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1 Executive summary 
Decision Engine (DE) is one of the key elements of the closed-control loop devised in the MonB5G project 
aiming at achieving zero-touch management of a massive number of network slices in Beyond 5G networks. 
DE oversees the decision-making process of the closed-control loop, mainly using AI and relying on the 
Analytical Engine (AE) inputs during the Lifecycle (LC) of network slices. WP4 is dedicated to studying and 
devising distributed and scalable AI-Driven algorithms for DE to manage a massive number of network slices. 
This deliverable contains a final version of the devised DE algorithms that either complements and improves 
the initial versions introduced in D4.1 or introduces new algorithms. It is worth noting that we improved D4.1 
solutions by putting efforts toward covering not only a single domain but multiple technological and 
administrative domains and improving the scalability of the different solutions. We also added a new 
algorithm that particularly focuses on DE conflict resolution. 

This deliverable comprises five key parts that summarize the achievement of tasks T4.1, T4.2, and T4.3. The 
integration and implementation results will be presented in a separate document D4.3. However, initial 
performance evaluation results of the different schemes and algorithms are also included in this deliverable. 

The first part of this deliverable details and recalls the role of the DE in the MonB5G architecture, particularly 
focusing on the specifications, functions, interfaces, and cross-domain operations. It is important to 
understand the interaction, particularly how DE communicates with the AE, Monitoring System (MS), and 
other DE to achieve decentralized management. Indeed, one of the key achievements in this deliverable is 
the distributed AI-driven solutions, which in addition to the algorithmic part, need communication interfaces 
across domains to ensure the end-to-end DE. 

The second part is dedicated to admission control algorithms that can support massive numbers of slice 
arrival events. Admission control is a vital function of the LC Management (LCM) of network slices as it allows 
managing the resources efficiently while guaranteeing SLA. Knowing the diversity of slice types, the 
complexity of VNF/PNF chain configuration and placement options, and the inherent uncertainty in future 
slice requests, we explored in MonB5G solutions that are model-free and based on both regular and deep re-
enforcement learning. We aim at maximizing the number of co-existing slices while minimizing SLA violations. 
In D4.1, we have devised algorithms for admission control based on Deep Q-reinforcement Learning (DQL) 
and Regret Machine (RM) solution for RAN and Cloud domains, while we identified several potential 
algorithms for slice component placement. In D4.2, we introduce two other slice admission approaches. The 
first one is based on Deep Reinforcement Learning (DRL) approach, which has been combined with a heuristic 
to reduce the learning period of the DRL. The second solution is based on the Time-of-Day (ToD) traffic curve 
that reflects the human activity, which has been used to predict eMBB and use a DQL for admission control. 

The third part is devoted to intra-slice orchestration consisting of intra-slice reconfiguration and resource 
allocation. In D4.1, we devised solutions by organizing them into (i) domain-specific, such as VNF 
configuration, reconfiguration, and migration; (ii) cross-domain, such as e2e VNF and slice placement using 
multi-agents Reinforcement Learning (RL). Unlike D4.1, where we focused mainly on domain-specific 
solutions, in this deliverable, we envision particularly cross-domain solutions. To this end, we devised a 
solution for service chain management in a multi-technological domain using a Distributed RL algorithm. 

The fourth part concerns the inter-slice orchestration that lies at a level above its intra-slice counterpart and 
requires a wider picture of the network and its performance. In D4.1, we presented the first algorithmic 
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approaches, focusing mainly on domain-specific inter-slice orchestration. The proposed solutions included a 
RL algorithm for VNF placement and reconfiguration, a Multi-Armed Bandit algorithm for RAN resource 
allocation, and a probing scheme for VNF bottleneck localization. In D4.2, we build on to either provide 
extensions to the solutions of D4.1 (aiming mainly at increasing their scalability and at supporting many slices) 
or to apply them in more practical use cases. More specifically, we extended from D4.1: (i) the VNF placement 
and migration algorithm; (ii) the RAN resource allocation algorithm; (iii) the probing scheme for VNF 
bottleneck localization. 

The final part of the document is dedicated to a new challenge that was not integrated in D4.1, which is 
related to the control loops coordination. This issue arises when different functions (or sometimes DE) are 
trying to optimise a single goal, which can lead to suboptimal results or chaotic system behaviour. To this 
end, we devise a novel coordination framework compliant with the MonB5G architecture that aims at 
predicting reconfiguration’s impact and hence generating recommendations to minimise conflicts related to 
network or slice configuration parameters. 
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2 Introduction and Problem Scope  

2.1 Problem Scope   
MonB5G proposes a fully data-driven decision engine and algorithm stack. Recent works and related EU 
projects addressing the introduction of AI solutions into the 5G/B5G architecture, either focus primarily on 
data analytics or target specific components of the orchestration architecture in a piecemeal fashion. In 
contrast, MonB5G explores data-driven algorithms as a key element of all slice lifecycle management 
operations, from admission control, to scaling and migration operations both for a specific slice (“intra-slice 
operation”) involving one or more technological (e.g., RAN, MEC, core, cloud) and/or administrative domains, 
to end-to-end orchestration operations involving a large number of such slices (“inter-slice operation”). The 
Decision Engine (DE), the main architectural component targeted by WP4, has as its main objective to react 
to sophisticated KPI predictions or anomalies reported by the AE (and sometimes directly connected to the 
Monitoring System, e.g., for training), to both improve the network resource usage (across all slices) and (and 
perhaps more importantly) to meet the diverse Service Level Agreements (SLAs) per slice. 

The MonB5G architecture (and its WP4 solutions) brings several important innovations: 

First, the DE architecture is designed to be flexibly distributable across different administrative domains, 
technological domains, and even fine granularities such as one DE per tenant, slice, or even VNF (virtual 
network function). Flexible distribution means that the proposed DE can operate in different configurations 
as needed. In the solutions provided in this project, we will encounter algorithms that fit a hierarchical DE 
implementation, where a “central” DE (e.g., in the cloud or core domain) has control over different “edge” 
DEs that are (partially) responsible for different RAN domains, edge clouds (e.g., MEC), etc., or even slice-
specific DEs, as mentioned earlier, all working toward optimal lifecycle management of slices that span all of 
these domains. We will also see solutions consisting of multi-agents facilitated by even more decentralized 
(or federated) distribution of DEs across domains and/or components. 

Second, another important innovation compared to most existing approaches is that the solutions proposed 
in MonB5G WP4 can orchestrate slices consisting of multiple VNFs across different technological (and even 
administrative) domains. Equally important, the solutions described can handle diverse service level 
agreements with sophisticated end-to-end KPIs (e.g., end-to-end delay constraints across an entire, complex 
VNF graph).  

Third, while several recent works have addressed data-driven solutions for 5G analytics and sometimes slice 
orchestration, the solutions described in this deliverable go beyond the state-of-the-art both in terms of (i) 
improving the performance of previously proposed data-driven algorithms for such tasks and (ii) distributing 
the components of the data-driven algorithms (e.g., multi-agents) or even the components of the neural 
network architecture (Distributed DNNs). If DE algorithms are located as close as possible to the network 
components for which the decisions are made, decision latency can be significantly improved, especially for 
tasks that operate at a much smaller time granularity (e.g., RAN) than traditional data-driven systems (e.g., 
application-level image classification). At the same time, the amount of information that needs to be 
collected and transported over the network to enable the intensive use of modern data-driven algorithms is 
orders of magnitude larger. Finally, if the trained model used is very large (e.g., modern deep neural network 
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architectures used for sophisticated ML tasks, may have millions of trained weights), distributing the actual 
model across local DE components is a necessity for B5G architectures.  

2.2 Deliverable Scope  
This deliverable D4.2 describes progress on Tasks 4.1, 4.2, and 4.3 related to distributed slice lifecycle 
management, beyond the preliminary work documented in the deliverable D4.1 and presented during the 
midterm review. As planned, our results for Task 4.4 will be documented in a separate, future deliverable 
D4.3. In this second and final part of the MonB5G effort to develop algorithms for the Decision Engine, we 
have focused our efforts on several key dimensions, considering the suggestions of midterm reviewers: 

From single domain to multi-domain solutions: A large portion of the solutions presented in D4.1 worked with 
slices that involved a single administrative or even technological domain. We have endeavoured to extend 
all the solutions presented in this new deliverable to either support multiple domains or to be 
integrable/interoperable with other algorithms covering other domains. 

Improved and measurable scalability: We have already documented in DoW why Decision Engine distribution 
(and associated algorithms) improves the scalability of baseline/existing orchestration solutions. We have 
also provided preliminary validations of our algorithms in D4.1 that support these claims to some degree. 
Nevertheless, in this second phase of the project, we have made significant effort to both significantly 
improve the scalability of our solutions and clearly validate the scalability of each solution using simulation 
scenarios designed to demonstrate this scalability against well-defined baseline solutions. 

Integration/Interoperability of different solutions: Although the actual integration is part of Task 4.4, we have 
taken initial steps to integrate and/or complement a subset of the proposed algorithms (while also fostering 
collaboration between partners). Examples include the SafeRL-based extension of the Schema algorithm 
presented in Chapter 5, the multi-agent algorithm from Chapter 6, and the “umbrella” decision conflict 
resolver from Chapter 7. 

Algorithmic improvements: In addition to the above dimensions, we have improved several the algorithms 
proposed in D4.1 in terms of scalability (as mentioned), SLA performance, convergence, etc., but also 
introduced some new algorithms.  

2.3 Outline and focus  
The deliverable begins with an elaboration of the proposed (distributed) Decision Engine (Chapter 3), focusing 
on intra-DE interfaces and the interfaces with the Monitoring System (MS) and AE. It continues with three 
chapters (Chapters 4-6), each presenting an example of complete algorithms for Tasks T4.1, T4.2 and T4.3.  

Specifically, Chapter 4 presents two schemes for slice admission control, the subject of Task 4.1: (i) the 
evolution of a multi-domain data-driven scheme, originally documented in D4.1 that combines both modern 
Reinforcement Learning (RL) methods and integer program solving techniques to address the problem; (ii) a 
new admission control scheme that also introduces a type of “calendaring” and attempts to exploit the 
periodicity of human activity (and associated traffic). 

We then move to Chapter 5, which deals with intra-slice management (the topic of Task 4.2), e.g., how to 
scale up or down the resources of a slice, or migrate the VNFs of a slice chain, in a distributed manner to 
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satisfy different types of SLAs, using data-driven mechanisms. These solutions not only consider the current 
slice and network status (e.g., via MS and AE), but also optimally consider future evolution. We first describe 
the evolution of our previous solution, SCHEMA, focusing on the various improvements that have been made. 
We then propose an important extension of this algorithm, SafeSCHEMA, which gracefully integrates the 
important SafeRL framework into the scheme to operate in scenarios where the natural tendency of RL 
algorithms to explore “any” possible (slice) configuration might be forbidden (or prohibitively expensive) and 
therefore the exploration/exploitation components need to be protected.  

In Chapter 6, we go a step further and present some algorithms that deal with related reconfigurations and 
scaling events when multiple slices, possibly belonging to different tenants, overlap (partially or completely) 
across domains (the topic of Task 4.3). Specifically, we first document how our inter-slice VNF placement and 
migration algorithm, originally demonstrated for one domain in D4.1 has been extended as follows: (i) it now 
supports multiple VNFs per slice, i.e., an arbitrary, probabilistic VNF graph (which also allows for loops); (ii) 
various realistic end-to-end performance metrics for the average flow served by such a VNF graph can now 
be supported; (iii) a multi-agent solution where a DE (agent) is located at each slice (or even at each VNF of 
a slice) radically improving the scalability of the scheme as the number of slices (or VNF host sites) increases, 
while still maintaining near-optimal performance.  

Finally, Chapter 7 deals with the very important topic of DE conflict resolution. This is a subject of the 
overarching algorithms (and DE components) of all Tasks 4.1, 4.2, and 4.3, and proposes a solution to resolve 
potential disagreements between the various (local) DEs that might otherwise destabilize the system and 
lead to oscillations or crushing.  

In Table 1, we summarize the topic of each chapter and how it relates to the WP4 tasks. 

Table 1. Summary of each chapter’s content in this deliverable. 

Chapter Description Task(s) Starting 
Month 

2 Problem and deliverable scope and outline T4.1 – T4.3 M7 

3 Decision engine architecture evolution T4.1 – T4.3 M7 

4 
Describe progress in admission control algorithms, both 
evolution of already presented ones, as well as new ones T4.1 M7 

5 Describe progress in intra-slice orchestration algorithms T4.2 M7 

6 Describe progress in inter-slice orchestration algorithms T4.3 M7 

7 New work on DE conflict resolution T4.1-T4.3 M7 

 

Finally, we would like to point out that we have chosen to present each algorithm in each of these chapters 
in the following format to better focus the reader’s attention on the key messages.  
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Problem Setup: Each algorithm presented first introduces the detailed problem it is working with. This 
subsection helps to clarify: (i) the assumed slice model, (ii) the targeted KPIs or SLAs, (iii) the control variables 
of the problem, i.e., what configurable system “knobs” the algorithm is trying to choose; examples of control 
variables are resources allocated to specific VNFs (e.g., RAN resource blocks, CPU cores), locations where 
slice components (e.g., VNFs) could be placed, etc., and (iv) what kind of additional constraints (in the state 
or action space) the problem might impose. Here we also discuss some recent related work per solution. 

Solution Methodology: For each algorithm, we then present the solution methodology. In other words, we 
describe what kind of tool(s) the algorithm uses to solve the above problem. The tools presented in the 
context of the different algorithms include modeling tools (e.g., Markov Chains) as well as optimization tools 
such as (Deep) Reinforcement Learning, Online Convex Optimization (e.g., multi-armed bandits), discrete 
optimization solvers, etc. The goal is to address both the “why” (this algorithm was chosen for the problem) 
and the “how” (algorithm variation, parameter tuning, etc.) 

Scalability Validation: In this second phase of the project, we have made significant efforts to both improve 
the scalability of our solutions and, perhaps more importantly, to validate and demonstrate that scalability 
against well-motivated baselines.  

Positioning in the architecture of Decision Engine: In this subsection, we attempt to give an initial idea of 
the position of each of the algorithms discussed within the architecture of decision engine. We briefly address 
whether the DE implementation implied by the algorithm is hierarchical or more decentralized, what domains 
the algorithm covers, and what DE granularity is required (e.g., per BS, per slice, per VNF, etc.). 

MonB5G checklist) Finally, we provide a summary of the important MonB5G goals that the specific algorithms 
help to achieve, be it distributed operation, latency reduction, convergence speed improvement, types of 
data-driven algorithms promised, etc. 
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3 Positioning of the DE in the MonB5G architecture  
The goal of this section is to provide an overview on the MonB5G architectural elements described in [2] 
related to the decision engine (DE) and the data-driven decision schemes. This section discusses the Decision 
Engine specifications, functions, interfaces, and cross-domain operation. It starts by positioning DE in the 
MonB5G architecture and presenting its relation to the other elements of the Monitor-Analyze-Plan-
Execute (MAPE) framework, i.e., the Monitoring System (MS), the Analytic Engine (AE), as well as the 
Actuators (ACT). The proposed framework is in line with the recently proposed ETSI ZSM closed loop 
automation architecture [1]. The section continues with a thorough description of the different DE 
interfaces, either within the slice or with other external elements of the MonB5G distributed architecture, 
providing a description of the blocks of the DE in a generic way, which can be instantiated differently 
depending on the target scope of analysis (domain, slice, or network function). The section then moves to 
show how the distributed architecture of MonB5G can be harnessed for decentralized data-driven decision 
making, either intra-domain or cross-domain, involving the end-to-end Decision Engine or the local DEs. This 
will be illustrated further through the practical DRL algorithms described in Sections 4-6 to reveal the nature 
of cooperation between the different DEs. 

