the ability to orchestrate resources
among multiple technical domains like RAN, edge cloud, central/core cloud, private and public cloud. All the
capability coming from the hardware acceleration should be exposed to the services to enable more flexible
function placement to address high performance.

The adoption of a cloud native [53] approach for the implementation and deployment of virtual network
functions helps to achieve the required flexibility and autonomy. The use of containers enables to reduce the
overhead and enhances the availability of the network services [54]. Future networks must be able to support
multiple applications with different quality of service requirements. Eventually, the VNFs that compose these
services will share the same infrastructure and will enter in competition for resources if the demand is too
high. This situation may be more frequent in environments with limited resources such as the Edge [55].

The Kubernetes technology represents an essential tool for the management and orchestration of cloud
infrastructures. This technology has shown great industrial maturity and is becoming the key player in cloud-
native environments. It offers several features for automatic management, scalability, and services
availability. Meanwhile, the price of this flexibility is losing control of the physical layer. For example, when
a problem occurs on the underlay layer, all the virtual services sharing this resource may have performance
degradation. The cause of such incidents may be a networking problem, a worker node failure, or a
cloud/network resource shortage. Tracking the root cause of the incident is tough due to the adopted
abstraction mechanisms like services and load-balancers. The proposed solution aims to adapt the

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 86

tomography approach for node failure localization for anomaly root causes analysis in virtual network
services deployed with Docker and Kubernetes.

6.4.2 SOLUTION TOOL

Figure 46 : Solution deployment and call flow.

This section describes an application of the proposed DE algorithm to detect the failed nodes in a network
service deployed with Kubernetes.

Figure 46 explains the main steps of our solution:

o The DE sends a request to the K8S master to get the topology of the deployed service. The topology,
in this case, means the list of the deployed VNFs, the number of replicas for each VNF, and the replicas
pods' IP addresses. Note that each VNF is deployed as a K8S replica set.

o The K8S master sends the requested information in JSON format.
o The probing DE generates all the possible probing paths and selects the best one according to the

strategy described in algorithm “Probing path selection”.
o The probing path information is sent to the actuator called “sender” in Figure 46. This information

includes the Pods' IP addresses forming the paths and other metadata.
o The Sender creates a Post HTTP request including all the path information in the body in a JSON

format. This request is sent to the first pod in the list. Its IP address is removed from the path.
o Each pod repeats the same process until reaching the destination.
o The pod destination adds the sending and the reception time in the body response call back to be

sent to the sender to the DE.
o The DE computes the E2E metric and computes the state of the pods denoted by α following the

procedure described in Algorithm “Probing path selection”.
o If the algorithm converges the anomaly detection process is finished unless the DE selects a new path

and the whole process is repeated.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 87

6.4.3 KRS: KUBERNETES RESOURCE SCHEDULER FOR RESILIENT NFV NETWORKS
6.4.3.1 KUBERNETES ARCHITECTURE

Cloud native and container technologies have significantly evolved, offering great opportunities for network
operators to enhance their infrastructure management. The adoption of the cloud native approach in the
implementation of VNFs enables building highly resilient and autonomous networks. Indeed, moving to Cloud
native Network Functions (CNFs) for NFV networks might make it easier to overcome multiple limitations of
VNFs by transforming most network functions into scalable containers. In this context, the Kubernetes
ecosystem becomes an essential tool for the deployment and management of NFV infrastructures. The
interest of this technology is mainly explained by its ability to manage dynamic, complex, and distributed
infrastructures with great flexibility and agility.

Figure 47. Kubernetes cluster components

Figure 47 illustrates the main components of the Kubernetes architecture which is based on multiple
abstraction levels. The first one is the cluster which gathers multiple physical or virtual machines representing
the available resources in terms of memory and CPU. Each cluster has a master node responsible for the
management and scheduling of these resources. The cluster is composed of multiple nodes that can be either
physical or virtual. These nodes host the pods, the most basic entity that can be created and controlled by
Kubernetes. Each pod runs a single service instance (a VNF instance in our case), and it can be composed of
one or several containers.

6.4.3.2 RESOURCE ALLOCATION AND SCHEDULING IN KUBERNETES

Kubernetes offers multiple tools for resource management shared by the deployed CNFs. The network
infrastructure can host heterogeneous services, allowing to take full advantage of the available resources
and reduce consumption costs. On the other hand, sharing the infrastructure between heterogeneous
services can reveal resource allocation problems, especially in case of a resource shortage. The allocation of
cloud resources must be highly efficient. They must be neither under-used, as this means a loss of revenue,
nor over-used, as this can lead to service failures or SLA degradation causing penalties.

Kubernetes offers some features for pods/containers resources scheduling which are mainly requests and
limits [56]. For each pod, we can configure the requested memory or CPU which correspond to the
guaranteed resources that will be reserved for it. Thus, the sum of the requested resources for the containers
inside a node must be less than the total node capacity. Limits specify the maximum limit of resources that
can be used by a container. These parameters are very important for the CNF lifecycle management as they

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 88

are taken into consideration in the priority and location of pods deployment by the scheduler and also in the
allocation of resources inside a node, especially when it is overloaded.

Let’s take an example of a node that hosts pods and their memory consumption reaches its limit. The
Kubernetes orchestrator has to select a pod on the host to stop it. The pods that do not have a fixed requests
value will be the first to be stopped. Then, the orchestrator selects those that consume the most compared
to their requests value.

Figure 48: Different CNF deployment configurations

For instance, in Figure 48 we represent three pods deployed on a single node. The first one is deployed with
“best-effort” QoS, the requests and limits are not specified. The second is deployed with a “non-guaranteed”
QoS, where the requests value is less than the limits. The third one has a “guaranteed” QoS since the requests
value is equal to the limits. In this situation, if there is a lack of resources, the pods will be stopped in the
given order, the first one, then the second one, and finally the third one, to liberate the required resources.

The objective of this work is to give a method to schedule the resources for the pods hosting the VNF
instances, to limit the failures and the caused damage in the case of lack of resources. Our strategy aims to
avoid the resource shortage in the first step. However, if it is unavoidable, the goal is to protect the most
critical functions.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 89

Table 4. List of main used variables

In this section, we give the problem formulation for the CPU and memory scheduling. The objective is to find
the optimal parameters of limits and requests that minimizes the risk of resource shortage. Table 4
summarizes the notation adopted in this section.