3.1    Generic Description  
3.1.1 ZSM CLOSED LOOP CONTROL 
ETSI has recently proposed some insights on the Zero-touch Service Management (ZSM) framework for Closed 
Loop (CL) management automation [1]. CLs may exist in each of the management domains of the ZSM 
architecture. Figure 1 presents the CL functional scheme, in which the ‘Decision’ stage plays a key role. The 
aim of this section is to briefly present the ZSM framework proposed by ETSI and link it with MonB5G DE. 

 

  
Figure 1: Block diagram of a closed loop in the ZSM framework. 
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This Figure is composed by four stages besides the ‘Knowledge’ functional block. The ‘monitoring/collection’ 
stage is the responsible for gathering and pre-processing the raw data from the managed entities or external 
resources (in this context, a managed entity is either a service, a managed resource, or another closed loop). 
Since raw data can have different heterogeneous formats, coming from different sources, can be transformed 
in a way that it allows to analyze it in conjunction with the data coming from other sources. After this, comes 
the ‘Analysis’ stage, which provides insights from the available data obtained from the Monitoring stage. 
Then, the ‘Decision’ stage, which governs managed entity, decides the action that must be taken based on 
the issues detected by the analysis block. These actions can be reactive, proactive, or predictive. It should be 
remarked that the decision stage is only responsible for deciding which actions are necessary, but not for 
their execution. This is the competence of the ‘Execution’ stage, which translates the decided actions into 
commands. The Execution stage oversees the execution of the necessary workflows in the managed entity to 
implement the actions determined by the decision stage. This execution could also involve other 
management domains. When this happens, interactions with other CLs are needed. Thus, multiple distributed 
CLs are required for the automation of E2E service management. The ‘Knowledge’ block in the functional 
diagram presented above is not technically a stage of the CL, it refers to the storage and retrieval of historical, 
configuration and operational data that are shared between the stages of a closed loop as well as between 
different CLs in the network. 

The ‘Decision’ stage involves different primary flows or interfaces: 

 A2D interface. It connects the Analysis function with the Decision stage. It provides insights on 
historical and/or real-time information provided by the collection/monitoring stage. It can also 
provide information for tuning the analytic models and starting/terminating the analytics processes. 

 D2E interface. It is used by the Decision stage to provide action plans in form of workflows (e.g., 
configuration changes, onboarding services and resources). It can also be used to provide information 
to tune the decision models and start/stop the decision processes. 

 E3 external interface represents the data and control inputs and outputs from/to other closed loops 
or external entities. It can be used to: i) start/stop the decision processes; ii) change the settings of 
the Decisions stage and attributes of the models; iii) retrieve the historical or real-time data of the 
function, such as logs, outcomes of the Decision function; iv) provide the resulting data of the 
Decision stage to other closed loops or authorized entities outside the ZSM framework, e.g., external 
management systems. 

 K3 interface is a knowledge-enable flow, which is represented by a double-headed arrow, and is used 
for data-related inputs and outputs from the Decision stage. The primary interfaces exposed above 
can be augmented by data stored and retrieved from the ‘Knowledge’ functional block. The data can 
be historical workflows (generated over the time or coming from external resources) or real-time 
workflows (continuously generated by the operations of the Decision stage). 
 

3.1.2 DECISION ENGINE IN THE MONB5G ARCHITECTURE 
As depicted in Figure 2, the considered architecture provides several degrees of freedom to deploy advanced 
decentralized AI algorithms for scalable and sustainable massive network slicing. In MonB5G, the DE is part 
of slice runtime management and is embedded in the slice (and is therefore part of the slice template). Next 
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Figure shows the generic structure of the MonB5G slice. Two separate layers can be distinguished: the Slice 
MonB5G Layer (SML) and the Slice Functional Layer (SFL).  

 
Figure 2. Generic structure of MonB5G single domain slice (composed of SFL and SML). It shows the MonB5G 

DE Positioning with MS, AE and ACT. 

The SFL part, built of virtual functions, provides the communications service-related functionality, whereas 
the SML part, also built using virtual functions, provides the management. The SML is further divided into 
different sublayers, which are responsible for Monitoring System (MS), Analytic Engines (AEs) and Decision 
Engines (DE), as well as the Actuators (ACTs). The MS oversees collecting raw performance and configuration 
data measurements from the managed resources and contains an internal memory that stores the 
measurements as well as the decision story and the AI performance metrics, serving as the ‘Knowledge block’ 
in the ZSM in framework [1]. The AE then performs time-series predictions as well as feature space 
regressions, clustering, and classification to extract insights from the measurements collected by the MS, 
while the DE decides on the lifecycle management (LCM) actions that need to be applied to face the issues 
detected by the AE. DEs implement control algorithms, such as Deep Reinforcement Learning (DRL) 
methods, to take online decisions regarding slice LCM actions that need to be applied to face the issues 
detected by the AE and may propose network reconfiguration to solve the detected problems. It may also 
control the MS measurement granularity or the AE prediction parameters. Typically, in the management 
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systems, multiple goals must be optimized, therefore multiple AEs and DEs can be part of SML. The DEs 
decisions are transferred to the ACT, which converts the DE decision into a set of elementary actions. 
Furthermore, actuators monitor the execution of this set of actions and provide feedback to the DE. 

The DE sublayer in MonB5G is envisioned as a composition of multiple DE entities, which are responsible for 
the reconfiguration of the SFL and/or SML. Each of them may pursue a local goal, for instance, resource 
allocation optimization, local fault healing, security decisions or energy-aware reconfigurations. The DE 
sublayer interacts with the MS and AE sublayers to acquire appropriate information from the ongoing slice 
deployments and infrastructure utilization.  

The control loop-based management system may generally have multiple goals what justifies, multiple AEs 
and DEs as a part of SML. This inevitably leads to conflicts between DEs' outputs. To solve the problem, the 
DE Selector/Arbiter component is present, which can be AI-driven. It is involved in the stability of the system 
observation and counteracts the ping-pong effect or chaotic system behavior (too many, random-like 
reconfigurations). The DEs have not only management, but also orchestration capabilities. They may change 
configuration parameters and send new function VNF orchestration requests. In the contrast to the reactive 
resource scaling, it may also proactively request an update of resource allocation or scaling, based on number 
of slice users' QoE, slice usage trends or spatial distribution changes. The MonB5G DE and its serving 
administrative elements (MS, AE, and ACT) are in line with the ETSI ZSM CL framework [1]. 

These three management components (MS/AE/DE) present different levels of instantiation that can be used 
according to the target scope of analysis and decision, where the aim is to minimize the raw data exchange 
and allow a fast local analysis and decision: 

 Virtual network function (VNF)/physical network function (PNF) level, where MS, AE and DE are 
placed close to the monitored resources of a given slice. 

 Slice-level, where each slice template includes dedicated AE and DE that may respectively collect 
compressed metrics/prediction models or policy weights from AEs and DEs of their VNFs/PNFs to 
perform slice-wide analytics and decision via decentralized AI strategies such as federated learning 
and multi-agent/federated deep reinforcement learning. 

 Domain-level (i.e., RAN, Edge, Cloud), where a dedicated MS, AE and DE triplet can perform domain-
wide AI-driven management by relying on the inputs of the VNFs/PNFs decentralized elements. 

 Inter-Domain Manager and Orchestrator (IDMO)-level, which similarly to 3GPP Network Slice 
Management Function (NSMF), it manages the lifecycle of end-to-end network slices by carrying out 
global end-to-end analysis or decisions at both cross-slice and cross-domain levels. To that end, it 
includes high-level AE and DE that leverage local AE/DE inferences and actions to solve wide-scope 
issues. 

3.2      Interfaces  
Figure 3 illustrates the communication between the DE, the MS and the AE. It also includes the actuators 
(ACT), which are the entities that translate the DE LCM decision into API calls that involve the different slice 
components, i.e., VNFs, PNFs, links, etc., in each of the technological domains (RAN, Edge and/or Cloud) that 
the slice is supposed to cross. 
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Figure 3. Interfaces between the different triplet MS-AE-DE elements and the actuators. 

The different interfaces between the MonB5G DE and the rest of control blocks are presented in Table 3.1. 

The MS in Figure 4 gathers different metrics from the managed system that the DE controls. This information 
can be passed to the AE and DE blocks directly, but it is also stored in a Common Online Memory Store 
(COMS), which is illustrated in the figure as a grey cylinder. The COMS entity is considered to avoid hard 
synchronization constraints between the MS-AE-DE functional blocks. Proceeding this way provides more 
flexibility to the AE and DE in terms of their length of processing, without compromising the granularity at 
which the MS can sample the monitoring data form the controlled system. Therefore, it is the MS that defines 
how fast the data is sampled. It should be noticed that this COMS block is in line with the ‘knowledge’ 
functional block in the ETSI ZSM scheme presented in Section 3.1.1.  

The monitoring information is read by the AE from the COMS and processes it to provide insights to the DE 
(i.e., it performs predictions, classifications, etc.). The AE might also read the information directly from the 
MS, but this is expected to be in more punctual cases, where some synchronization is needed. The prediction 
interval needs to be set by from the Externa User Interface (EUI).  

Like the Analytics Engine, the DE is expected to read its input from the COMS, even though, it is also possible 
to receive this information form the AE or the MS. Based on this information, the DE will take the 
corresponding decisions, which will be also stored in the COMS. In addition, it will issue them to the 
corresponding actuators, which are the entities that translate the decisions into API calls that implement the 
corresponding LCM decision in the managed entity. 
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Table 2. DE interfaces and the associated roles 

Interface Type Role 

IAD Tensors/Database 
query 

DE Reads the predicted KPI from AE (either online or from COMS) 

IMD Tensors/Database 
query 

DE reads raw MS measurements (either online or from COMS)/Store AI 
metrics and DE decisions in COMS 

IMA Tensors/Database 
query 

AE reads raw MS measurements/Store AI metrics, predictions in COMS 

IUD Database Query EUI reads/Changes DE configuration (e.g., discount factor of a DRL 
algorithm) 

IUA Database Query EUI reads/Changes AE configuration (e.g., prediction interval, learning 
rate) 

IUM Database Query EUI reads/changes MS configuration (e.g., granularity) 

IUC Database Query EUI reads/changes actuation configuration (e.g., API primitives’ 
parameters) 

IDACT REST API Call DE sends decisions to Actuators 

  

Cross-domain operations between local DEs (i.e., DEs of each technological domains) or with end-to-end 
DE passes through the IDMO (Inter-Domain Manager and Orchestrator), while operation between inter-
slice DEs is ensured by the DMO.  

3.3  Cross-Domain Operations  
A MS/AE/DE triplet is present at each technological domain (e.g., RAN, edge and cloud). Furthermore, a 
system might have more instances of the triplet, depending on the control granularity needed for the 
management system. Namely, instances of the MS/AE/DE triplet could be per slice, tenant, domain, 
infrastructure provider, etc. Given the fact that there might be multiple instances of the Decision Engine, the 
design of the DE and its corresponding interfaces need to be agnostic to the technological domain or system 
layer in which the DE is deployed. Furthermore, the DEs must cooperate to achieve the corresponding end-
to-end KPIs the system optimization targets. 
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Figure 4. MS/AE/DE triplet instances at different technological domains 

 

 
Figure 5. Distributed sliced MonB5G Architecture with multiple domains and slices. 

The distributed architecture that MonB5G envisions (see Figure 5) is specially well suited for different types 
of decentralized AI-native approaches. To exemplify this, hereby, two of these AI/ML approaches are 
exposed: 
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 Federated Deep Reinforcement Learning. In this scheme, the local DEs are built upon either value-
based DRL (e.g., DQN) or policy-based DRL (e.g., A2C, DDPG, SAC). The key idea is that, as long as the 
action/state spaces of the different DEs are homogeneous, one can dramatically improve the decision 
accuracy, and leverage the experiences learned in e.g., other domains or slices, by letting the local 
DEs exchange their weights of the embedded decision actor/critic or Q networks, with the E2E DE, 
which performs a custom averaging to generate a more accurate model. Next, the E2E broadcasts it 
to the DEs, updating their local networks and improving their decision. This approach avoids 
exchanging raw data between local and the E2E domain. 

 Multi-Agent Deep Reinforcement Learning. Local DEs play the role of Actors and can learn policies, 
using only local information (i.e., their own observations in local domain, slice, etc) at execution. On 
the other hand, the Critic is in the E2E domain. This allows the policies to use extra information to 
ease training, so long as this information is not used at test time. Within this context, actor-critic 
policy gradient methods, where the critic is augmented with extra information about the policies of 
other agents, are suitable to implement a decentralized decision leveraging MonB5G architecture. 
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4 Slice Admission Control  

4.1 Introduction 
In D4.1, we identified several potential algorithms for slice placement, some of which are based on heuristics 
and others on ML. In this deliverable, we report on two algorithms for the placement of slices in a network. 

Specifically, we present two slice admission approaches in this chapter. The first is based on Deep 
Reinforcement Learning and a heuristic. The Power of Two choice (P2C) heuristic was introduced in D4.1. This 
heuristic proves to be very efficient in placing slices but requires extensive signalling (due to the availability 
of polling resources in data centres). Therefore, a DRL approach was introduced, namely the A3C DRL 
algorithm. This algorithm is centralized and can place slices when the rewards are based on the ratio of placed 
slices. However, the learning period can be very long, and performance can be limited when the arrival rates 
of slice changes. In contrast, P2C is very resilient. To combine the efficiency of heuristics and the sobriety of 
DRL in terms of signalling, we developed the Heuristically Assisted DRL (HA-DRL) approach, which achieves 
very good performance when the arrival rate of slices varies.  The second approach, TASAC, is based on the 
Time-of-Day (ToD) traffic curve. This curve, which is typically related to human activity, was used to estimate 
the daily eMBB traffic, and based on this, the resource consumption of the eMBB slices was predicted. The 
second category of slices analysed in this case is mMTC. Unlike eMBB, the traffic generated by mMTC slices 
does not depend on the ToD. The approach is using ToD predictions based on actual observations. The DQN 
algorithm was used for admission control.      

4.2 Heuristically assisted DRL for slice placement 
4.2.1 PROBLEM DESCRIPTION 
We consider a network consisting of a hierarchical cloud infrastructure, as is the case in many operational 
networks. The lower level consists of edge data centers connected to fog (also referred to as core data 
centers), which provide an intermediate-level cloud infrastructure; the fog data centers themselves are 
connected to a central cloud infrastructure. This global cloud infrastructure together with the transport 
network (consisting of transmission links as well as the switching/routing capacities to interconnect the data 
centers), form the substrate network, referred to below as the Physical Substrate Network (PSN). An 
illustration of the PSN considered in the following is given in Figure 6. Each data center consists of servers 
with RAM and CPU capacities, which are the scarcest resources in clouds, interconnected by switches and 
routers, connected to the transport network. Importantly users making slice requests are connected to the 
data edge data centers. In other words, when a slice request is issued by a user, the slice is rooted in the 
sense that the user of the slice is connected to an edge data center. 

The cloud infrastructure is used to host slices. A slice request is called a Network Slice Placement Request 
(NSPR), which can be described by a graph with vertices (the compute nodes needed to execute the service 
offered by the slice and the links for exchanging messages between these compute nodes). In the following, 
a compute node will be referred to as VNF, which should be understood in a broad sense (a Virtualized 
Network Function can be hosted in a container, not necessarily in a virtual machine). We also assume that a 
slice is a linear chain of services (VNFs) that exchange messages. 
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The problem of network slice placement can be formulated as follows: Given an NSPR G = (𝑉, 𝐸), arriving at 
time 𝑡 ∈ [0, 𝑇] and exiting the network in exit date 𝑡 ∈ [𝑡 , 𝑇] and a PSN graph 𝐺 = (𝑁, 𝐿), find a mapping h: 𝐺 →

�̅� = (𝑁,  𝐿) , 𝑁 ⊂ 𝑁,  𝐿 ⊂ 𝐿, where T is the length of the lifetime of the system. The mapping must take into account 
the following constraints: 

- the CPU and RAM capacities (𝑐𝑎𝑝  and 𝑐𝑎𝑝 ), where s is in the set of servers of the PSN and requirements 
(𝑟𝑒𝑞  and 𝑟𝑒𝑞 ), where v is in the set of compute nodes of the NPSR, 

- the bandwidth capacities (𝑐𝑎𝑝( , )), where (a,b) is the link between servers a and b in the NSP, and 
requirements (𝑟𝑒𝑞( , )), where (a,b) is the link between compute nodes  a and b in the NPSR, 

- the link latency capacities (𝛿( , )) and requirements (𝑟𝑒𝑞( , )), 
- the access latency capacities (𝛼 ) and requirements (𝛼 ), 
- the E2E latency requirements (𝛿 ). 

 

 
Figure 6. Physical Substrate Network (PSN) 

 
Several optimization criteria can be envisaged for the mapping h: 
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 maximization of slice acceptance ratio, 
 minimization of total resource utilization, 
 maximization of node load balancing. 

Each problem can be formulated by mean of an Integer Linear Programming problem (ILP). More precisely,  

 The placement of VNF (compute node) is controlled by the decision variables
, 

 The VNF chaining:                                                      ,  
 NSPR acceptance:                      

where 𝑅 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 requests, 𝑁   is the set of VNFs of each request, 𝐸  is the set of VLs of each request. 

To solve the placement of slices must account of several constraints (see [3] for details): 
 The VNF placement and resource capacity constraints read 

 
 

 

 

 

 

 

 

 The network slice latency requirement constraints are 
 

 

 

 

 

 

 The eligible physical path calculation is 
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The minimization of total resource utilization corresponds to the problem 

 

 

 

and the maximization of slice acceptance ratio to  

 

                                                                 with  

 

 

The above optimization problems can be solved by using CPLEX. Therefore, a heuristic has been proposed in 
[4], which is based on the Power of the 2 choices (P2C). This heuristic runs as follows: For each VNF v of the 
NSPR, 

 Calculate set S’ of eligible servers  
 If S’ not empty, select 2 candidate servers S1 and S2 to place VNF v, 

o Calculate substrate network paths P1 and P2 to interconnect VNF v, 
o If P1 and P2 are feasible, choose the shortest one, 
o If only P1 is feasible, map virtual link to P1, 
o If only P2 is feasible, map virtual link to P2, 
o If no path is feasible, reject NSPR, 
o If S’ is empty, reject NSPR, 

 Accept the NSPR 
To select servers, we consider two policies: full random (policy 1) and rand with priority to cloud and core 
servers (policy 2). 

To evaluate the efficiency of the above heuristic, we conducted two online optimization experiments on the 
Grid 5000 infrastructure for two objectives: minimal bandwidth consumption (referred to as ILP1 for the ILP 
solved with CPLEX) and maximum acceptance ratio (denoted as ILP2 for the ILP solved with CPLEX). Two 
server selection policies were also implemented for the heuristic, denoted as P2C1 for policy 1 and P2C2 for 
policy 2. We considered three slice categories: Best Effort (BE), uRLLC and eMBB, with the following mix of 
traffic: 67% BE, 22% eMBB and 11% uRLLC. The baseline PSN includes 126 nodes and is expandable to 16128 
nodes. Each NSPR is a sequence of 5 VNFs chained by virtual links, both with specific requirements. Figure 7 
shows that the execution time for the ILPs increases rapidly with the number of servers, while the increase 
for the P2C heuristics is limited. Figure 8a) shows that P2C has the best final blocking ratio in the uRLLC 
scenario, while this policy concentrates the load on cloud and core data centers to offload the edge data 
centers. Figure 8b) displays the resource consumption. We note that the edge and core data centers are 
highly occupied while the cloud one is almost not used. This is since VBNFs are placed close to end users to 
limit latency. 
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Figure 7.  Execution times of the algorithms. 

                             
Figure 8. Blocking rates and data center resource consumption. 

The P2C proves to be very efficient to place slice requests and is important in a distributed environment. 
However, we need to select two servers for each request and check the availability of resources on each 
server. To circumvent this process, which can be very costly in terms of signaling messages, we have 
developed an alternative method based on DRL that partially relies on the P2C heuristic. 

4.2.2 SOLUTION TOOL 
Some recent approaches to network slice placement are based on Deep Reinforcement Learning (DRL), see 
[5] for a state-of-the-art review of DRL applied to slice placement in 5G networks. However, these algorithms 
are very tedious to train, typically several days, which this training period is not compatible with highly 
varying network conditions. Therefore, we developed an alternative approach that combines DRL (namely 
the A3C algorithm [6]) and the P2C heuristic presented in the previous section. The architecture of the 
algorithm is shown in Figure 9. To account for non-stationary conditions, we introduced an additional module 
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to the classical DRL algorithm that describes the state (namely, the load of the network). The resulting 
algorithm is referred to as eDRL. 

 

 
Figure 9. Architecture of the algorithm (initial DRL and enhanced DRL accounting of the network state). 

To develop our approach, we make the following assumptions. NSPR are undirected path graphs (namely, 
service chains). A training step is the placement of one VNF of an NSPR and the mapping of its associated 
Virtual Links (VLs). At each training step t, we select the server to place the VNF based on the policy and map 
VLs, record the reward, and update the PSN. At the end of a training episode, we compute the loss function 
based on the cumulated rewards and state values. Finally, we update the weights of the network using the 
gradients of the loss functions (see [5] for more details). The architecture of the algorithm is shown in Figure 
10, the various components are assembled from open-source software to build the algorithm. The PSN is 
abstracted in the form of a Graph Convolutional Network (GCN). The function Zϴ maps each state and action 
to a real value; the details are given in [5]. This function is provided by the Actor Critic algorithm, as illustrated 
in Figure 10.  
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Figure 10. DRL (based on A3C algorithm) and eDRL applied to slice placement. 

The preliminary evaluation of the algorithm has shown that the above algorithm is inadequate for 
nonstationary network loads. Therefore, we introduce a modification in the computation of the Z-function 
by using the P2C heuristic (the formula is given by Equation (21) in [5], where a coefficient β is used to 
modulate the weight of the heuristic in the modification of the Z function). The principle of the so-called 
Heuristically Assisted DRL (HA-DRL) is shown in Figure 11.   

 
Figure 11. Heuristically Assisted DRL algorithm. 

An example of the HA-DRL is illustrated in Figure 12. We have the following steps explains how the heuristic 
modifies the decisions taken by the DRL algorithm (see [5] for details): 
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Figure 12. HA-DRL (the Z function is modified by the heuristic). 

 

4.2.3 FIT INTO THE DE DISTRIBUTED ARCHITECTURE 
The algorithm presented in the previous section is centralized but the P2C heuristic is compatible with a 
distributed architecture. Upon receiving an NSPR, the ingress node (access domain) can run the P2C algorithm 
to decide about the placement of VNFs. If placement in the ingress domain is not possible, the remaining 
NSPR is forwarded to the fog/core domain and finally to the cloud. Then each domain can make local 
decisions. These decisions can then be forwarded to the central HA-DRL algorithm for better slice placement. 
A fully distributed algorithm is planned for further studies. 

4.2.4 VALIDATION RESULTS 
To test the performance of the algorithm presented in the previous section, we performed simulations. The 
global framework of the simulation is shown in Figure 12. The NSPRs arrive following a Poisson process. We 
considered three scenarios. The first is when the arrival rate is constant. In the second scenario, the arrival 
rate is sinusoidal to reflect the daily fluctuations and in the third scenario, there is a sudden termination of 
the arrival process. This is to check the capability of the algorithm to adapt to non-stationary conditions. The 

 Initial Z function is 𝑍(𝑠 , . ) = [1.0,0.6,0.9,1.2]

Action calculated by HEU (the heuristic function) 𝐻𝐸𝑈(𝑠 ) = 2 

Heuristic Function 𝐻(𝑠 , . ) = [0.0,0.6,0.0,0.0] 

New Z function 𝑍(𝑠 , . ) = [1.0,1.3,0.9,1.2] for 𝛽 = 1,  𝝃 = 1,  𝜼 = 0.1  

DRL+HEU Policy 𝜋 (. |𝑠 ) = [0.22,0.30,0.20,0.27] 

DRL Policy gives 𝜋 (. |𝑠 ) = [0.26,0.18,0.24,0.32]
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exact simulation settings can be found in [5], Section VII.A. NSPR are chains of VNFs to be placed on the PNS 
with bandwidth requirements between the VNFs. 

Examples of simulation results are given in Figure 13, showing that all DRL algorithms can learn the best 
placement for slices and that they all converge to an acceptable acceptance ratio after some time. The HA-
DRL with β = 2 appears to converge the fastest and provides the same performance as the P2C heuristic 
(HEU). However, further results (see [5]) show that HA-DRL with β = 2 strongly depends on HEU and performs 
worse after the training phase for traffic changes. This suggests that HA-DRL with β = 2 should always be run 
in combination with HEU. The conclusions are very similar in the case of periodic variations in network load. 

   
    Network load = 80%         Network load = 100% 

Figure 13. Slice acceptance ration for HA-DRL, DRL and the heuristic. 

To test the robustness of the algorithms to sudden changes in traffic load, we ran simulations in which the 
arrival rate of NSPR was increased by a certain percentage. The results are shown in Figure 14. Further results 
can be found in [7]. 
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10% increase       30% increase 

Figure 14. Acceptance ratio of the algorithm in case of load increase at training episode 108. 

4.3  Time-of-day aware slice admission control 
Network slicing in 5G networks allows multiple tenants to allocate and share the underlying network 
resources of an Infrastructure Provider (INP), that owns the NPS presented in the previous section. Each 
tenant generates slice requests specifying the required resources, and the INP collects revenue from the 
tenants for hosting the admitted slices. Slices are typically classified as elastic and inelastic, with flexible and 
rigid service guarantee requirements. The INP decides whether to accept or reject the incoming slice requests 
by considering certain criteria. This decision helps the INP to efficiently manage its underlying resources, 
achieve fair resource allocation among different slice types, and increase its revenue while minimising SLA 
violations of admitted slices [8]. Typically, Slice Admission Control (SAC) decisions are based on the maximum 
resource requirements of the given slice (fixed number of resources). There are numerous research activities 
that propose various SAC algorithms, admission policies, resource allocation, resource usage prediction, and 
slice modelling [8]. However, defining an efficient resource management strategy is problematic considering 
that real network data related to slice orchestration processes does not exist yet.  

Several approaches using RL techniques have already been proposed. A framework for slice brokering called 
RL-NSB is presented in [10]. The authors formulate the admission control as a NP-hard, geometric two-
dimensional Knapsack problem and propose two heuristic algorithms to deal with the regular and irregular 
arrival of network slice requests. In [15],  Q-Learning (QL) and DQL algorithms are proposed to solve the SAC 
and Resource Allocation (RA) problems. DQL achieves over 3.6% more gain than QL and the baseline methods 
(7.9% for the Node Ranking algorithm and 11.7% for the Always Admit Request algorithm). The advantage of 
using RL in deriving SAC policies was demonstrated in [9], where QL, DQL and the online algorithm called 
Regret Matching (RM) are used to maximise the operator’s revenue from deployed slices. Each of the 
algorithms provided satisfactory results, with the highest financial gain obtained with RM, presumably due 
to the regret formula, which allows faster policy adaptation in case of negative rewards. Some efforts that 
use Markov Chain Process to model the SAC problem can also be found in the literature [14]. In [13], an 
analysis of a system modelled as a Semi-Markov Decision Process and the optimisation of the infrastructure 
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provider’s revenue, and the design of Deep Reinforcement Learning that maximises revenue and QoS control 
was presented. The authors of [18] present a slice admission strategy based on RL in the presence of services 
with different priorities. The considered use case is a flexible 5G RAN, where slices from different mobile 
service providers are virtualised over the same RAN infrastructure. The proposed policy learns which services 
have the potential to provide high profit (i.e., high revenue with low degradation) and should therefore be 
accepted. 

However, most approaches to slice admission do not explicitly consider the dependencies between the time-
of-day (ToD) of slice operation and the number of consumed resources but focus only on the frequency of 
arriving slice requests. This relationship between resources, demands and time has been observed and 
modelled in previous generations of fixed and mobile networks, and can also be observed on the Internet. 
An example of such a curve is shown in Figure 15.  The behaviour is mainly driven by human-related traffic 
and depends on time-of-day or day-of-week. The approach has been widely used in the past for planning the 
network in case of non-elastic traffic (voice calls, etc.). In [11], the authors propose the stochastic Markov 
traffic model derived from the traces obtained from the LTE scheduling information acquired in four locations 
of one of the European metropolitan cities.  

 
Figure 15. Time-of-day traffic curves for several areas (example) 

The other approach is proposed in [12], where the sinusoidal superposition model is introduced. The model 
is evaluated using the real data from a dense urban area (park, university campus and business district) in a 
city in China and has demonstrated good accuracy. The ToD resource consumption can be efficiently exploited 
in SAC: 

• For long-lived slices (duration > 24h), by predicting the ToD peak, it is possible to reduce the 
probability of congestion during peak hours. 

• For short-lived slices (duration < 24h), it is possible to allocate more resources depending on the ToD; 
the SAC can be more aggressive with descending slope of ToD and less aggressive with the ascending 
one. 
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• For short-lived slices, it is possible to use the slice-calendaring mechanism, i.e., proposing the users 
shift their requests (if possible) to off-peak times. Such a mechanism needs an incentive, which in the 
past, in the case of the fixed network voice calls, was fiscal. 

The above mechanisms lead to a much more efficient and realistic SAC than approaches that ignore the ToD 
resource consumption pattern. In this section, we describe and demonstrate the behaviour of a SAC approach 
for long-lived network slices that takes ToD into account. 

4.3.1 TASAC CONCEPT DESCRIPTION 
To propose a new SAC mechanism based on ToD, it is necessary to make some assumptions about slice-
related traffic. The consumption of resources of each network slice depends on two main factors: 

• Resources needed for the deployment of the slice (i.e., slice footprint) and its primary operations in 
an “idle” state. 

• Resources needed to support the activities of the terminals connected to the slice, some of which 
may be human-operated. 

The human-related network traffic is ToD dependent - at night, networks are typically lightly loaded only. 
Unlike human-operated terminals, IoT devices or Industry 4.0 terminals and security cameras can transfer a 
similar amount of data in a 24/7 cycle. Therefore, their activity is independent of ToD and time-of-week. In 
our analysis, we consider both types of traffic and refer to the first as eMBB traffic and the second as mMTC 
traffic. Each request must be specified in terms of the above slice types and additional parameters. 

 
Figure 16. Concept of ToD aware Slice Admission (TASAC). 