We consider a Kubernetes cluster hosting multiple VNF instances. 𝑁 denotes the set of nodes composing it
and 𝑁 refers to the ith node. Each node has a fixed memory and CPU capacities denoted by 𝑀 and Ci
respectively. The set of pods deployed on node Ni is denoted by 𝑉 . For each pod j on a node 𝑁 , the values
of requests and limits are denoted by 𝑀 , and 𝑀 , respectively for the memory, 𝐶 , and 𝐶 , for the CPU. The
resources that will be consumed by each pod vary over time and depend on the VNF that hosts them.
Therefore, the future resource demand for each pod is considered as a random variable denoted by 𝑀 , and
𝐶 , for the memory and CPU respectively. The VNF instances must support the traffic load, otherwise they
will be stopped, and this can introduce penalties according to their importance. We denote by 𝑃 , the penalty
introduced when stopping CNF 𝑉 , .

The objective of this work is to propose an algorithm that identifies the appropriate parameters of the
requests and limits for each CNF, to reduce the expected penalty in a given period, where the profile of the
future resource demand is known. This information is presented in the form of the probabilistic distribution
of random variables 𝑀 and 𝐶 which can be obtained from the monitoring system. When the demanded
resources exceed the capacity of the node, the orchestrator selects the pod to stop. Variable 𝑏 , represents
the state of the CNF. The selected ones should respect the condition described by:

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 90

for i = 1, 2, . . . , N and for all j, j′ such that 𝑏 , = 1 and 𝑏 , = 0. The objective is to find the appropriate
parameters 𝑀 , 𝑀 , 𝐶 and 𝐶 that minimize the expected penalties:

Following a statistical formulation allows to deal with the randomness of the input information. The obtained
optimization problem is non-linear due to the pod kubernetes scheduler behavior. Thus, we cannot rely for
the resolution on the well-known existing algorithms for linear problems. Thus, we try to design a specific
solution based on genetic algorithms detailed in paper named KRS (Kubernetes Resource Scheduler) [56].

6.4.4 VALIDATION RESULTS
In this section we evaluate the performances of our KRS module compared to the Kubernetes best effort
mode where the resource scheduling parameters are not configured on the CNFs. For this evaluation, we use
simulation as follows. At the beginning, for a given cluster with a known number of nodes, we generate
randomly the memory and CPU capacity values for these nodes. Then, on each node, we vary the number of
deployed CNFs between 10 and 20. For each CNF, the future demand of resource is considered as a random
variable (𝑀 ,𝐶) following a Poisson distribution. The parameters of this distribution are randomly
generated. The penalty for stopping the CNF is randomly generated and takes normalized values between 0
and 1. Then, the KRS algorithm is performed to find the correct CNFs configuration.

The outcome of this algorithm will be the α distribution, representing the unknown variables, which often
converges to an exact value. Finally, the penalty expectation for the obtained configuration is calculated and
compared to the one given by the Kubernetes best effort mode.

Figure 49 illustrates the performance of the two approaches, namely the KRS module and the best effort
mode. The number of nodes in the cluster varies between 2 and 10. For each configuration we make 50 tests
with different input data and then make the average of the results (the penalty and the computing time). The
tests show that our solution always performs better than best effort mode. For example, for tests done with
6 nodes in the cluster, the penalty expectation for the best effort mode is more than 6 while it is less than 3
with the KRS module.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 91

Figure 49: Comparing the accumulated penalty for KRS and the best effort Kubernetes mode for different

node number in the cluster

This result is expected since the best effort mode does not differentiate between the deployed functions,
and they are treated equally in the resource allocation. Concerning the computing complexity, Figure 50
shows the required time to compute these parameters. We can see that it evolves linearly with the number
of nodes. This is because the algorithm processes each node independently of the others, and it can lead to
miss the optimal decisions globally, but it ensures the horizontal scalability of the solution. Meanwhile,
regarding the vertical scalability of the algorithm, i.e., when we have many pods on the same node, the
computation time increases significantly. This remains a point to improve in our approach.

Figure 50: Comparing the computing time for KRS and the best effort Kubernetes mode for different node

number in the cluster

6.4.5 MONB5G RELATED CHECKBOXES/KPIS
✓ Utilize key inputs (capacity, load of links, congestion level of local and alternative computing resources,
history thereof, and KPI predictors from the distributed AEs.

✓ Quantify the confidence in the ability of the locally optimized/reconfigured slice to resolve the potential
problem.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 92

7 Control loops coordination

7.1 Introduction to control loops
The control loop-based optimisation is a popular accepted solution to automate the network, slice or service
management. The management is typically very complex and must deal with multiple goals. It has been
widely accepted that management systems implement FCAPS services; however, each of the services can be
composed of numerous mechanisms that must be used to achieve the management service goal. Due to
complexity and lack of programmability (modification/update of management services), the use of a single,
multi-objective optimisation function has been rejected. The use of AI in such a case is also not feasible
because the state-action space is becoming too big to converge (learn) in an acceptable time.

In practice, therefore, a single objective optimisation is in use, but this leads to implementing numerous
Control Loop (CL)-based management functions. Various functions, each trying to optimise a single goal, can
lead to suboptimal results or even chaotic system behaviour. Such conflicts can be of different natures. An
exhaustive list of conflict types is provided [57]. Among them, there are mentioned the following conflicts:

 conflicts related to the modification of the same system parameter(s) by two or more CL-based
functions (see conflict concerning parameter P2 in Figure 51a);

 an indirect impact of a change of a parameter, which is not used by a specific function, on the function
output (KPI). In Figure 51a), Function 3 is the only controller of parameters P4 and P5, but their value
change impacts the environment and indirectly impacts KPIs controlled by other functions. This is a
so-called logical dependency conflict.

The management community has been trying to solve the problem of cooperation/coordination of multiple
functions for about a decade. It has been researched, mostly in the case of SON [58], [59], [60], [61], [62];
however, the problem is generic. An exhaustive overview of the proposed solutions can be found in [57]. So
far, no satisfactory solution has been found. One practical, simple approach is making time-scale separation
of functions operations [68], defining priorities or defining some policy rules. There are also approaches
based on machine learning [63], [64], [65], [66], [67] and game-theoretical approach [71]. Most of them are
not agnostic to coordinated functions [69]. It must be noted that the coordination problem can be solved by
hierarchical reinforcement learning techniques that have been extensively reviewed in [72] and [73].

The MonB5G project assumes the existence of multiple CL-based functions, and their coordination is a must.
The MonB5G architecture includes components related to coordinating several AI-driven functions (see
Deliverable D2.4 of the MonB5G project). In contrast to the existing approaches, MonB5G assumes that CL-
based functions can be dynamically added or removed. Such an approach calls for flexible and CL-function
agnostic coordination.