The ToD Aware SAC (TASAC) concept is depicted in Figure 16. It is compliant with the MonB5G architecture. 
Slice tenants send Slice Admission Requests (SARs) via the MonB5G Portal that contain the high-level 
information of the desired slice (i.e., duration, deployment time, capacity). The high-level intent is transferred 
to the Resource Mapper entity, whose task is to map and scale the generic requirements into the slice 
resource requirements, priorities, etc. (a similar approach to GST/NEST [20] according to the capacity 
preferences and slice type. Then, the mapped slice request is placed into Requests Queue (priority queue) to 
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be analysed by the Slice Admission Engine (SAE). The decision regarding slice admission/rejection is taken 
based on the following factors: 

• Actual resource consumption - aggregate resource utilisation data on system capacity provided by 
the MS layer. 

• Current system status - information about currently deployed slices in the network, their types, peak 
resource requirements etc. This information is stored in the Slice Database and is updated when the 
system status changes (SAR acceptance, slice termination). 

• Prediction of resource consumption during the period of interest - it is assumed that different 
prediction techniques can be used to produce accurate forecasts under different circumstances and 
system states. 

The slice admission/rejection policy can vary depending on the implemented SAE behaviour. In TASAC, the 
DQN [16] approach is used to derive the optimal slice admission policy. 

The TASAC concept includes the component responsible for mapping high-level tenant requests, but this is a 
different problem from SAC and is omitted in this section. The operations of TASAC require ToD prediction. 
For this purpose, the Holt-Winters model-based resource prediction [17] can be used. The model predicts a 
typical value (average), a slope (trend), and a cyclical repeating pattern (seasonality). Another practical 
approach is a set of so-called ETS (Exponential Time Smoothing) models, i.e., a bundle of time series models 
with an underlying state-space model consisting of a level component, a trend component (T), a seasonal 
component (S), and an error term (E) [21].  

4.3.2 TASAC ALGORITHM 
The resources need for slice deployment are typically split into computing, storage, and connectivity 
resources. Without the loss of generalization, we will focus on a single resource type only: connectivity, i.e., 
bandwidth. The total resource pool in the system, denoted as R, describes the available bandwidth in the 
network (we take the value as a scalar). Each SAR k ∈ K is described by a tuple ⟨bkr, qk , tkd , tkt⟩, which 
defines the maximum requested bandwidth by the slice bkr, the slice type qk, slice deployment tk0 and 
termination tkt time. Each SAR arrives with a λ rate, and when accepted, its metadata is stored in slice 
database i.e., k ∈ K. The optimization goal is to maximise bandwidth consumption, for eMBB-like (qk=0) slice 
of which resource consumption is dependent on ToD, and mMTC-like (qk = 1) resource consumption that is 
constant during the whole mMTC slice lifetime 

The generic concept of DQN is presented in Figure 17. 
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Figure 17. High-level concept of DQN 

The DQN approach is based on the Q-learning method. The main idea behind the Q-learning is that if we 
consider a function Q∗: State x Action −→ R, which provides the information regarding the return based on 
the current state and the adopted action. Knowing such a function enables easy construction of the policy 
that could maximise the rewards of the actions (π∗(s): argmax Q∗(s, a). For complex environments, the Q∗ 
function cannot be derived analytically. The DQN approach solves this issue by leveraging Deep Neural 
Networks to approximate the Q∗ function. The DQN agent consists of 4 blocks: the Prediction Network, the 
Target Network, the DQN loss calculation block and the Replay Memory. Each time the agent needs to decide, 
it makes it based on the information about the network state st obtained from the environment. The 
Prediction Network calculates the Q values for the given states and suggests undertaking action in the 
environment at. After the action is taken the reward r is calculated, the network moves to the next state st+1, 

and the information about the state and the transition is stored in the replay memory. The role of the Target 
Network is to stabilise the learning approach and improve the long-term memory of the agent (the network 
updates are done every N-steps of the algorithm with the decay effect applied). The information stored in 
the Replay Memory is used during training of the Prediction Network. The training update rule follows the 
Bellman equation: 

 

𝑄 (𝑠, 𝑎) = 𝑟 + 𝛾𝑄 (𝑠 , 𝜋(𝑠 )), 

 

where γ is a decay coefficient and π is a policy function.  

The role of the DQN loss calculation module is to compute the temporal difference error: 

 

𝛿 = 𝑄(𝑠, 𝑎) −  𝑟 + 𝛾 𝑚𝑎𝑥𝑄(𝑠 , 𝑎) 

 

To minimise the error, several functions can be used, however, the Hueber loss is commonly used. To derive 
the policy regarding slice admission actions, the DQN agent takes decisions based on an observed network 
state st, which consists of: 
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• Aggregated Requested Resources 

𝐴𝑅𝑅 =
𝑏 (𝑡)

𝑅
 

• Aggregated Resources Consumption 

𝐴𝑅𝐶 =
𝑏 (𝑡)

𝑅
 

 
• Predicted Aggregated Resources Consumption 

𝑃𝐴𝑅𝐶 =
𝑏 (𝑡)

𝑅
 

 
• Ratio of currently accepted mMTC slices 

𝑅 =
1

|𝐾|
     𝑖𝑓𝑓   𝑞 = 1 

 
• Ratio of currently accepted eMBB slices 

𝑅 =
1

|𝐾|
     𝑖𝑓𝑓   𝑞 = 0 

 
• Relative time of day 

ToD =  (t mod T )/T  

Only two actions a ∈ {0, 1} are permitted for the agent to take, SAR acceptance (a = 1) and SAR rejection (a 
= 0). To evaluate agent’s actions, two different reward functions have been used:  Equation (1) if no resource 
prediction is taken into account (bp(t) = 0) and Equation (2) when resource prediction is used. The used 
resource prediction is based on the ToD in the case of eMBB, while in the case of mMTC, where ToD effect is 
not present, the prediction is a constant value (i.e., the maximum bandwidth requested in SAR). The number 
of bandwidth samples considered in period ⟨td, tt⟩ is denoted as |T|. 
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It is expected that the agent should perform actions that lead the system to the desired final state, i.e., the 
state in which the requested (or predicted) network resource consumption in the time frame of concern is 
equal to R during the whole period (i.e., the resources are used completely). The various parameters used by 
TASAC are given in Table 3. 

Table 3. Parameters for TASAC. 

Parameter Description 

K 
br 

bc(t)  

bp(t) 
td 
tt 
q 
T 
R 

Slice Requests 
maximum requested slice bandwidth [bu] 
consumed slice bandwidth in moment t [bu] 
predicted consumed bandwidth by the slice in moment t [bu] 
slice deployment time [tu] 
slice termination time [tu] 
slice type (SST) 
length of the day [tu] 
resource pool 

a action 
s State 

4.3.3 TASAC SIMLUATION RESULTS 
The presented concept (cf. Figure 16) has been evaluated using an event-driven simulator implemented in 
Python using SimPy [19] package. The adopted time unit tu is 1 s. We follow the most popular approach and 
model the influx of admission requests as the Poisson process [15] [9] [14]with λ = 720 tu (which corresponds 
to 5 slice requests per hour). During the tests, we validate the algorithms under two different resource 
constraints: Rs = 2000 ru and Rl = 1000 ru. The requested slice types and demanded capacity follow a discrete 
uniform distribution, U{0, 1} and U{1, 10}, respectively. It is assumed that a single eMBB slice consumes ten 
times more resources than a single mMTC slice, meaning that the maximum requested bandwidth is in the 
range bkrmaxmMTC ∈ ⟨1; 10⟩ for mMTC and bk rmaxmMTC ∈ ⟨10; 100⟩ for eMBB. In the evaluation, we consider both 
short-lived and long-lived slices – the slice duration follows the uniform distribution U{60, 86.4 ∗ 103} (1 min 
to 1 day). The normalized resource consumption of the eMBB slice is modelled by the curve presented in 
Figure 18a, while for predictions, the curve shown in Figure 18b is used. Both curves have been derived from 
the real-life data acquired from the operator’s monitoring system. 
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(a) 

 
(b) 

Figure 18. Real (a) and predicted ToD curve (b) of the eMBB traffic 

The gains obtained from using the TASAC approach were analysed for two weeks observation time. The 
exemplary traces obtained for DQN and TASAC approaches are presented in Figure 19 and Figure 20. It can 
be observed that under given conditions, the periods in which resource violations occur are shorter for the 
TASAC approach. 

 

Figure 19. DQN-based slice admission (not aware of ToD) 
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Figure 20. TASAC-based slice admission (ToD aware) 

The benefits of the TASAC method can be observed in several admissions in Figure 21 and resource utilisation 
in Figure 22. Under severe resource constraints, i.e., Rl, the TASAC approach enables a much higher admission 
rate and effective utilisation of resources (Figure 21 and Figure 22). For a larger resource pool Rs both the 
admission rate as well as the cumulative resources consumption is similar. As the resource margin is relatively 
high and the rejection rate is very low for both cases, similar performance can be noted for both DQN-based 
and TASAC approaches.  

 
Figure 21. Comparison of a number of slice admissions during the period of two weeks: low resource pool Rl 

(left), large resource pool Rs  (right) 
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Figure 22. Comparison of resources utilisation during the period of two weeks: low resource pool Rl (left), 

large resource pool Rs (right) 

The slice admission policies learned by the agents can lead to wrong decisions that can cause over-utilisation 
of the provided maximum resource pool. The penalties (measured as a cumulative exceeded bandwidth) for 
both evaluated cases are presented in Figure 23. 

 

 
Figure 23. Comparison of exceeded bandwidth during the period of two weeks: low resource pool Rl  (left), 

large resource pool Rs (right) 

Conclusion 

The TASAC approach offers high advantages in the case of Rs. Despite the similar performance in terms of 
admission rate and resources, the penalty is significantly lower than the DQN-based approach. In the case of 
low available resources (Figure 19), it must be noted, however, that the method used for the prediction of 
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resources consumption is quite inaccurate (cf. Figure 18b). The use of more accurate predictors can 
contribute significantly to aggregate resource utilization. 

The obtained results are satisfactory since the goal of increasing the admission rate and resource utilisation 
using resource prediction has been achieved. Nevertheless, it should be noted that the method used for the 
prediction of resources consumption is quite inaccurate (cf. Figure 20). The selection of more accurate 
predictors can contribute to better resource utilisation. Moreover, the analysed cases were performed for 
the balanced number of mMTC and eMBB slices. It must be emphasised that the number of requested slice 
types can vary. The presented TASAC approach aims to maximize the bandwidth utilisation, i.e., the slices 
with a high amplitude of activity are not preferred. Therefore, in some cases it might be essential to define 
additional policies that consider the resource aspect and the individual priority of the slice to be deployed. 
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5 Intra-slice Orchestration  

5.1 Introduction 
The goal of this section is to present an extensive overview of the intra-slice orchestration Decision Engine 
(DE) elements. This section introduces SCHEMA, a Service Chain Elastic Management framework, based on a 
Distributed Reinforcement Learning algorithm, its extension SafeSCHEMA and the way they integrate into 
the MonB5G proposed architecture. First, the problem statement will be discussed, then the proposed 
solution and its system model will be presented. Second, the experimental setup and results will be presented 
in detail. 

In continuation of the previous section, the section continues with a description of the various decentralized 
DE modules used to tackle the intra-slice orchestration problem. Finally, the section demonstrates through 
experimental results analysis how the proposed architecture can be used efficiently for decentralized 
decision making in the MonB5G architecture. 

The contribution of this section is threefold: 

1. Introducing a modular and flexible architecture that can be deployed in multi-domain networks with 
multiple slices and services. 

2. Providing a solution to minimize the unsafe actions of the RL-agents, while still allowing enough 
autonomy to explore the space. 

3. Demonstrating a collaborative agent KPI optimization. Specifically, latency minimization for Ultra-
Reliable Low Latency Communication (URLLC) services will be used as our use-case scenario. 

5.2 SCHEMA: Service Chain Elastic Management with Distributed Reinforcement 
Learning  
5.2.1 PROBLEM DESCRIPTION 
The network consists of multiple SDN-NFV-enabled technological domains that accommodate slice VNFs. The 
domains are connected through a WAN that we model as a link, the users connect to the edge domains and 
request access to the network services that are operated by slices. Each slice is a Service Function Chain (SFC) 
with flows between the VNFs. Some VNFs are shared among the slices and may need vertical scaling 
depending on the number of requests. Due to the limited resources of the domain hardware and the number 
of hops between the servers, the mapping of the slice VNFs affects the average slice latency. If there are 
available resources on the network, the network accepts the incoming slice requests. 

5.2.2 SOLUTION TOOL 
Overview 
The proposed solution responds dynamically to the traffic load fluctuation by initiating re-configurations in 
predetermined time-steps only when required to avoid additional costs or load to the network. Unlike similar 
frameworks where there is a centralized entity responsible for the slice VNF orchestration even for multiple 
domains, we employ a distributed system of agents that can operate per-se. Instead of utilizing a global 
network algorithm responsible for the orchestration of the slice VNFs, we employ a local VNF placement and 
orchestration algorithm for each domain to share the enormous problem state space of the VNF management 
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and orchestration problem. The domains are performing VNF orchestration and VNF clustering internally, 
without affecting the rest of the slice in the other domains. When there is a need for VNF migration between 
the domains, an Auction takes place in which each local agent bids with its Confidence metric to receive and 
place locally a VNF from another local domain. The agents are bidding in the VNF auction through a 
confidence metric and only the highest bidder receives the VNF to place and orchestrate it locally. 

Deep Reinforcement Learning-based solution 
We formalize the intra-domain VNF placement and orchestration problem as a Markov Decision Process 
(MDP) by representing the problem environment through Actions, States and Rewards. In this specific 
problem we define them as follows: 

 As State we define the intra-domain computational resources of the servers that are able to host the 
slice VNFs (the available CPU cores, GBs of RAM and storage), the available bandwidths and latencies 
of the intra-domain links. 

 The Action of the local domain agents is the Confidence metric which is a float number indicating the 
willingness to receive the VNF of the slice that is auctioned through the Auction Mechanism. 

 As Reward we define the optimization function of the RL algorithm. The Reward is common 
between all local domain agents to enable cooperation as stated in [22]. The goal of SCHEMA is the 
dynamic orchestration of the slice with a distributed algorithm while keeping the service latency 
low and it is defined as follows:  

𝑅𝑒𝑤𝑎𝑟𝑑 = ∑
⋅

, 

where 𝑛 is the total number of VNFs, 𝑇  is the minimum service throughput and 𝐿  is the maximum service 
latency and 𝑤  is the weight of 𝐿  in the reward. 

Local Deep Q-Network RL agents 
For the domain RL agents, we utilize a DQN agent as defined in [23]. The agents interact with the network 
through the Observations, Actions and Rewards of the network. The goal of the agents is to select placements 
or Actions that maximize the Reward and thus, minimizing the service latency. We use a Deep Neural Network 
(DNN) to approximate the optimal action-value function, also known as Q-value function defined as: 

𝑄∗(𝑠, 𝑎) = max 𝐸[𝑟 + 𝛾 + 𝛾 𝑟 + ⋯ |𝑠 = 𝑠, 𝑎 = 𝑎, 𝜋] 

The Q-value function can be defined as the maximum sum of all rewards 𝑟 , discounted by the parameter 𝛾 
at each time-step 𝑡 . The maximum sum of all rewards 𝑟  is achieved by a behavioral policy 𝜋 = 𝑃(𝑎|𝑠), after 
an Observation 𝑠  and taking an Action 𝑎 . 

To avoid instability during the training of the agents, we employ the Experience Replay technique, which 
randomizes the Observations and removes the correlation between them during the early training phase to 
force the agent to embrace exploration. We store the experiences  𝑒 = (𝑠 , 𝑎 , 𝑟 , 𝑠 ) of the agent at each 
time-step in the dataset 𝐷 = 𝑒 , … , 𝑒 , that we later use to retrieve them. We apply Q-learning value updates 
on mini-batches of experience (𝑠, 𝑎, 𝑟, 𝑠 ), 𝑈(𝐷), drawn uniformly at random from the dataset 𝐷  of stored 
experiences to perform learning of the agent. The Q-learning update during iteration utilizes the following 
loss function: 
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𝐿 (𝜃 ) = 𝜖 , , , 𝑟 + max 𝑄(𝑠 , 𝑎 ; 𝜃 ) − 𝑄(𝑠, 𝑎; 𝜃 ) , 

where 𝛾  denotes the discount factor that determines the agent's horizon, 𝜃  the parameters of the Q-network 
during iteration 𝑖  and 𝜃  are the network parameters used to compute the target value at iteration 𝑖 . 

Every local domain is served by a VM instance of the RL agent and is responsible for the internal re-
configuration, by selecting the host that the VNF will be migrated to. In addition to the placement Action, a 
Confidence metric can be extracted as a percentage of how confident the agent is for the chosen placement 
decision. The Confidence metric is obtained before applying the arguments of the maxima, also known as 
argmax function, in the output vector of the DNN, which is described with the following equation: 

argmax ∈ 𝑓(𝑥) = {𝑥|𝑓(𝑥)  ≥ 𝑓(𝑦) ∀𝑦  ∈ 𝐷|}, 

where 𝑓(𝑥) is the set of inputs 𝑥  from the DNN output 𝐷  that achieves the highest function value. The 
Confidence metric is extracted from the set 𝐷  as max(𝐷), whereas 𝑓(𝑥) denotes the placement. 

Inter-domain communication: The Auction Mechanism 
We propose a multi-domain, distributed and non-cooperative scheme to enable scalability in the SFC 
placement problem while keeping the benefits of using RL. See Figure 24. 

 
Figure 24. The Auction Mechanism architecture 
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We introduce the Auction Mechanism, an entity that performs an Auction of all slice VNFs at every time-step 
in a serialized manner. Each local domain agent places a bid with its placement Confidence metric to receive 
a VNF of the given slice and only the highest bidder can receive it to perform an internal placement, as the 
output of the agent denotes. Domains have only knowledge of their own resources making them autonomous 
to the intra- domain placement procedure. Local domain agents do not communicate with each other to 
determine the optimal solution, but rather use the global Reward to introduce cooperation between the 
agents, as proposed in [22]. 

5.2.3 FIT INTO THE DE DISTRIBUTED ARCHITECTURE 
The proposed framework SCHEMA utilizes a set of distributed agents instantiated in every domain, making it 
compliant with the distributed architecture of MonB5G. SCHEMA agents perform local placement in each 
domain and share the enormous problem state space of the placement problem. The domains perform VNF 
orchestration and clustering internally in a closed loop, without affecting the rest of the slice. When VNF 
migration between the domains is necessary, an Auction takes place in which each local agent bids with its 
Confidence metric to receive and place locally a VNF from another local domain. The agents are bidding in 
the VNF auction through a confidence metric and only the highest bidder receives the VNF to place and 
orchestrates it locally. 

5.2.4 VALIDATION RESULTS 
We have performed multiple experimental scenarios with groups of 𝑈 = {100,500,1000,1500,2000} users 
uniformly scaled per slice, and 𝐷 = {3,5,7,9,11} domains. The inter-domain links were assigned a random 
latency following a normal distribution 𝑙 ∈ [2,3] ms. The intra-domain network is composed of servers with 
32 Cores, RAM 128 GB, 1TB storage and the intra-domain links are assigned a random latency value between 
𝑙 ∈ [1,2] ms. Users are connected through a 5G mmWave wireless link to a base station connected to a 
server of the inter-domain network with a 2% to 10% loss. The slice VNFs have 1 to 2 CPU cores, 2 to 4 GB 
RAM and 1 to 80 GB storage as computational resource requirement for placement. In our experiments, we 
examine the performance of the proposed algorithm SCHEMA by comparing both the average user service 
latency and the average number of rejections. 
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Figure 25. Performance of SCHEMA (service latency and rejection ratio). 

(a) Average service latency of accepted services for 3 domains. (b) Rejected services by the number of users 
for 3 domains. 

As we can observe in Figure 25, increasing the number of users per slice in the network also increases the 
average service latency due to insufficient computing resources in servers within the local domains. 
Specifically, in the case of 3 domains, SCHEMA was able to outperform both baseline solutions by offering 
considerably lower service latency by almost 60.54% in the case of 1000 users. 

Accordingly, SCHEMA rejected less users compared to the DQN by 54.25% in the case of 1500 users, 
demonstrating better SFC placements for the same infrastructure. As the number of users increases, we can 
see reaching the limit of insufficient resources, near the 1600 users. 
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Figure 26. SCHEMA compared with other algorithms (latency). 

(a) Latency variation in 500 and 1000 user scenarios for 3 domains. (b) Average service latency of 500 users 
for 3 domains. 

 
Figure 27. SCHEMA performance (occupancy and migration). 

(a) VNF Occupancy index or the average hosted VNFs per total VNFs of 100 simulation iterations for 500 
users. (b) Migration operations of simulation iterations and 50 SFCs with 125 VNFs. 

Moreover, Figure 26a) outlines the service latency variation for the cases of 500 and 1000 users. After 
training, SCHEMA was able to conceive a better placement than the DQN, leading to consistently lower 
service latency by almost 63.33% in the case of 5 domains. It is evident that the DQN is heavily affected by 
the number of users comparing the height difference in the boxes. With the help of Figure 26a), we can 
conclude that SCHEMA gravitated towards consolidating the slice VNFs in the same server to further reduce 
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the number of hops to the end user. In Figure 27b) we have further evidence that due to the introduction of 
the Auction Mechanism, the local agent of the depicted Domain in Figure 27a) was keeping the same 
placement to avoid inter-domain slice VNF re-configurations. 

5.2.5 MONB5G RELATED CHECKBOXES/KPIS 
✓Intra-slice re-configuration and resource allocation. 

✓Reconfigure VNF location and chaining dynamically. 

✓Utilize key inputs (capacity, load of links, congestion level of local and alternative computing resources, 
history thereof, and KPI predictors from the distributed AEs. 

✓Propose reinforcement learning algorithms running locally. 

✓Receive KPI predictions from the AE (periodically or event-based) and attempt to identify feasible local 
reconfigurations (i.e., affecting only a part of the chain) that could reconcile the slice SLA or apply a specific 
intent policy, without the need for global reconfiguration or migrating the entire chain. 

✓Quantify the confidence in the ability of the locally optimized/reconfigured slice to resolve the potential 
problem. 

5.3 SafeSCHEMA: Multi-domain Orchestration of Slices based on SafeRL for B5G 
Networks  
5.3.1 PROBLEM DESCRIPTION 
Safe interaction of the AI agents with the network is one of the predominant challenges, especially when 
Reinforcement Learning (RL) is used in critical environments. Slice management is one of the major features 
that operators want to automate, to offer future services at large scales with manageable complexity to the 
operator. However, during the exploration phase, RL agents can cause significant performance degradation 
during operation and possibly introduce irreversible damage to the service being offered. To address this 
major challenge, we propose a multi-agent, modular, SafeRL architecture for distributed slice orchestration, 
called Safe RL-based Service Chain Elastic MAnagement or SafeSCHEMA for short. 

5.3.2 SOLUTION TOOL 
Overview 
We propose an extension of the previously proposed algorithm SCHEMA. A modular architecture for safe and 
automated slice management in multi-domain networks. Similar to SCHEMA, the proposed framework 
consists of multiple distributed agents that co-operate to orchestrate the slice elements. The RL-enabled 
agents are wrapped with a Safety Shield, which prevents the execution of unsafe placement actions that can 
be proven dangerous for the operation of the End-to-End (E2E) slice performance. 

Intra-Domain Distributed Orchestration with Safe Distributed Reinforcement Learning 

In this work, we deploy Safe RL agents per each domain to orchestrate the slice VNFs inside the borders of a 
domain 𝑛 . Additionally, a module called the Auction Mechanism that enables inter-domain migration is 
developed. During the operation, the Auction Mechanism circulates through the slice VNFs and the domain 
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Safe RL agents bid to win the auction and receive the VNF in auction. The goal is to use multiple distributed 
Safe RL agents, one per domain to orchestrate slice VNFs with respect to a specific KPI, e.g., E2E average slice 
latency in this work, in a scalable way. 

The domains are responsible to orchestrate the hosted VNFs locally and asynchronously, to avoid 
unnecessary migrations. The local agents consist of multiple modules that cooperate to perform the task of 
safe inter-domain, intra-slice VNF placement. Our approach is a SafeRL-enabled agent based on the work of 
Aumayr et al. [24] that uses a modular shield architecture and a safe baseline. The action proposed by the RL 
agent is benchmarked against a safe baseline through a Safety Shield that chooses the safest action to be 
performed on the environment. 

 
Figure 28. SafeRL-based local domain architecture. 

Briefly, the Local Agent architecture and components, as shown in Figure 28, are: 

1. Environment: This component represents the environment that the agent is interacting with, modeled 
as a standard RL problem. It provides interaction with the local domain 𝑛  part of the network 
infrastructure which was described in the previous section. 

2. RL Agent: The RL agent is continuously trained during the interaction with the Environment to 
improve their future recommended actions for VNF placement. The agent indirectly interacts with 
the Environment by proposing actions to the Safety Shield and getting feedback on the actual action 
performed. 

3. Safe Baseline: The Safe Baseline provides a default action, usually sub-optimal in terms of 
performance, yet safe with regards to what safety indicates for the system at hand. In our scenario, 
we define safety as an action that does not lead to breaking any service SLAs. Safe Baseline is a rule-
based algorithm that recommends actions satisfying safety rules, usually designed by domain experts. 
Baselines also receive the current state of the Environment as feedback, to suggest future actions. 
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4. Safety Shield: This component is the middleman between the RL agent and the Environment. In the 
non-Safe RL architecture, the RL agent directly interacts with the environment and receives feedback. 
On the contrary, in the SafeRL architecture the Safety Shield is a broker between the RL Agent and 
the Environment to protect the environment from unsafe actions. The Safety Shield collects the 
actions proposed by the RL agent and the Baseline and selects a final safe action to be performed in 
the Environment. The environment feedback includes the action that is performed by the shield on 
the environment and is fed back to RL agent and the Baseline, so that they are aware of the new state 
of the Environment before the next iteration. 

1. Safety Logic: The logic provides constraints to the Safety Shield. It includes the logic used to 
determine what is the safest action between the one proposed by RL agent and the Safe Baseline at 
any time. Due to the modularity of this architecture, it supports various implementations. 

Local Deep Q-Network RL agents 
We model the intra-domain VNF placement and orchestration problem as a Markov Decision Process (MDP) 
which consists of a State, an Action Space and a Reward Function. The MDP problem space can be defined as 
follows: 

1. State Space: Consists of the intra-domain computational resources of the domain nodes 𝑢 . The local 
domain state space 𝑆  is defined as a set that contains the VNF hosting computing requirements, the 
slice SLA and the domain computing and networking utilization ratio for each network element. 

2. Action Space: The Confidence Vector 𝐴 , a vector that contains an offer ∈ [−1,1] for each domain 
server 𝑢  to receive the VNF currently to be placed. The maximum of this local action indicates an 
intra-domain VNF migration. 

3. Reward: The objective of all domains 𝑛  is to maximize the sum of the reward function in every 
iteration and thus, converging in a common state-action that enables cooperation among the 
domains: 

𝑅 =
⋅

+ 𝑃, 

where 𝑤  is the weight of the total slice delay 𝐷 . 

In addition, we define a penalty function that is applied when the SLA of the slice 𝑠  is violated: 

𝑃 =
−𝑤  𝑖𝑓 𝜑

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 

where 𝑤  expresses the penalty weight. 
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Inter-Domain VNF Orchestration & Auction Mechanism 
The Auction Mechanism (see Figure 29) is a system that enables inter-domain VNF migration. It acts as an 
auctioneer between the domains who bid with their actions to receive a slice VNF to their domain. 

 
Figure 29. Overview of the multi-domain and distributed Auction Mechanism.  

All local domains can orchestrate VNFs in parallel and exchange VNFs only during an auction. 

The Auction Mechanism repeats the following steps in every iteration: 

1. Selection: The Auction Mechanism circulates through the slice VNFs during an interval, a predefined 
time frame. As an auctioneer, it selects the next VNF in round robin fashion for the auction process. 

2. Participation: The per domain 𝑛  Local Agents act as bidders that generate their bid, an action 𝐴  
produced by the Local RL Agent and secured by the Safety Shield as previously described. 

3. Auction: The mechanism receives all domain bids and selects the highest bidder (the domain with the 
highest bid). The candidate domain is notified to initiate the migration. 

4. Orchestration: If the candidate domain is not the current domain, the inter-domain migration is 
initiated. Otherwise, the domain agent performs an intra-domain migration based on the safeRL 
action to the node with the highest bid. 

The Auction Mechanism is only responsible for the inter-domain communication. It is non-essential for the 
local domain orchestration. The Auction Mechanism can be deployed quickly as a stateless container at any 
node of the network, eliminating the single point of failure. 
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5.3.3 FIT INTO THE DE DISTRIBUTED ARCHITECTURE 
In this work, we deploy Safe RL agents per each domain to orchestrate the slice VNFs inside the borders of a 
domain. Additionally, a module called the Auction Mechanism that enables inter-domain migration is 
developed. During the operation, the Auction Mechanism circulates through the slice VNFs and the domain 
Safe RL agents bid to win the auction and receive the VNF in auction. The goal is to use multiple distributed 
Safe RL agents one per domain to orchestrate slice VNFs with respect to a specific KPI, e.g., E2E average slice 
latency in this work, in a scalable way. 

5.3.4 VALIDATION RESULTS 
Configuration 

As Safe Baseline we use an algorithm called Compu that migrates the VNF to the local server with the most 
resources available as a default action. This action is deemed safe, as the inter-domain servers are in 
proximity and introduce less latency than servers located in different domains, leaving computational 
resources as the major source of additional delay. 

Overloaded servers introduce software delays; thus, resource utilization should be a decisive factor and be 
prioritized compared to the server distance when it comes to designing a baseline action which is applied in 
case of an unsafe action proposed by the RL Agent. We use it as a demonstration of custom rules. 

Baselines 

The performance of SafeSCHEMA is compared with three main baselines: 

1. SCHEMA is a non-safeRL version of SafeSCHEMA. Comparing it with a flat distributed solution. 
2. DQN is a DRL-based orchestration algorithm located in a central location. It is a common type of 

baseline approach in related research literature. 
3. Static is a placement method adopted by many works as the default baseline. 

Performance Evaluation 
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Figure 30. Performance of SafeSCHEMA (service latency). 

a) Average slice latency per number user. (b) Average slice latency per number of domains. Lower is better 
for both figures. 

In Figure 30, subfigure a) depicts the average E2E slice latency in milliseconds (ms) for a varying number of 
users, uniformly scaled per slice. We observe that the average slice latency increases with the number of 
users as they occupy more network resources and limit the possible VNF placement options that satisfy all 
users with low latency, no matter of their location in the network. It is apparent that the guaranteed SLA, 
defined as 10ms for the slice is respected by SafeSCHEMA. Additionally, it can outperform the distributed 
baseline of SCHEMA as it filters any unwanted proposed actions from the agents that will violate the SLA, 
thus lowering the average slice latency. 