In this section, we will first describe a Coordination Framework compliant with the MonB5G architecture.
Later, we will show how it can be used in an implementation where the coordinator treats the CL-based
management functions as black boxes. The approach performs the role of a recommender that uses
predictions to avoid or minimise conflicts related to network or slice configuration parameters.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 93

Functions’ Coordinator (FC)

MS

AE

DE
KPI-C

CHDB

CA

KPI-P

MOD

CE

MS

AE

DE
KPI-C

CHDB

CA

KPI-P

MOD

CE

Network/slice/...

Function 1 Function 2

ACT

KPI-C

MS

AE

DE

Network/slice/...

ACT

Function 2

P1

MS

AE

DE

Function 1

MS

AE

DE

Function 3

KPI-C KPI-C

P2 P3 P4 P5

ACT

a) b)

Figure 51. Example of conflicts of DE-driven functions (a) and the proposed approach to Functions
coordination (b)

In Figure 51b), the proposed Coordination Framework (CF) is depicted. The framework is partly distributed -
it consists of coordination-related components added to each function, which is typically composed of
MS/AE/DE and KPI-C (KPI Calculator). The MS/AE and DE components were described in deliverable D2.4 of
the MonB5G project. The KPI-C calculates the KPI of every Function. The goal of each Function is to keep the
KPI above the level (threshold) defined by the operator. For example, fault management doesn’t have such
an entity, but in terms of coordination, we are focused on the network (slice) optimisation problems. The
roles of Function components (except the already mentioned ones) are the following:

 Configuration History Database (CHDB) keeps records of historical system parameters and Function-
specific KPI. CHDB can be used to interpolate KPI values or restore the system to a stable
configuration. CHDB can also be used to evaluate the impact of each parameter on KPI.

 Coordinator Agent (CA) of each function, responsible for the dialogue with Functions’ Coordinator
(FC).

 Configuration Engine (CE) is the entity that manages all Function’s entities involved in the
coordination procedure. It is used for setup operator’s preferences, thresholds, etc.

 Model (MOD) is a model of the environment that can be used to estimate the system’s output for a
new set of parameters proposed by FC or CE.

 KPI Predictor (KPI-P) is a predictor of KPI for a set of parameters that can be generated by the CE.
KPI-P may use CHDB to estimate KPI; it may also use MS/AE/DE stack with artificial input generated
by MOD or FC. In case of minor changes in the existing reconfiguration parameters, the CHDB can be
used to estimate the KPI change.

 Functions Coordinator (FC) is an entity that approves, modifies, or rejects reconfiguration requests.
It interacts with all Functions and collects information about their present KPIs. It may send requests

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 94

to all Functions asking them for estimation of KPI for a specific parameter set. Finally, based on the
obtained information, it sends a compromised set of parameters to ACT for execution.

A generic procedure of messages exchange of CF is shown in Figure 52. The configuration change Requester
is a management Function that proposes a new parameter set. In response to this request, the FC asks all
Functions to estimate their KPIs for the new configuration. After collecting all responses, the FC checks if
there are KPIs that are below an acceptable level or not. Based on the responses, the FC may accept the
reconfiguration, reject it or propose a new configuration set, which is sent to ACT for execution. All Functions
record the new values within their CHDB.

Function x:
Requester

Functions’ Coordinator
All Functions

(including Requester) ACT

Figure 52. A generic message exchange chart between FC and CAs

The proposed solution allows for direct parameter conflict avoidance; however, due to overall complexity,
the future behaviour of the network (or slice) can be different than assumed. As the solution is generally
agnostic to how CL-based operations are performed, coordination-related entities can be implemented
differently, especially KPI-P, MOD and CE. The presented concept intentionally does not specify the FC
algorithm that governs the coordination. It is assumed that many different algorithms for that purpose can
be used. A usage example of the proposed framework is described in the following subsection.

7.2 Example instantiation of the Coordination Framework
In this section, an example of the instantiation of the Coordination Framework will be described. In the
proposed heuristic approach, the impact of a new reconfiguration proposed by one Function on KPIs of other
Functions is estimated. If the overall impact on other KPIs is negative (according to the evaluation of the
algorithm), the proposed reconfiguration is rejected; in the opposite case, it is accepted. In future work, the
usage of the approach for the modification of the change will be analysed. The concept, called HFMM
(Heuristic Fisher Market Model) is an instantiation of the presented in the previous subsection framework.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 95

The core operations of HFMM are based on the Fisher Marked Model [74]. The model is used to estimate the
impact of the change of any system parameter on all Functions’ KPI. Before we present the overall approach,
a short description of the Fisher Market Model (FMM) will be provided in the following subsection. The idea
has been already used for management conflict resolution [70], but in the mentioned case, only one system
configuration parameter was considered.

7.3 Fisher Market Model
In FMM [74], there are buyers and products. Each of the buyers has its budget. The game’s goal is to find the
price for all the products that will lead to market clearance while providing the highest possible satisfaction
to buyers. The satisfaction for each buyer depends on the amount of the product it buys and its (predefined)
value to the buyer. As a result, the number of products purchased by each buyer and the price of all products
is known.

A Fisher market consists of a set N = 1, ..., n of buyers (agents) and a set M = 1, ..., m of divisible products.
Each product j has price cj > 0. Every buyer i has:

• specified budget Bi > 0, which can be used by the buyer to acquire products;
• utility function ui, which defines the value of a bundle of products, represented by a vector x = x1, ...,

xm, where is xj is the quantity of the product j, purchased by the buyer. The value of product j for
buyer i is defined by the wij parameter of the utility function.

In the model, it is often assumed that the supply of each product is one unit, and the total budget of all buyers
is normalised to one. The utility functions typically used by FMM belong to the Constant Elasticity of
Substitution (CES) utility functions family that takes the generic form of

𝑢 (𝑥) = 𝑤 𝑥

/

where ρ parametrises the functions’ family, and -∞ < ρ≤1, ρ ≠ 0.
The three CES functions are typically used in FMM:

• Leontief (for ρ approaching -∞)

𝑢 (𝑥) = 𝑚𝑖𝑛 ∈[]

𝑥

𝑤

• Cobb-Douglas (for ρ approaching 0)

𝑢 (𝑥) = 𝑥

• Linear (for ρ =1)

𝑢 (𝑥) = 𝑤 𝑥

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 96

The Leontief function captures the utility of complementary products; the Cobb-Douglas function
expresses a balance between complements and substitutes. Finally, the Linear function captures the
utility of products that are substitutes.

The FMM market equilibrium maximises the utility of each buyer, considering its budget constraints, and
clears the market (all items are entirely sold but not oversold). Formally, FMM market equilibrium is
achieved if and only if:

• for all i ∈ N, xi maximizes buyer i utility for given prices Pand budget Bi;
• each product j either is completely sold or has a price 0, i.e.

𝑥 − 1 𝑐 = 0, ∀𝑗 ∈ [𝑚]

• all budgets get spent, i.e.

𝑥 𝑐 = 𝐵 , ∀𝑖 ∈ [𝑛]

Market equilibrium is guaranteed to exist if at least one buyer desires each item and each buyer desires at least
one item [75]. For buyers with utility functions from the same class of the CES family (i.e., for the same ρ), the
equilibrium allocation can be found by the Eisenberg-Gale formula, and it maximizes

𝑚𝑎𝑥 (𝑢)

/

where B is the overall budget. This maximization is equivalent to the maximization of

𝐵 𝑙𝑜𝑔(𝑢)

It has been proved that for the Linear utility function if for each product j some buyer i has wij ≥ 0, then the prices
clear the market - a budget of each buyer is spent, and each item is completely distributed among buyers. There
are several algorithms proposed to solve the FMM problem [76], [79], [78], including online ones [80], [81], [82].

7.4 The HFMM algorithm
The HFMM approach uses FMM to evaluate the impact of the proposed reconfiguration on the KPI of Functions;
more precisely, it estimates the impact of the change of each configuration parameter on the KPI change. The
HFMM algorithm uses the following data (please note some notations change in comparison to the previous
subsection):

• historical vectors of the network (slice, etc.) parameters nct (at time t) with corresponding KPI
of each Function Fi, stored in CHDB;

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 97

• the actual configuration vector denoted as ca, and the proposed configuration vector pointed
as cp;

• each Function Fi based on the analysis of data stored in CHDB, finds the configuration vector
cB that has provided the highest KPI of the function;

• allocated by the operator to each Function budget bi that indicates importance (priority) for
the operator of the KPI elaborated by the Function.

The steps of the HFMM algorithm are the following:
1. The absolute difference between actual (nca) and the proposed configuration (ncp) is calculated, and

a vector p, that represents the FMM amount of goods available on the market is obtained

𝑝 = |𝑛𝑐 − 𝑛𝑐 |

As the goods on the market must have a non-negative value, the absolute value of the difference is taken.
At this step, we added one additional item to the market. This product has no impact on the system’s
behavior. Its purpose is to allow each buyer (Function) to spend resources in case the other items already
present on the market have no value to a Function, i.e., none of these parameters has an impact on KPIs
or pj . A product on the Fisher market can’t have a zero price, so a small positive amount is added in such
a case in the simulations.

2. The ncp, nca values, and other values of nct, where t is the time mark, are used to estimate the sensitivity
of the KPI of every Function (Fi) on the change of parameter ncj . Such estimation can use ∆KPI /∆ncj. The
obtained for Function Fi value, for parameter pj is weight wij of the utility function of Function Fi.

3. The input data to FMM are prepared: budgets, bi, products pj and weights wij of the utility function, so we
may try to find the market equilibrium, i.e., prices of each item and their allocation to Functions. This
can be done using the primal-dual algorithm (equivalent to the Eisenberg-Gale prime) approach.

4. The interpretation of the values obtained in the previous step. Such analysis can use sophisticated
(learned) algorithms; however, some direct interpretations of the results are possible:

a. A relatively high value of the price of the last ’product’, i.e., additionally added parameter, is
an indicator of the limited impact of the reconfiguration on other Functions.

b. A price of an input parameter shows its overall impact on reconfiguration. Please note that
the budget of each Function doesn’t have to be equal (reflects operator interest in the result of
the optimization made by a specific Function), which has an impact on the price of parameters.

c. The value of the utility function of each Function, calculated without the last, artificially added
parameter, is directly related to the reconfiguration’s impact on this Function. If, for any
Function, this value is higher than in the case when the Function that has triggered
reconfiguration, it means that probably such Function’s KPI will be more affected than the KPI
of the Function that has triggered the reconfiguration and such operation should be avoided.

d. The FMM-based analysis of the previous step has ignored the sign of the change in
configuration parameters, showing only the impact of the absolute difference of the
parameter. However, the change (even high) of a parameter can be positive if the proposed
reconfiguration is making the ncp closer to ncb that was nc0, where ncb is a vector for which
function Fi has provided the highest KPI.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 98

7.5 HFMM BEHAVIOUR EXAMPLE
It is difficult to demonstrate the proposed concept’s behaviour in a simulated environment, as it requires the
implementation of several Functions and scenarios in which the coordination actions should be happening.
Nevertheless, it is possible to perform HFMM demonstration using a specially prepared dataset, which is the
approach we have taken. In our simulations, we have assumed that the system has four functions Fi, and the
configuration parameter set has four elements plus one that has no real impact on the system configuration, but
it is used for spending of Function’s budget in the case when the reconfiguration has limited impact on the function.
We have demonstrated the behavior of the HFMM, defining two scenarios.

Scenario 1

The input parameters to the HFMM procedure in this scenario are the following:

• budget of each Function reflecting the importance (priority) of the Function to the operator (element of
the management policy)

𝐵 = [200 100 50 300]

• input vector that reflects the number of products in the market. This vector consists of the absolute values

of changes of each parameter of the configuration set regarding the previous configuration. In Scenario 1,
this vector is defined in the following way

𝑝 = [10 1 0.1 0.1 5]

• matrix, each row represents the Linear utility function of the market products. The matrix has been

defined in the following way

𝑊 =

5 1 1 4 1
1 4 0 3 1
2 1 1 0 1
1 0 5 5 5

The FMM solver has provided the following product allocation matrix A and product prices C for the above-
described parameters

𝐴 =

10 0 0 0.005 0
0 1 0 0 0
0 0 0 0 5
0 0 0.1 0.095 0

𝐶 = [192.308 100 153.846 153.846 50]

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 99

The utility functions values for each Function are the following

𝑈 = [50.02 4 0 0.975]

The matrix A shows an interesting feature – for each Function, important is a change of a single parameter only;
moreover, this is a different parameter for each function. The parameter is a11, dominant in the matrix and the
most important for Function F1. Function F2 has noticed an impact of p2. The reconfiguration has no real impact on
F3 as it decided to ’buy’ only p5, a parameter that has no physical meaning. For F4, the only vital parameters are p3
and p4; however, their overall value is limited. The prices of each parameter (vector CS1) express the overall impact
of each parameter on all Functions. The values are dependent on the budget allocated to functions, and it is difficult
to interpret them directly. There is no significant difference between the obtained values except the value for CS1.
The last parameter is a measure of the lack of impact of reconfiguration on other functions (in comparison to other
values of the vector). In Scenario 1, function F3 spent all its budget on the parameter p5. The analysis of the utility
values of Functions shows that the most impacted is F1 (what is expected, as it has triggered the reconfiguration),
slightly impacted are functions F2 and F4, and F3 is not impacted at all. Please note the form of Function budget. In
conclusion, the reconfiguration brings no significant change in KPIs controlled by other Functions.