Subfigure b) demonstrates the scalability of SCHEMA and the superiority of SafeSCHEMA as the Safety Shield 
module and the Baseline protect the network from unsafe RL agent actions. Introducing more domains in the 
network exponentially increases the complexity of the orchestration, but as we can see in the same figure 
SCHEMA and SafeSCHEMA were able to resist the degradation of performance as the state space grew with 
the introduction of new domains. This behavior can be attributed to the distributed architecture that 
orchestrates the slice VNFs locally and exchanges them only when needed by both algorithms. The 
performance superiority of SafeSCHEMA can be attributed to the use of the Safety Shield that prevents any 
unsafe actions from being executed in the network and replaces them with non-optimal but safe actions that 
can keep the average slice latency low. 
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Figure 31. SafeSCHEMA (slice latency). 

(a) Average slice latency per number of slices. (b) Average slice latency per number of chained slice VNFs. 
Lower is better for both figures. 

Figure 31a) presents the performance of the compared algorithms during the operation of multiple slices, 
hence their ability to maintain performance, demonstrating the ability to scale horizontally. We observe again 
that both distributed solutions were able to outperform the rest of the baselines. SafeSCHEMA takes the 
edge in this scenario by having a 15.38% lower latency than SCHEMA. The reason for this is the divide-and-
conquer approach that drastically reduces the orchestration complexity and tackles it with minimal overhead. 

In Figure 31 b) the average slice latency is plotted against the number of chained VNFs on each of 4 slices. It 
is clear, especially in the case of 2 and 4 chained slice VNFs that SafeSCHEMA was able to maintain a lower 
slice latency by 20.18% from SCHEMA and 126.62% from Static in the case of 8 VNFs. 
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Figure 32. Comparison of SafeSCHEMA with other algorithms. 

(a) Latency deviation per algorithm. (b) VNF Occupancy index represents the average number of hosted 
VNFs per total number of VNFs for 100 iterations of simulated traffic. 

Finally, in Figure 32 a) we show the latency deviation of all competing solutions of our work for 4 slices. It is 
apparent that from the two distributed solutions, only SafeSCHEMA was able to avoid violating the slice SLA 
of 10ms as the Safety Shield protects the network from unsafe actions. 

Figure 32 b) presents the behavior of SafeSCHEMA that gravitated towards consolidating the chained slice 
VNFs to reduce the number of hops to the end-user and thus, reduce the average slice latency. 

5.3.5 MONB5G RELATED CHECKBOXES/KPIS 
✓Intra-slice re-configuration and resource allocation. 

✓Reconfigure VNF location and chaining dynamically. 

✓Utilize key inputs (capacity, load of links, congestion level of local and alternative computing resources, 
history thereof, and KPI predictors from the distributed AEs. 

✓Propose reinforcement learning algorithms running locally. 

✓Receive KPI predictions from the AE (periodically or event-based) and attempt to identify feasible local 
reconfigurations (i.e., affecting only a part of the chain) that could reconcile the slice SLA or apply a specific 
intent policy, without the need for global reconfiguration or migrating the entire chain. 

✓Quantify the confidence in the ability of the locally optimized/reconfigured slice to resolve the potential 
problem. 
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6 Inter-slice Orchestration  

6.1 Introduction 
This Chapter focuses on the problem of inter-slice orchestration, which lies a level above its intra-slice 
counterpart and requires a wider picture of the network and its performance. Some of the key characteristics 
of this problem, as discussed in D4.1, are that a DE at this level needs to take special care of reconfiguration 
costs, diverse SLA agreements, efficient use of network resources, and to be able to handle a large number 
of slices. However, this is very challenging to achieve, because multiple slices (possibly spanning across 
multiple technological domains) give rise to very high complexity problems that are difficult to solve even for 
a very small number of slices.    

In the corresponding Chapter of the previous deliverable (D4.1) we presented some first algorithmic 
approaches, focusing mainly on domain specific inter-slice orchestration. The proposed solutions included a 
Reinforcement Learning algorithm for VNF placement and reconfiguration, a Multi-Armed Bandit algorithm 
for RAN resource allocation, and a probing scheme for VNF bottleneck localization. We also previewed how 
the system model could be extended to possibly incorporate more than one domain. 

This deliverable builds on to either provide extensions to the solutions of D4.1 (aiming mainly to increase 
their scalability and to support many slices) or to apply them in more practical use cases. More specifically, 
each of the following subsections will be dedicated to a different solution related to inter-slice orchestration. 

In Section 6.2, the VNF placement and migration algorithm, originally demonstrated for one domain in D4.1 
has been extended as follows: (i) it now supports multiple VNFs per slice, namely an arbitrary, probabilistic 
VNF graph (allowing also for loops); (ii) various realistic end-to-end performance metrics for the average flow 
served by such a VNF graph can now be supported; (iii) a multi-agent solution, where a DE (agent) resides 
with each slice (or even with each VNF of a slice) that radically improves the scalability of the scheme as the 
number of slices (or VNF host locations) increase while still maintaining close to optimal performance. 

In Section 6.3, the RAN resource allocation algorithm has been extended so that: (i) it enables resource 
allocation at the edge of the network, thus accounting for more timely and accurate information; (ii) it 
dramatically decreases the amount of control information that needs to cross the network to reach the 
central controller, thus reducing overhead towards the core network and avoiding bottlenecks; (iii) it enables 
the provisioning of federated learning schemes to further enrich the capabilities of the decision agents. 

In Section 6.4, the probing scheme for VNF bottleneck localization is now applied in a more practical use case 
relying on a docker based Service Chaining Function. 

6.2 Independent DQN agents for end-to-end slice reconfiguration 
In this Section we propose a multi-agent DRL algorithm for dynamic and efficient end-to-end (e2e) slice 
embedding and reconfiguration. We first describe the problem at hand and the system model in 6.2.1. Then, 
in 6.2.2, we describe the solution tools proposed by first formulating the problem as a Markov Decision 
Process (MDP) and then presenting the candidate RL algorithms. In 6.2.3 we explain how the proposed 
solution fits into the MonB5G distributed DE architecture and in 6.2.4 we validate it by simulations, verifying 



871780 — MonB5G — ICT-20-2019-2020 
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G 
Decision Engine [Public]  

 

 

©MonB5G, 2019                                                                                                                                            Page | 62 

 

the scalability of the proposed algorithm and its superior performance compared to the baselines. Finally, in 
6.2.5 we outline which MonB5G goals are achieved by the proposed algorithm. 

6.2.1 PROBLEM DESCRIPTION 
The problem at hand is to dynamically decide the configuration (embedding) of slices on top of a multi-
domain Physical Network (PN) for unknown/stochastic user generated traffic, in a way that minimizes e2e 
SLA violations, operating costs and reconfigurations in the long run. In what follows we will present the 
components of the system model; to clearly define the various components, we will often be referring 
throughout this Section to Figure 33, which depicts a simple example of embedding 2 slices on top of a multi-
domain PN. 

6.2.1.1 MAIN COMPONENTS OF THE SYSTEM MODEL 

The system model comprises two main components, the Physical Network, and the Network Slices, which are 
commonly represented by graphs in the literature [25], [26]; a similar modeling viewpoint is used here as 
well. 

Physical Network. It is represented by a weighted undirected graph 𝐺 = (𝒱, ℰ), and possibly comprises 
multiple (technological or administrative) domains. Each (physical) node 𝑣 ∈ 𝒱 (𝑉 in total) has a 
corresponding capacity 𝑏  to host VNFs of its domain (it can be resource blocks, CPU cores, containers, etc., 
depending on the domain). Some of the nodes may be just routers, so they have 𝑏 = 0. Accordingly, each 
(physical) link (or path) 𝑒 ∈ ℇ (𝐸 in total) has some fixed capacity 𝑏  (e.g., bandwidth). In the example of 
Figure 33 there are 3 domains (CRAN, MEC, CN) with (3, 2, 3) nodes respectively, where VNFs could be 
executed (servers), and associated capacities 𝑏 . These servers are connected either through physical links 
(of capacity 𝑏 ), or paths comprising multiple links and nodes of the network1. 

Network Slices. We consider a set of slices 𝒦 (𝐾 in total), which must be embedded on top of the PN. A slice 
𝑘 is represented by a directed graph 𝐻 = (𝒩 , ℒ ), where the nodes correspond to Virtual Network 
Functions (VNFs) and the edges correspond to Virtual Links (VLs). The VNFs process the flows that belong to 
this slice and can be viewed as tasks running on host servers, while the VLs indicate the order of how these 
tasks must be executed. In Figure 33,  Slice 1 is an example of a simple “VNF chain”, where all flows must first 
get processed by VNF1 and then by VNF2, to receive the offered e2e service. Our model is generic, allowing 
for both loops (e.g., flows passing by the same VNF multiple times), as well as probabilistic routing of flows 
(e.g., to capture scenario where not all flows of a slice require all VNFs in the same order). An example of 
such a chain is depicted in Figure 33, where for Slice 2, a percentage of flows from VNF1 proceed to VNF2 
directly, while the rest must pass through VNF 3, possibly going back to VNF 1 as well.   

 

 
1 w.l.o.g., and to keep the model simple, we assume that the routing path between any two nodes is given 

(predetermined). 
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Figure 33. Graphical Illustration of the system model 

VNF demands 𝑑 ,  : Each VNF 𝑛 of slice 𝑘 is associated with a resource demand 𝑑 , (𝑡) at each time 𝑡, 
that will be imposed on the physical node where the VNF is executed.  

Virtual link (VL) demands 𝑑 , : Similarly, each (virtual) link 𝑙 of slice 𝑘 has resource demand 𝑑 , (𝑡) 2.  

Remark: These demands are often unknown, stochastic, nonstationary (correlation between VNFs of the 
same slice is also common); the main reason why we require a learning-based optimization algorithm to tackle 
this problem. 

Demand vector 𝐷 : Let vector 𝐷  denote the VNF and VL demands of all slices at time 𝑡. 

Service Level Agreements 𝑞  : Each slice 𝑘 comes with some slice-specific requirement 𝑞 , which defines 
the maximum (or minimum) acceptable value for an end-to-end KPI metric (e.g., in Figure 33 each of the 
slices has a service level agreement for some maximum e2e queuing delay). 

Control variables 𝑥 , ,  : equal to 1 when VNF/VL 𝑖 of slice 𝑘 is hosted by node/link 𝑗, and 0 otherwise. 

 
2 Note that this load will be added to all physical links along the PN path between the execution nodes hosting 

the two VNFs connected by virtual link l. 
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Configuration 𝐶  : Let vector  𝐶   denote the configuration (embedding) of all VNFs to physical nodes at 
time  𝑡. As an example, in Figure 33, VNF 1 of Slice 1 is hosted by Node 2, hence 𝑐 , = 2, and the configuration 
is 𝐶 = [𝑐 , , 𝑐 , , 𝑐 , , 𝑐 , , 𝑐 , ]. 

  

6.2.1.2 E2E KEY PERFORMANCE INDICATORS AND SLAS 

In what follows we will first introduce the functions that determine the “local” performance of a VNF or a VL 
(Local key performance indicator functions), which is related to the aggregate demand of the VNFs or VLs 
assigned to the host physical node or link and its corresponding resources. Then, we build on that to define 
the slice-specific e2e key performance indicators and the associated SLAs.   

Local Key Performance Indicator functions. We define a slice-specific local key performance indicator 
function 𝑓 (𝐶 , 𝐷 ), which can be applied on any physical node/link 𝑗 traversed by the slice and gives a local 
performance metric as a function of the aggregate traffic demand on the specific node/link and its total 
capacity. These functions might even differ among technological domains and could possibly capture any 
performance indicator metric. We will give two simple examples by introducing the queuing delay and the 
underprovision local performance indicator functions (however more types of KPIs can be also incorporated 
in the framework). 

 Queuing delay: We assume that the packets for each VNF 𝑛 ∈ 𝒩  and VL 𝑙 ∈ ℒ  of slice 𝑘 arrive 
according to a Poisson process with rate 𝑑 ,  and 𝑑 ,  respectively. Consequently, at each server or 
physical link 𝑗 ∈ 𝒱 ∪ ℰ the packet arrivals are Poisson with rate equal to the sum of rates over the 
VNFs/VLs assigned on the server/link. Moreover, we model each server and link as an 𝑀/𝐺/1/𝑃𝑆 
queue with Processor Sharing scheduling policy and a generic distribution of service times with mean 
value 1/𝑏 . We calculate the mean response at each server (queuing delay) by the standard closed 
form formula for a stable system  [33] 3 :  

𝑓 (𝐶 , 𝐷 ) = 1/(𝑏 − 𝑧 (𝐶 , 𝐷 )) 
 

where 𝑧 (𝐶 , 𝐷 ) =  ∑ ∑ 𝑑 , ∙ 𝑥 , ,∈𝒩 ∪ℒ∈𝒦  
 

 Underprovision: We assume that the resource demand is the capacity required on a server or a 
physical link to serve the user-generated traffic. When the aggregated demand of the VNFs or VLs 
assigned on a server or physical link exceeds its nominal capacity, the QoS perceived by the end-
users of the associated slices is negatively affected [34]. The corresponding performance function 
can be defined by:  

                                             𝑓 (𝐶 , 𝐷 ) =
𝑧 (𝐶 , 𝐷 ) − 𝑏     , 𝑖𝑓  𝑧 (𝐶 , 𝐷 ) > 𝑏

0    , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒               
 

E2E Slice Key Performance Indicators. An e2e key performance indicator 𝑓 (𝐶 , 𝐷 ) for a slice 𝑘 can be 
calculated based on the local key performance indicator functions 𝑓 (𝐶 , 𝐷 ), and in the simplest case scenario 
it is just the sum of their output values when they are applied to all physical nodes and links traversed by the 

 
3 We assume that two VNFs of the same slice cannot be executed in the same node. 
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slice. As an example, in Figure 33, the e2e queuing delay experienced by slice 1 is the sum of the delays in 
node 2, link (2,3), link (3,6), link (6,9), link (8,9), and node 8. In the case of a more complex slice, a Jackson 
network type of analysis could be applied to calculate the delay. In the remainder we focus on simple chain 
slices without loops.  

6.2.1.3 OPERATIONAL COSTS  

Given the (usually unknown) demands 𝐷  and the configuration 𝐶  at time 𝑡, we assume that the system 
suffers an instantaneous cost related to both the network performance (i.e., direct cost to the operator) and 
slice performance (e.g., indirect cost related to SLA violations). We choose to consider the following three 
cost quantities in this work (other components can be straightforwardly added to the framework): 

Type 1 cost: Node utilization. This is the cost paid by the network operator for operating expenses. It is equal 
to the number of servers that are active (host at least one VNF) and relates to the energy consumption of the 
network. Minimizing this cost also facilitates the admission of new slices by maximizing the free space of 
resources [29]. 

𝑐𝑜𝑠𝑡 (𝐶 ) = ∑ 𝛽∈𝒱  , 

where 𝛽 = 1  𝑖𝑓 ∑ ∑ 𝑥 , ,∈𝒩∈𝒦 ≥ 1 

Type 2 cost: Reconfiguration. This is the cost for migrating VNFs from their host servers to other servers in 
the network. It relates to the overhead generated for reassigning all VNFs and the delays incurred by this 
action [30]. 