Scenario 2

In the case of Scenario 2, the input parameters have been changed compared to Scenario 1 to demonstrate the
negative impact of reconfiguration on other functions. The function F1, like in the previous scenario, triggers the
reconfiguration. The new input values are the following:

• the budget of each Function is now equal to

𝐵 = [100 300 50 200]

 please note that the budget of F2 is much higher than the budget of F1;

• in Scenario 2, this vector, reflecting the change of configuration parameters, has the following values

𝑝 = [10 1 0.4 0.4 5]

• the matrix W of which row j represents the value of the product on the market for Fi has been defined in
the following way

𝑊 =

5 0 1 3 1
5 4 2 3 1
2 1 1 0 1
1 0 5 5 1

In this Scenario, the FMM solver has generated the following products allocation matrix AS2 and products prices
CS2

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 100

𝐴 =

4.033 0 0 0.064 0
5.967 1 0 0.069 0

0 0 0 0 5
0 0 0.4 0.267 0

𝐶 = [200 160 120 120 50]

The utility functions values for each Function in this scenario are the following

𝑈 = [20.3592 34.048 0 3.3333]

The most significant difference between the scenarios is that in Scenario 1, the highest value of the utility function
has Function F1 and in Scenario 2 the highest value has Function F2. This means that the impact of the
reconfiguration on Function F2 will be much higher than the impact on F1 - a function that has triggered the
reconfiguration. As the F1 goal is different, such reconfiguration should be avoided. Similarly, to the previous
Scenario, the reconfiguration has no impact on F3, p1 impacts strongly F1 and F2, and p3 impacts all functions except
F3.

7.6 Final remarks concerning the Coordination Framework
In this section, we have presented the architectural concept of the Coordination Framework, which is a necessary
element of autonomic or cognitive (i.e., AI-driven) management architecture. In a simple case, we have
demonstrated the usage of the framework. The proposed instantiation is a recommender that tries to predict the
reconfiguration’s impact on all the CL-driven management functions according to their value to the operator. The
proposed approach is agnostic to CL-functions and allows their addition or removal. However, it has some
limitations because it assumes that configuration changes are linked with an optimization that uses small
reconfiguration steps. Such an assumption made it possible to use the linear dependency of the configuration
parameters on KPI, i.e., to define the W matrix. The matrix can be found in a much more accurate way with realistic,
advanced simulators and machine learning techniques. Moreover, we have provided a straightforward
interpretation of the obtained results, but also, in this case, the use of machine learning could help in finding all
necessary dependencies in a much more accurate way. Unfortunately, when writing this section, there was no
available mobile network simulator that implemented several CL-based management functions.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 101

8 Conclusions
In this deliverable, we have presented the final version of the distributed AI-driven DE algorithms devised in
WP4. We have covered three key management functions of the life-cycle process of a network slice:
admission control, intra and inter-slice orchestration. We also added a new topic related to distributed
decisions: conflict resolution of DE decisions. This deliverable complements D4.1 by either improving the
initial version of the introduced solutions or adding new solutions. We have improved the solutions of D4.1
mainly by extending them to cover not only one single domain but also cross-domain and to enhance their
scalability.

We started the deliverable with an elaboration of the proposed (distributed) Decision Engine (Chapter 3),
focusing on intra-DE interfaces and the interfaces with the Monitoring System (MS) and AE as well as other
DEs. Chapters 4, 5, and 6 presented an example of complete algorithms for Tasks T4.1, T4.2, and T4.3,
respectively.

In chapter 4, we presented two schemes for slice admission control: (i) the evolution of a multi-domain data-
driven scheme, originally introduced in D4.1; (ii) a new admission control scheme that also introduces a type
of “calendaring” and attempts to exploit the periodicity of human activity (and associated traffic).

In chapter 5, we introduced two solutions for intra-slice orchestration. We first described the evolution of
our previous solution, SCHEMA, focusing on the various improvements that have been made. We then
introduced an important extension of this algorithm, SafeSCHEMA, which integrated the SafeRL framework
to operate in scenarios where the natural tendency of RL algorithms to explore “any” possible (slice)
configuration might be forbidden (or prohibitively expensive).

In chapter 6, we focused on inter-slice orchestration, where we introduced an improvement to schemes
initially presented in D4.1. Indeed, we extended from D4.1: (i) the VNF placement and migration algorithm;
(ii) the RAN resource allocation algorithm; (iii) the probing scheme for VNF bottleneck localization.

Finally, in chapter 7, we introduced a new solution that addresses the critical challenge of decision conflicts
that happen when parallel decisions need to be enforced. Therefore, we devised a novel coordination
framework that predicted reconfiguration’s impact and generated recommendations to minimise conflicts
related to network or slice configuration parameters.

Even though this deliverable included preliminary results from the different mechanisms, more results,
particularly obtained through Proof of Concept (PoC) will be included in D4.3. Further, we use WP6 use-cases
(“Zero-Touch multi-domain service management with end-to-end SLAs” and “Elastic end-to-end slice
management”) to demonstrate a set of the mechanisms devised in WP4 and presented in D4.1 and D4.2 using
the CTTC testbed.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 102

References

[1] ETSI GS ZSM 009-1, “ZERO-TOUCH NETWORK AND SERVICE MANAGEMENT (ZSM); CLOSED-LOOP AUTOMATION
ENABLERS”, MARCH 2021.

[2] S. KUKLINSKI et al., “Deliverable D2.4: Final release of the MonB5G architecture (including security)”, Oct.
2021.

[3] J. J. A. Esteves, A. Boubendir, F. Guillemin, and P. Sens, “Location-based Data Model for Optimized
Network Slice Placement”, 2020 6th IEEE Conference on Network Softwarization (NetSoft), 2020, pp. 404-
412, doi: 10.1109/NetSoft48620.2020.9165427.