𝑐𝑜𝑠𝑡 (𝐶 , 𝐶 ) = 1/2 ∙ |𝑥 , , (𝑡 + 1) − 𝑥 , , (𝑡)|

∈𝒱∈𝒩∈𝒦

 

Type 3 cost: SLA violation. When the maximum value 𝑞  defined by the SLA is exceeded, a penalty is paid by 
the network operator to the slice tenant. This penalty can take any form that is appropriate to model the 
violation of the corresponding e2e KPI, e.g., linear or quadratic. We give as an example the linear form: 

𝑐𝑜𝑠𝑡 (𝐶 , 𝐷 ) = (𝑓 (𝐶 , 𝐷 ) − 𝑞 )

∈𝒦

 

 

6.2.2 SOLUTION TOOL 
Our goal in the dynamic slice embedding problem is to decide the configuration 𝐶  at every time 𝑡, (i) towards 
optimizing the total system cost (consisting of the various cost components) over a discounted infinite time 
horizon, while (ii) not knowing a priori how demands 𝐷  evolve over time. This is an online learning and 
control problem, for which Reinforcement Learning (RL) schemes are a natural candidate. Towards this 
direction, we will first formulate the problem as an infinite horizon discounted MDP, assuming that traffic 
demand is discretized and transitions between different levels follow a known Markov Chain. Then we will 
present the exact algorithms that can solve this problem optimally (Policy Iteration, Q-learning), and explain 
why their application in large scale scenarios is precluded. Finally, we propose two DRL algorithms (DQN and 
IDQN) that use approximation in state and action spaces to reduce problem complexity/convergence time 
and advance scalability.                    
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6.2.2.1 MDP PROBLEM FORMULATION 

To formulate the problem as an MDP we must define the state and action spaces, the transition probabilities 
between states (the system’s dynamics), the reward function and the objective function. 

States. The state of the system at time 𝑡 is defined by the tuple 𝑆 = (𝐶 , 𝐷 ), where 𝐶  is the system’s 
configuration and  𝐷  the demand vector. 

Actions. If at time 𝑡 the system is at state 𝑆 , then the action 𝐴 , taken at 𝑡, deterministically defines the 
configuration (𝐶 ) to be applied at t + 1 (without knowing the demand vector 𝐷  at the next time step).  

Transition Probabilities. To facilitate the formulation of the problem as a finite Markov Decision Process, we 
will consider the case of discretized VNF/VL demands that take values from a set of demand levels ℬ (with 
cardinality 𝐵). The transition to state 𝑆 = (𝐶 , 𝐷 ) at t+1 depends on the action 𝐴 , and on the 
probability distribution of the demand vector in the next time interval. This is assumed to be known and can 
possibly capture traffic correlation among VNFs of the same slice but also among slices as well. Since the only 
stochastic variable of the system is the demand, the probability of a transition from 𝑆  to 𝑆  is given by: 

𝑃(𝑆 |𝑆 , 𝐴 ) = 𝑃(𝐷 |𝐷 ) 

Reward. It is a function of the state 𝑆  and the next state of the system 𝑆 , and involves the three cost 
terms introduced in 6.2.1.3 through the following weighted sum: 

𝑟 = −(𝑤 ∙ 𝑐𝑜𝑠𝑡 (𝑆 ) + 𝑤 ∙ 𝑐𝑜𝑠𝑡 (𝑆 , 𝐴 ) + 𝑤 ∙ 𝑐𝑜𝑠𝑡 (𝑆 )) 

The three weights 𝑤 , 𝑤 , 𝑤  determine the importance of each term and sum to one. Note that the 
immediate cost is equal to the negative reward. 

Objective. The objective is to find the optimal policy 𝜋∗(𝑆), meaning the mapping from states to actions that 
maximizes the expected accumulated reward over a discounted infinite horizon:  

𝜋∗(𝑆) = 𝑎𝑟𝑔 max
( )

𝔼 ( )( 𝛾 𝑟 ) 

Note that the expectation is over the transition probabilities 𝑃(𝑆 |𝑆 , 𝐴 ) while following policy 𝜋(𝑆). 
Moreover, 𝛾 ∈ [0,1) is the discount factor, where for larger values of 𝛾 future costs become more important.  

 

6.2.2.2 POLICY ITERATION 

Policy Iteration (PI) is a standard Dynamic Programming algorithm; details about its structure can be found 
in most DP/RL textbooks (e.g., [31]). PI computes offline the optimal policy using an iterative procedure of 
consecutive policy evaluation and policy improvement stages.  

It is applicable in the slice embedding problem when the traffic demand values are discrete, and their 
statistics (transition probabilities) are known. The advantage of this algorithm is that it is guaranteed to 
converge to the optimal policy. However, traffic dynamics are usually not known beforehand in a realistic 
slice embedding scenario. Moreover, PI is plagued by the state and action complexity, which rapidly increases 
its computational and memory requirements, while at the same time a key characteristic of the slice 
embedding problem is its immense number of states and actions. As an example, let's consider just a single 
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domain network with slices that comprise only one VNF each (no virtual links), and all VNFs have the same 
number of traffic demand levels 𝐵. Then, the state space consists of |𝑺| = 𝑉 ∙ 𝐵  states, since each VNF/slice 
(𝐾 in total) can be placed on 1 out of 𝑉 servers and the corresponding demand of each slice takes 1 out of 𝐵 
values. Even in this toy scenario and for a moderate number of servers (𝑉 = 10), slices (𝐾 = 10) and demand 
levels (𝐵 = 10), the cardinality of the state space soars to 10  states while there are 10  actions per state. 
Consequently, PI is practically applicable only in small sized toy scenarios of the slice embedding problem, as 
it suffers from the curse of dimensionality.   

According to the above-mentioned characteristics, we utilize PI in the validation section as the optimal 
baseline in small sized MDP scenarios, where the traffic demand is discrete. However, to tackle realistic 
scenarios we need to employ an algorithm with the ability to work under unknown traffic dynamics and large 
state and action spaces.    

6.2.2.3 Q-LEARNING 

Q-learning (QL) is a standard tabular RL algorithm; details can be found in any RL textbook, e.g., [32]. It is an 
off-policy temporal difference method that learns the optimal action value function 𝑄∗(𝑆, 𝐴) through 
interaction with the system (training). The optimal action value function is represented by a table, called the 
Q-table, with as many entries as the number of possible state-action pairs. 

QL is a better fit for the slice embedding problem compared to PI, since it does not require any knowledge of 
traffic statistics beforehand. It is also guaranteed to converge to the optimal policy under minimal conditions. 
However, QL still suffers from the curse of dimensionality, which renders it not applicable in realistically sized 
scenarios (or scenarios where the traffic demand is continuous). Recalling the toy example of 6.2.2.2, the QL 
algorithm would have to learn the correct values of 10 ∙ 10 = 10  table entries, which would require a 
vast amount of memory and computation time. Note that QL updates only the value of the state-action pair 
encountered each time, so many visits at each state-action pair are required for the algorithm to converge.  

We utilize QL as another baseline in small sized MDP toy scenarios in the validation section. However, it is 
obvious that the tabular representation of the 𝑄 function is an obstacle to be overcome in order to tackle 
larger scale problems.    

6.2.2.4 DQN 

A way to reduce the state complexity of the problem at hand is to use a parametric function to approximate 
the action value function instead of the tabular representation in QL. Towards this direction, we apply a DQN, 
introduced in [33], which employs a deep neural network for the approximation of the 𝑄 function, and 
mechanisms like the experience replay memory and the target network that counteract to any instabilities 
caused during the learning process due to the use of a neural network approximator. 

Architecture. We have retained the main architectural elements and features of the DQN as they were 
introduced in [33]. The only major difference is that the DNN we use is just a simple Multi-Layer Perceptron 
(MLP) comprising three hidden layers. This choice is towards having an architecture that is as simple as 
possible for the specific problem but without compromising the algorithm’s performance.  The input to the 
MLP is the state of the system, represented by the vector 𝑆 as defined in subsection 6.2.2.1. The number of 
neurons at the output layer is equal to the number of possible actions (system configurations), and each 
output neuron corresponds to the Q-value of an action. As for the hidden layers, each of them is equipped 
with 60 neurons while its output is activated by a Rectifying Linear Unit (ReLU) function. 
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Application scenarios. DQN can be applied in the slice embedding problem to reduce state complexity when 
the traffic demands are either discrete or continuous and the number of possible system configurations is 
not very large. This algorithm is not suitable for large action spaces because the number of output neurons 
of the DNN is equal to the number of possible actions. Since, in realistic scenarios, the problem at hand 
demonstrates a high action complexity, a slightly different approach is required to deal with the large action 
space and enable the use of DQN.   

6.2.2.5 IDQN 

One way to reduce the action complexity in Q learning is to use multiple QL agents instead of a single 
centralized one [34]. In that way, the central action can be decomposed into several components, each taken 
by a different agent. Towards reducing both the state and the action complexity, the most straightforward 
approach is to simply combine the multi-agent concept with the DQN algorithm [35]. This results to a multi-
agent scheme with Independent DQN agents (IDQN), which uses approximation both in state and action 
spaces, and is the proposed algorithm for better scalability. 

Action decomposition. For the slice embedding problem, the decomposition of the action into multiple 
components can be realized in different levels, e.g., each agent may be responsible for the configuration of 
a slice or even the configuration of a single VNF. In the remainder we consider one agent per VNF to 
completely avoid the combinatorial aspect of the action and maximize the algorithm's scalability. Using this 
type of decomposition, the action for each agent is to decide the node where the associated VNF will be 
placed in the next timeslot. Consequently, the number of possible actions per agent is equal to the number 
of nodes that can host the VNF.  

Inputs and Outputs. Here we consider Independent DQN (IDQN) agents that work cooperatively towards a 
common goal. So, all agents have access to the global state of the system and the global cost of their actions, 
but they are independent since they have no information regarding the behavior of the other agents. 
Consequently, the input and the reward for all agents is the same as in the centralized DQN version (the input 
is the global state and the reward is the negative cost incurred by the collective action of all agents), but the 
output is different for each agent, since it corresponds to the Q-values of all possible agent-specific actions.     

Architecture. The IDQN architecture for each agent is similar to the single centralized DQN described in  
6.2.2.4. So, each agent maintains a DNN and has its own set of parameters, its policy and target networks, 
and replay buffer. The important difference is that the number of output neurons is significantly lower now 
due to the decomposition of the centralized action (it is equal to the number of nodes where the associated 
VNF can be placed).  

6.2.3 FIT INTO THE DE DISTRIBUTED ARCHITECTURE 
The proposed IDQN algorithm can support multiple slices/VNFs across different technological domains 
considering e2e KPIs. Consequently, it could be positioned in the IDMO functional block of the MonB5G 
architecture, presented in Chapter 3. As discussed in Subsection 6.2.2.5, the action can be decomposed so 
that each IDQN agent is responsible for the placement (embedding) of a slice (e2e) or even for the placement 
of just a VNF. Hence, since an IDQN agent can be perceived as a DE, the distribution of the DEs is flexible 
(either 1 DE per slice or 1 DE per VNF). In the validation section we consider 1 DE per VNF in order to have 
the minimum number of output neurons per agent. In Figure 34 there is an example demonstrating the 
distribution of the DEs. In this example we consider a physical network with two technological domains (Edge 
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and Core), each of them comprising two servers. There is also one slice with two VNFs to be embedded (one 
per domain). A DE is attached to each VNF and is responsible for selecting its host server. Each DE receives 
at its input the state of the system and the reward of the collective action by the MS (and possibly the AE). 
Note that the agents are conceptually distributed, in order to tackle the high complexity of the problem. 
Moreover, the computations can be distributed by assigning each agent to a different CPU core. However, 
the agents still require global information to make a decision. So, this is not a fully decentralized algorithm 
as the MS and the AE must have a wide view of the system. 

   
Figure 34. Link to MonB5G architecture. 

6.2.4 VALIDATION RESULTS 
The validation section is divided into two parts. In the first part we examine the scalability of the algorithms 
presented in 6.2.2 by comparing both their convergence speed and the optimality of the obtained policies. 
After verifying the better scalability of IDQN compared to the centralized solutions, we will apply it in a 
realistic large-scale scenario and compare its performance with static baseline policies.   

Algorithmic parameters. In the scenarios that follow, all algorithms use the same γ value (𝛾 = 0.9) and their 
exploration rate is set constant to 𝜀 = 0.1 during training (to facilitate the comparison of their convergence 
speed). Regarding the hyperparameters of the DRL algorithms, we use the following values both for DQN and 
IDQN, minibatch size: 32, target network update period: 500 timeslots, experience replay memory size: 5000 
timeslots.     

 

6.2.4.1 SCALABILITY OF ALGORITHMS 

Setup parameters. We consider a PN that consists of a single technological domain (e.g., the Edge). The 
number of servers and the number of slices are both tunable, and we set them according to the size of the 
problem we want to examine. Towards keeping the scenario as simple as possible and without loss of 
generality, the slices to be embedded comprise just one VNF each. The traffic demand of each VNF/slice 
transitions between two levels of demand (it is either 0 or 1) according to the following Markovian transition 
probability matrix: 
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𝑃 =
0.98 0.02
0.02 0.98

 

This captures a very simple scenario where each slice has bursty traffic periods followed by long silence 
periods, not necessarily coinciding, to better illustrate the optimality of the chosen actions, as well as the 
performance of static heuristics. We also assume that traffic demands of different slices are independent 
(which can be a realistic scenario since each slice is devoted to a different application). Note that the use of 
Markovian traffic in this first part of the validation section facilitates the use of PI algorithm that is guaranteed 
to converge to the optimal policy and can provide a benchmark. Using the above dynamics we generate two 
different datasets, one for the training of the algorithms (2 ∙ 10  timeslots) and one for their testing (80000 
timeslots).  As for the SLAs, we consider the underprovision SLA, where 𝑞 = 0 for all slices and a quadratic 
penalty is incurred when SLA violations occur.  

Tested Scenarios. We will examine two different scenarios towards validating the scalability of IDQN. First, a 
small-scale scenario, where we can apply all four algorithms of section 6.2.2 (PI, QL, DQN, IDQN). This will 
allow us to compare both the convergence speed of the (D)RL algorithms and the quality of the obtained 
policies with respect to the optimal one given by PI. After verifying that both DQN algorithms can obtain near-
optimal policies faster than tabular QL, we will further increase the size of the problem and examine how the 
performance of DQN and IDQN is affected. 

Scenario 1 – Small size problem. In this scenario we consider a single domain PN with 2 servers and 4 slices. 
Each of the algorithms is trained and tested over the respective datasets 10 individual times, with a different 
random seed each time. The results are given in Figure 35 and Figure 36. The plot of Figure 35 depicts the 
cost incurred by each algorithm (averaged over the 10 runs) as a function of the timeslot during training. This 
plot demonstrates the faster convergence of both DQN algorithms compared to QL, despite the small size of 
the problem. However, IDQN does not seem to convergence faster than DQN. This is because in this scenario 
the number of actions at each state is 16, which is still very small to have any impact on the learning process 
of the DQN.    

 
Figure 35. Convergence speed comparison for IDQN, DQN and QL algorithms (scenario 1 - small scale 

problem).  
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In Figure 36, there is a box plot comparing the average cost per timeslot in the testing stage by each of the 
algorithms for the 10 runs. This plot includes the minimum cost given by the optimal policy (PI), as well as 
the cost of two static baseline policies (split all and group all) and the cost of taking random actions. Note 
that split all policy minimizes SLA violations by splitting the VNFs to all available nodes, while group all policy 
minimizes energy consumption by placing all VNFs on the node with the largest capacity. It can be deduced 
that despite using Q function approximation, the derived policies by DQN and IDQN are close to the true 
optimal. Of course, the cost of IDQN demonstrates larger variance, due to the additional approximation in 
the action space. However, IDQN still performs much better than the two static baseline policies used as 
benchmarks (split all and group all).   

Consequently, this first scenario verifies that DQN and IDQN can convergence to near optimal policies faster 
than QL, and those sequential decision-making algorithms can provide dynamic policies that are more efficient 
compared to some heuristic baselines (static policies). 