[4] J. J. Alves Esteves, A. Boubendir, F. Guillemin, and P. Sens, “Heuristic for Edge-enabled Network Slicing
Optimization using the ‘Power of Two Choices’”, 2020 16th International Conference on Network and
Service Management (CNSM), 2020, pp. 1-9, doi: 10.23919/CNSM50824.2020.9269099.

[5] J. J. A. Esteves, A. Boubendir, F. Guillemin, and P. Sens, “A Heuristically Assisted Deep Reinforcement
Learning Approach for Network Slice Placement”, in IEEE Transactions on Network and Service
Management, doi: 10.1109/TNSM.2021.3132103.

[6] Volodymyr Mnih et al. “Asynchronous methods for deep reinforcement learning”, International
conference on machine learning. PMLR, 2016.

[7] J. J. A. Esteves, A. Boubendir, F. Guillemin, and P. Sens. “On the Robustness of Controlled Deep
Reinforcement Learning for Slice Placement”, J. Netw. Syst. Manage. 30, 43 (2022).
https://doi.org/10.1007/s10922-022-09654-8.

[8] M. O. Ojijo and O. E. Falowo, “A Survey on Slice Admission Control Strategies and Optimisation Schemes
in 5G Network,” IEEE Access, vol. 8, pp. 14977–14990, 2020, doi: 10.1109/ACCESS.2020.2967626.

[9] Bakri, S., Brik, B., & Ksentini, A. On using reinforcement learning for network slice admission control in
5g: Offline vs. online. International Journal of Communication Systems, 34(7), e4757. 20,21Retrieved
from https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.4757(e4757dac.4757) doi:
https://doi.org/10.1002/dac.4757

[10] V. Sciancalepore, X. Costa-Perez, and A. Banchs, “RL-NSB: Reinforcement Learning-Based 5G Network
Slice Broker,” IEEE/ACM Trans. Networking, vol. 27, no. 4, pp. 1543–1557, Aug. 2019, doi:
10.1109/TNET.2019.2924471

[11] H. D. Trinh, N. Bui, J. Widmer, L. Giupponi, and P. Dini, “Analysis and modeling of mobile traffic using real
traces,” in 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio
Communications (PIMRC), Montreal, QC, Oct. 2017, pp. 1–6. doi: 10.1109/PIMRC.2017.8292200.

[12] S. Wang, X. Zhang, J. Zhang, J. Feng, W. Wang, and K. Xin, “An Approach for Spatial-temporal Traffic
Modeling in Mobile Cellular Networks,” 2015 27th International Teletraffic Congress, pp. 203–209, Sep.
2015, doi: 10.1109/ITC.2015.31.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 103

[13] Bega, D., Gramaglia, M., Banchs, A., Sciancalepore, V., & Costa-Pérez, X. (2020). A machine learning
approach to 5g infrastructure market optimisation. IEEE Transactions on Mobile Computing, 19(3), 498-
512. doi: 10.1109/TMC.2019.2896950

[14] Han, B., Feng, D., & Schotten, H. D. (2019). A markov model of slice admission control, IEEE Networking
Letters, 1(1), 2-5. doi: 10.1109/LNET.2018.2873978

[15] Jácome, W., Caicedo Rendon, O., & Fonseca, N. Admission control for 5g network slicing based on (deep)
reinforcement learning., 2021, doi: 10.36227/techrxiv.14498190

[16] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013).
Playing atari with deep reinforcement learning. arXiv. Retrieved from https://arxiv.org/abs/1312.5602
doi: 10.48550/ARXIV.1312.5602

[17] C. Chatfield, The Holt-Winters Forecasting Procedure, Journal of the Royal Statistical Society. Series C
(Applied Statistics) Vol. 27, No. 3 (1978), pp. 264-279 (16 pages), Wiley, 1978

[18] Raza, M. R., Natalino, C., Öhlen, P., Wosinska, L., & Monti, P. (2019). Reinforcement learning for slicing
in a 5g flexible ran. Journal of Lightwave Technology, 37 (20), 5161-5169. doi: 10.1109/JLT.2019.2924345

[19] Simpy: Discrete event simulation for Python. (n.d.). [Website]. Retrieved from
https://simpy.readthedocs.io/en/latest/ (Accessed: Jun. 10, 2022)

[20] GSMA, NG.116 Generic Network Slice Template Version 6.0, 25 November 2021,
https://www.gsma.com/newsroom/wp-content/uploads//NG.116-v6.0.pdf

[21] Hyndman, Rob J., and Athanasopoulos, George. Forecasting: principles and practice, 3rd edition, OTexts,
2021. https://otexts.com/fpp3/expsmooth.html

[22] .H. Mao, Z. Gong, and Z. Xiao, “Reward design in cooperative multi-agent reinforcement learning for
packet routing,” arXiv preprint arXiv:2003.03433, 2020.

[23] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K.
Fidjeland, G. Ostrovski et al., “Human-level control through deep reinforcement learning,” nature, vol.
518, no. 7540, pp. 529–533, 2015.

[24] S. Feghhi, E. Aumayr, F. Vannella, E. Hakim, and G. Iakovidis, “Safe reinforcement learning for antenna
tilt optimisation using shielding and multiple baselines,” in 32nd IEEE Annual International Symposium
on Personal, Indoor and Mobile Radio Communications, PIMRC 2021, 9 2021, pp. 1148–1153.

[25] S. Vassilaras, L. Gkatzikis, N. Liakopoulos, I. N. Stiakogiannakis, M. Qi, L. Shi, L. Liu, M. Debbah, and G. S.
Paschos, “The algorithmic aspects of network slicing,” IEEE Comms. Magazine, 2017.

[26] F. Schardong, I. Nunes, and A. Schaeffer-Filho, “Nfv resource allocation: a systematic review and
taxonomy of vnf forwarding graph embedding,” Computer Networks, vol. 185, p. 107726, 2021.

[27] M. Harchol-Balter, Performance Modeling and Design of Computer Systems: Queueing Theory in Action,
1st ed. USA: Cambridge University Press, 2013.

[28] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez, “Deepcog: Cognitive network
management in sliced 5g networks with deep learning,” in IEEE INFOCOM, 2019.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 104

[29] M. Shojafar, N. Cordeschi, and E. Baccarelli, “Energy-efficient adaptive resource management for real-
time vehicular cloud services,” IEEE Trans. on Cloud Computing, 2019.

[30] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez, “Aztec: Anticipatory capacity allocation
for zero-touch network slicing,” in IEEE INFOCOM, 2020.

[31] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2nd ed. The MIT Press, 2018.

[32] D. Bertsekas, Reinforcement Learning and Optimal Control. Athena Scientific, 2019.

[33] V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature, vol. 518, no. 7540,
pp. 529–533, Feb. 2015.

[34] Tan, Ming. "Multi-agent reinforcement learning: Independent vs. cooperative agents." Proceedings of
the tenth international conference on machine learning. 1993.

[35] Tampuu, Ardi, et al. "Multiagent cooperation and competition with deep reinforcement learning." PloS
one 12.4 (2017): e0172395.

[36] Sciancalepore, V., Costa-Perez, X., & Banchs, A. (2019). RL-NSB: Reinforcement learning-based 5G
network slice broker. IEEE/ACM Transactions on Networking, 27(4), 1543-1557.

[37] Foukas, X., Marina, M. K., & Kontovasilis, K. (2017, October). Orion: RAN slicing for a flexible and cost-
effective multi-service mobile network architecture. In Proceedings of the 23rd annual international
conference on mobile computing and networking (pp. 127-140).

[38] Tun, Y. K., Tran, N. H., Ngo, D. T., Pandey, S. R., Han, Z., & Hong, C. S. (2019). Wireless network slicing:
Generalized kelly mechanism-based resource allocation. IEEE Journal on Selected Areas in
Communications, 37(8), 1794-1807.

[39] Azimi, Y., Yousefi, S., Kalbkhani, H., & Kunz, T. (2021). Energy-Efficient Deep Reinforcement Learning
Assisted Resource Allocation for 5G-RAN Slicing. IEEE Transactions on Vehicular Technology.

[40] Zanzi, L., Sciancalepore, V., Garcia-Saavedra, A., Schotten, H. D., & Costa-Pérez, X. (2020). LACO: A
latency-driven network slicing orchestration in beyond-5G networks. IEEE Transactions on Wireless
Communications, 20(1), 667-682.

[41] Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A., & Bengio, Y. (2013). An empirical investigation of
catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211.

[42] Van Hasselt, H., Guez, A., & Silver, D. (2016, March). Deep reinforcement learning with double q-learning.
In Proceedings of the AAAI conference on artificial intelligence (Vol. 30, No. 1).

[43] Pei, J., Hong, P., Pan, M., Liu, J., & Zhou, J. (2019). Optimal VNF placement via deep reinforcement
learning in SDN/NFV-enabled networks. IEEE Journal on Selected Areas in Communications, 38(2), 263-
278.

[44] Lyu, X., Ren, C., Ni, W., Tian, H., Liu, R. P., & Dutkiewicz, E. (2019). Optimal online data partitioning for
geo-distributed machine learning in edge of wireless networks. IEEE Journal on Selected Areas in
Communications, 37(10), 2393-2406.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 105

[45] Wang, J., Zhang, J., Bao, W., Zhu, X., Cao, B., & Yu, P. S. (2018, July). Not just privacy: Improving
performance of private deep learning in mobile cloud. In Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery & data mining (pp. 2407-2416).

[46] Aledhari, M., Razzak, R., Parizi, R. M., & Saeed, F. (2020). Federated learning: A survey on enabling
technologies, protocols, and applications. IEEE Access, 8, 140699-140725.

[47] Zhang, C., & Patras, P. (2018, June). Long-term mobile traffic forecasting using deep spatio-temporal
neural networks. In Proceedings of the Eighteenth ACM International Symposium on Mobile Ad Hoc
Networking and Computing (pp. 231-240).

[48] Bega, D., Gramaglia, M., Fiore, M., Banchs, A., & Costa-Perez, X. (2019, April). DeepCog: Cognitive
network management in sliced 5G networks with deep learning. In IEEE INFOCOM 2019-IEEE Conference
on Computer Communications (pp. 280-288). IEEE.

[49] Wang, W., Lyu, G., Shi, Y., & Liang, X. (2018, November). Time series clustering based on dynamic time
warping. In 2018 IEEE 9th international conference on software engineering and service science (ICSESS)
(pp. 487-490). IEEE.

[50] Gold, O., & Sharir, M. (2018). Dynamic time warping and geometric edit distance: Breaking the quadratic
barrier. ACM Transactions on Algorithms (TALG), 14(4), 1-17.

[51] Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996, August). A density-based algorithm for discovering
clusters in large spatial databases with noise. In kdd (Vol. 96, No. 34, pp. 226-231).

[52] Pappalardo, L., & Simini, F. (2018). Data-driven generation of spatio-temporal routines in human
mobility. Data Mining and Knowledge Discovery, 32(3), 787-829.

[53] S. Sharma, R. Miller, and A. Francini, “A cloud-native approach to 5g network slicing,” IEEE
Communications Magazine, vol. 55, no. 8, pp. 120–127, 2017.

[54] T. Taleb, A. Ksentini, and B. Sericola, “On service resilience in cloud-native 5g mobile systems,” IEEE
Journal on Selected Areas in Communications, vol. 34, no. 3, pp. 483–496, 2016.

[55] P. L. Vo, M. N. H. Nguyen, T. A. Le, and N. H. Tran, “Slicing the edge: Resource allocation for ran network
slicing,” IEEE Wireless Communications Letters, vol. 7, no. 6, pp. 970–973, 2018.

[56] M. Rahali, C. -T. Phan and G. Rubino, "KRS: Kubernetes Resource Scheduler for resilient NFV networks,"
2021 IEEE Global Communications Conference (GLOBECOM), 2021, pp. 1-6, doi:
10.1109/GLOBECOM46510.2021.9685328.

[57] A. Bayazeed, K. Khorzom, M. Aljnidi, A survey of self-coordination in self-organising network, Computer
Networks, Vol. 196, 2021, 108222, ISSN 1389-1286.

[58] K. Tsagkaris, N. Koutsouris, P. Demestichas, R. Combes and Z. Altman, “SON Coordination in a Unified
Management Framework,” 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), 2013, pp. 1-5,
doi: 10.1109/VTCSpring.2013.6692759

[59] T. Bandh, R. Romeikat, H. Sanneck and Haitao Tang, “Policy-based coordination and management of SON
functions,” 12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011) and
Workshops, 2011, pp. 827-840, doi: 10.1109/INM.2011.5990492.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 106

[60] L. C. Schmelz, M. Amirijoo, A. Eisenblaetter, R. Litjens, M. Neuland and J. Turk, "A coordination
framework for self-organisation in LTE networks," 12th IFIP/IEEE International Symposium on Integrated
Network Management (IM 2011) and Workshops, 2011, pp. 193-200, doi: 10.1109/INM.2011.5990691.

[61] R. Combes, Z. Altman and E. Altman, “Coordination of autonomic functionalities in communications
networks,” 2013 11th International Symposium and Workshops on Modeling and Optimisation in Mobile,
Ad Hoc and Wireless Networks (WiOpt), 2013, pp. 364-371.

[62] A. Zakrzewska, L. Ho, H. Gacanin and H. Claussen, “Coordination of SON Functions in Multi-Vendor
Femtocell Networks,” in IEEE Communications Magazine, vol. 55, no. 7, pp. 165-171, July 2017, doi:
10.1109/MCOM.2017.1600530

[63] O. Iacoboaiea, B. Sayrac, S. Ben Jemaa and P. Bianchi, “SON Coordination for parameter conflict
resolution: A reinforcement learning framework,” 2014 IEEE Wireless Communications and Networking
Conference Workshops (WCNCW), 2014, pp. 196-201, doi: 10.1109/WCNCW.2014.6934885

[64] O. Iacoboaiea, B. Sayrac, S. Ben Jemaa and P. Bianchi, “Low complexity SON coordination using
reinforcement learning,” 2014 IEEE Global Communications Conference, 2014, pp. 4406-4411, doi:
10.1109/GLOCOM.2014.7037501.

[65] O. Iacoboaiea, B. Sayrac, S. Ben Jemaa and P. Bianchi, “SON Coordination in Heterogeneous Networks: A
Reinforcement Learning Framework,” in IEEE Transactions on Wireless Communications, vol. 15, no. 9,
pp. 5835-5847, Sept. 2016, doi: 10.1109/TWC.2016.2571695.

[66] J. Moysen, M. Garcia-Lozano, L. Giupponi and S. Ruiz, “Conflict Resolution in Mobile Networks: A Self-
Coordination Framework Based on Non-Dominated Solutions and Machine Learning for Data Analytics
[Application Notes],” in IEEE Computational Intelligence Magazine, vol. 13, no. 2, pp. 52-64, May 2018,
doi: 10.1109/MCI.2018.2807038.

[67] D. Preciado, M. Kasparick, R. L. G. Cavalcante and S. Stanczak, “SON Function Coordination in Campus
Networks Using Machine Learning,” 2022 IEEE Wireless Communications and Networking Conference
(WCNC), 2022, pp. 2130-2135, doi: 10.1109/WCNC51071.2022.9771586

[68] M. Qin et al., “Learning-Aided Multiple Time-Scale SON Function Coordination in Ultra-Dense Small-Cell
Networks,” in IEEE Transactions on Wireless Communications, vol. 18, no. 4, pp. 2080-2092, April 2019,
doi: 10.1109/TWC.2019.2898002

[69] J. Moysen and L. Giupponi, “Self Coordination among SON Functions in LTE Heterogeneous Networks,”
2015 IEEE 81st Vehicular Technology Conference (VTC Spring), 2015, pp. 1-6, doi:
10.1109/VTCSpring.2015.7146076.

[70] A. Banerjee, S. S. Mwanje and G. Carle, “Optimal configuration determination in Cognitive Autonomous
Networks,” 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM), 2021, pp.
494-500.

[71] A. Banerjee, S. S. Mwanje and G. Carle, “Game theoretic Conflict Resolution Mechanism for Cognitive
Autonomous Networks,” 2020 International Symposium on Performance Evaluation of Computer and
Telecommunication Systems (SPECTS), 2020, pp. 1-8.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G
Decision Engine [Public]

©MonB5G, 2019 Page | 107

[72] Hutsebaut-Buysse M, Mets K, Latré S. Hierarchical Reinforcement Learning: A Survey and Open Research
Challenges. Machine Learning and Knowledge Extraction. 2022; 4(1):172-221.
https://doi.org/10.3390/make4010009

[73] Shubham Pateria, Budhitama Subagdja, Ahhwee Tan, and Chai Quek. 2021. Hierarchical Reinforcement
Learning: A Comprehensive Survey. ACM Comput. Surv. 54, 5, Article 109 (June 2022), 35 pages.
https://doi.org/10.1145/3453160

[74] S. Brânzei, C. Yiling, X. Deng, A. Filos-Ratsikas, K. S. Frederiksen and J. Zhang. “The Fisher Market Game:
Equilibrium and Welfare.” AAAI (2014).

[75] R. R. Maxfield, General equilibrium and the theory of directed graphs, Journal of Mathematical
Economics, Volume 27, Issue 1, 1997, Pages 23-51, ISSN 0304-4068.

[76] J. B. Orlin. Improved algorithms for computing Fisher’s market clearing prices: computing fisher’s market
clearing prices. In Proceedings of the 42 ACM symposium on Theory of computing (STOC ‘10). ACM, New
York, NY, USA, 2010.

[77] B. Birnbaum, N. R Devanur, and L. Xiao. Distributed algorithms via gradient descent for fisher markets. In
Proceedings of the 12th ACM conference on Electronic commerce, pages 127-136. ACM, 2011.

[78] C. Kroer, Alexander Peysakhovich, Eric Sodomka, and Nicolas E Stier-Moses. Computing large market
equilibria using abstractions. In Proceedings of the 2019 ACM Conference on Economics and
Computation, pages 745-746, 2019.

[79] A. S. Prasad, M. Arumaithurai, D. Koll, Y. Jiang and X. Fu, “OFM: An Online Fisher Market for Cloud
Computing,” IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, 2019, pp. 2575-2583,
doi: 10.1109/INFOCOM.2019.8737641.

[80] S. Angelopoulos, A. D. Sarma, A. Magen, and A. Viglas, “On-Line Algorithms for Market Equilibria,” in 11th
Annual International Conference Computing and Combinatorics (COCOON). Springer Berlin Heidelberg,
Aug. 2005, pp. 596–607.

[81] A. Blum, T. Sandholm, and M. Zinkevich, “Online Algorithms for Market Clearing,” Journal of the ACM,
vol. 53, no. 5, pp. 845–879, Sep. 2006.

[82] Y. Azar, N. Buchbinder, and K. Jain, “How to Allocate Goods in an Online Market?” Algorithmica, vol. 74,
no. 2, pp. 589–601, Feb. 2016.