Scenario 2 – Moderate size problem. In this scenario we consider a single domain PN with 3 servers and 7 
slices. This time we apply only DQN and IDQN, since the high computation and memory requirements of PI 
and QL are prohibitive (e.g., QL requires a Q-table with 6 × 10  table entries). We follow the same procedure 
as in Scenario 1, and the results are given in Figure 37. IDQN converges roughly 10 × faster than DQN, to a 
policy of similar quality. This is due to the size of the action space which is starting to grow large and makes 
the training of a centralized agent slower. Note that for this scenario the MLP of a centralized agent requires 
2187 output neurons while the MLP of a distributed IDQN agent requires only 3.  

All in all, in this section we have verified the scalability of IDQN compared to the centralized solutions (QL and 
DQN). 

 

 
Figure 36. Cost comparison of (D)RL algorithms with optimal and baseline policies (scenario 1 - small scale 

problem) 
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Figure 37. Convergence speed comparison for IDQN and DQN algorithms (scenario 2 - larger scale problem). 

     

6.2.4.2 APPLICATION OF IDQN IN LARGE SCALE SCENARIO 

Setup parameters. We consider a PN consisting of two technological domains, the Edge, and the Core. In this 
second part of the validation section, we consider SLAs related to the e2e queuing delay (linear penalty for 
SLA violations), so each server is characterized by its mean service rate. The Edge comprises 9 servers while 
the Core consists of 3 servers. We made this choice since it is more realistic to have a higher number of 
servers with lower mean service rates distributed on the Edge and a lower number of servers with higher 
mean service rates in the Core network (large datacenters). Moreover, there are 10 slices with different SLAs 
to be embedded on top of the network. Each slice comprises two VNFs, one for the Edge and one for the Core 
domain (for simplicity we assume again that there are no VLs involved). The traffic demand of the VNFs is 
continuous with unknown time dependence, as we import it from the Milano dataset. More specifically, we 
map the timeseries of a different base station to each VNF and choose correlated timeseries for VNFs of the 
same slice (to make the setup as realistic as possible).  

Results. The results are given in Figure 38, which demonstrates the average cost per timeslot in the testing 
dataset (averaged over 10 runs) for each of the policies. Since it is not possible to apply a centralized 
algorithm in such a large-scale scenario (a centralized DQN would require 2 × 10  output neurons), we use 
only the static baseline policies as benchmarks. According to the results IDQN demonstrates 43% lower cost 
compared to the baseline policies. 
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Figure 38. Cost comparison of IDQN with baseline policies (large scale scenario). 

6.2.5 MONB5G RELATED CHECKBOXES/KPIS 
The proposed IDQN achieves one of the goals of the MonB5G architecture, which is the use of multi-agent 
solutions. More specifically IDQN is employed for the task of inter-slice orchestration and minimizes the 
combined cost of energy consumption, SLA violations and reconfigurations in the long run. The most 
important attribute of this algorithm is its scalability compared to the centralized solutions, which was 
verified in the validation section (roughly 10 × improvement in convergence speed compared to the 
centralized DQN). The MonB5G related checkboxes are outlined below:   

 Multi-agent algorithm 
 Convergence speed improvement (10x improvement according to the validation section) 
 Flexible DE distribution (1 DE per slice, or even 1 DE per VNF) 
 Handles multiple VNFs across different technological domains 
 Supports diverse KPIs and service level agreements 

6.3 Specialization of FDRL Agents for Scalable RAN Slicing Orchestration  
6.3.1 PROBLEM DESCRIPTION 
End-user mobility and temporal variations of the traffic demand deeply complicate resource planning and 
allocation tasks, especially in the radio access network (RAN) domain where resource allocation decisions, 
e.g., in terms of bandwidth, must cope with the additional variability inherent of the wireless channel. 

Traditional RAN slicing solutions envision a centralized controller with a holistic and real-time view of the 
network, especially about resource utilization, availability, and real-time wireless channel statistics. However, 
similar approaches suffer from scalability issues in real deployments, where the amount of monitoring 
information to be exchanged, together with the massive number of deployed base stations (BSs), make it 
practically impossible to devise optimal resource allocation schemes in a timely and resource-efficient 
manner. 

We take on this challenge and propose a distributed architecture for network slice resource orchestration. 
Given the variable spatio-temporal distribution of mobile traffic demands [30], we envision the dynamic 
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setup of a network of local decision agents (DAs) as virtual software instances able to access local RAN 
monitoring information and extract local knowledge without the need of a centralized entity performing 
decisions on aggregated information.  

Our framework leverages a dynamic agent selection mechanism based on local traffic conditions similarity, 
which enables more efficient information exchange and collaboration among groups of local DAs while 
specializing their decision policy. The benefit coming from our approach are several:  

 it enables resource allocation at the edge of the network, thus accounting for more timely and 
accurate information 

 the amount of control information that needs to cross the network to reach the central controller 
dramatically decreases, thus reducing overhead towards the core network and avoiding bottlenecks 

 by allowing information exchange among local DAs, we enable the provisioning of federated learning 
schemes to further enrich the capabilities of the decision agents. 

Let us introduce a mobile network infrastructure composed of a set ℬ of base stations (BSs), wherein a set of 
slices ℐ is deployed. Each BS 𝑏 ∈  ℬ is characterized by a capacity C , expressed in terms of a discrete number 
of physical resource blocks (PRBs) of a fixed bandwidth.  

This resource availability must be divided into subsets of PRBs, and dynamically assigned to each network 
slice according to their real-time traffic demand and SLA requirements.  As part of the SLA between the 
network operator and the slice owner, we assume each network slice to come with predefined latency and 
throughput requirements defined by the variables Λ  and 𝜆 , respectively. Let us consider a time-slotted 
system where time is divided into decision intervals 𝑡 ∈ 𝑇 =  {1, 2, … , 𝑇}. The PRB allocation decisions can be 
taken only at the beginning of each decision interval, whose duration ϵ may be decided according to the 
infrastructure provider policies, ranging from few seconds up to several minutes. 

We assume the presence of a preliminary admission and control mechanism, e.g., the one presented in [36], 
to verify the admissibility of the current network slice setup within the available networking capacity, and 
focus our effort on meeting the resource allocation for the downlink traffic. 

We envision the allocation of radio resources towards the end-users as a two-step process [37]. Initially, once 
network slices are admitted into the system, the infrastructure provider schedules the assignment of slots of 
radio resources for each of the tenants. Then, based on the slice resource availability, each tenant may decide 
to enforce proprietary scheduling solutions towards its end-users, depending on use-case or business 
requirements [38]. 

We focus on the correct and fair dimensioning of the inter-slice PRB allocation. To this aim, we denote with 
the variable a ,

( )
 the PRB allocation decision for the i-th slice under the b-th BS taken at 𝑡-th decision time 

interval, and with σ ,
( ) the signal-to-noise ratio (SNR) value expressing the wireless channel quality, averaged 

over the duration of a decision time interval 𝜖, and over the end-users of the 𝑖-th slice attached to the 𝑏-th 
BS. Similarly, we introduce ϕ ,

( )
 as the aggregated downlink traffic demand generated by the users of the 𝑖-

th slice under the coverage area of the b-th BS within the t-th time interval. 

All together, we can formalize our problem as: 

Problem RAN Resource Allocation: 
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min lim
 → 

 𝔼 ∑ d ,
( )

∈𝒥  
 

    

s. t.:  

E ,
( )

≤ Λ  ,    ∀ 𝑡 ∈ 𝒯, 𝑖 ∈ 𝒥, 𝑏 ∈ ℬ, 

∑ a ,
( )

∈𝒥 ≤ 𝐶  ,   ∀ 𝑡 ∈ 𝒯, 𝑏 ∈ ℬ, 

a ,
( )

∈ ℤ  , d ,
( )

∈ ℝ ,   ∀𝑡 ∈ 𝒯, 𝑖 ∈ 𝒥, 𝑏 ∈ ℬ, 

where E ,
( )

= 𝔼 ,
( )

,
( )

,
,

( )
  

,
( )  defines the expected transmission latency, and Γ(𝑎, 𝜎) is a function that 

translates the PRB allocation a in the equivalent transmission capacity, given the experienced channel quality 
σ. 

The traffic demand generated within a decision interval might not be fully satisfied due to erroneous PRB 
allocation estimations, incurring in additional transmission delay due to traffic queuing at the base station. 
Therefore, we introduce the variable d ,

( ) as a deficit value indicating the volume of traffic not served within 
the agreed slice latency tolerance 𝛬  , and that is therefore dropped. 

6.3.2 A MULTI-AGENT ARCHITECTURE FOR RAN RESOURCE ALLOCATION 
Due to fast traffic variations, slice resource allocation decisions at the RAN domain should be taken in a 
dynamic, proactive, and flexible way to avoid service and performance degradation. 

While advanced admission and control mechanisms could select the set of slices to be admitted to the system 
and provide static resource allocation boundaries to satisfy the available capacity, the dynamic nature of the 
slice's traffic load and wireless channel statistics may lead to suboptimal performances. Additionally, the 
optimization problem underlying RAN resource allocation is a non-linear integer programming problem, 
which has been proven to be NP-hard [36], and suffers scalability issues when addressed in a centralized 
manner.  

 
Figure 39 Federated DRL architecture for RAN slicing. 
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For these reasons, we advocate for the adoption of an FDRL-based architecture to address the RAN slicing 
scenario. We rely on local DAs running as software instances within the premises of each BS, as shown in 
Figure 39. 1. Each agent oversees performing slice PRB allocation decisions based on local monitoring 
information coming from the underlying network monitoring system, or BS context. 

To concurrently address the above issues, we introduce an FL layer that allows inter-agent information 
exchange and expedites the learning procedure local knowledge sharing.  

6.3.3 LOCAL RAN SLICING VIA DDQN AGENTS 
DQN is a popular reinforcement learning [39] algorithm that evolves from the well-known concepts of Q-
learning and neural network function approximation. 

DQN represents a model-free approach. It stores the trajectory of experiences for each interaction with the 
environment in a replay buffer, as to update the network parameters without prior knowledge of the 
underlying environment statistics. 

In the following, we will use the 𝑖 index interchangeably while referring to slices and DAs, assuming a one-to-
one mapping of each DA with the corresponding network slice. 

With focus on a single BS and a single decision interval the design choices of our DQN model are as follows: 

State Space 𝒮 we define the state of the 𝑖-th agent associated to the 𝑏-th BS as a tuple of local monitoring 
information  𝑠( )

= 𝜎
( )

, 𝜆
( )

, 𝜈
( )

, ∀𝑖 ∈ ℐ , where σ( )
 is the SNR value, averaged over the duration of a 

decision time interval experienced by the users of the 𝑖-th slice, 𝜆
( ) is the aggregated traffic volume 

generated by the 𝑖th slice over the time decision duration ϵ, and 𝜈( ) is the amount of available capacity left 
by the previous decisions of other agents. 

Action Space 𝒜 without loss of generality, we define 𝜄 as the minimum PRB allocation step, or chunk size, 
and assume that the PRB allocation decision of the 𝑖-th agent can only take values that are an integer multiple 

of 𝜄, hence = 𝜄 ⋅ 𝑘 | 𝑘 =  0,1, … ,  . 

Such discrete action space allows controlling the dimensionality of the action space and positively influences 
the learning process [40]. 

Reward ℛ we adopt an iterative reward-penalty approach to guide the agent learning procedure, which 
translates into maximizing a reward function. An accurate PRB allocation should concurrently guarantee the 
satisfaction of transmission latency Λ  and the traffic requirements λ

( ), while avoiding both under-
provisioning and over-provisioning of resources. Given the instantaneous slice traffic volume λ( ), and the 

corresponding allocation decision a( ) ∈ 𝒜, we can identify an allocation gap 𝛼( )
= Γ 𝑎

( )
, 𝜎

( )
− 𝜆

( ). To 

measure the goodness of the action, we therefore introduce two variables, namely ρ( )
 and ρ( ) , which 

characterize the upper and lower boundaries of the allocation gap as 𝜌
( )

= 2Γ 𝜄, 𝜎
( )

, and 𝜌
( )

=

−Γ 𝜄, 𝜎
( ) . Accordingly, we define the instantaneous reward 𝑟( )

∈ ℝ of the 𝑖-th agent as: 
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𝑟
( )

=

⎩
⎪
⎨

⎪
⎧ 𝛼

( )
− 4𝜌

( )
,                       if 𝛼

( )
≤ 𝜌

( )

1 −
𝛼

( )

𝜌 
( )

𝛼
( )

𝜌 
( )

,          if 𝜌
( )

< 𝛼
( )

≤ 𝜌
( )

− 𝛼
( )

− 𝜌
( )

,                                if 𝛼
( )

> 𝜌
( )

 

 

Notably, the first case linearly penalizes the occurrence of under provisioning decisions, while the third case 
acts in a similar way on the over-provisioning cases. The middle case is the target scenario, which assumes 
correct PRB allocation decisions in response to the instantaneous slice traffic request. 

We envision the multi-agent RAN slicing problem as a sequential procedure, where at the beginning of each 
decision interval t, the different agents perform local decisions according to a priority value𝜇 . Nevertheless, 
multiple and independent agents may perform inaccurate decisions and leave the subsequent agents with 
no spare resources, especially in the initial training phase. Therefore, at the end of each training period, we 

calculate a penalty P
( )

= 𝜂 𝟏 a
( )

− ν
( ) , where 𝜂  is the penalty coefficient of the 𝑖-th slice, and 𝟏(⋅) 

denotes the logical operator. This penalty overrides the instantaneous agent reward 𝑟  if the decision a( )is 
greater than the number of spare resources left by the previous decisions of the other agents that in turn 
prevents the agents to exceed the available resources at the base station. 

Training of agents the training of the local agent implies the characterization of the action-value function 
: 𝒮  →   𝒜 . Let us define the policy 𝜋 as a probabilistic function mapping states to actions. The agent makes 
decisions and selects the corresponding actions based on π, determining the best action for each state. Under 
a given policy 𝜋, the action-value function can be defined as, 𝑄 (𝑠( ), 𝑎( ) ) = 𝐸  [ 𝛾  𝑟( )|𝑠( ), 𝑎( )], where 
𝛾  ∈   [0,1] is a discount factor that weights the short-sighted and far-sighted reward, and 𝑛 is the temporal 
index. According to Bellman's equation [31], the optimal state-action value function can be expressed as 
𝑄∗(𝑠( ), 𝑎( ) ) =  𝐸   𝑟( ) + 𝛾 max

 
𝑄∗ 𝑠( ), 𝑎( ) | 𝑠( ), 𝑎( ) , and thereby the Q-learning update rule 

based on temporal difference (TD) [31] is given by,  

 

𝑄(𝑠( ), 𝑎( ) )  ←  𝑄 𝑠( ), 𝑎( ) + 𝜉 𝑟( ) − 𝛾 max
( )

𝑄 𝑠( ), 𝑎( ) − 𝑄 𝑠( ), 𝑎( )  

 

where 𝜉  is the learning rate. DQN adopts deep neural network (DNN) to approximate the state-action value 
and surmount the curse of dimensionality concerning inordinate large state spaces. To limit the catastrophic 
interference problem [41], which is the tendency of a neural network to forget about previously learned 
information upon learning new ones, we adopt an experience replay strategy. Let us introduce 𝛽  as the 
experience buffer. 
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Figure 40 Illustration of DDQN workflow. 

As depicted in Figure 40, in every training interval, we store the tuple (𝑠
( )

, 𝑎
( )

, 𝑟
( )

, 𝑠
( )

 ) describing the 
instantaneous experience generated by the agent while interacting with the environment, and sample from 
𝛽 a random batch of past experiences to regularize the training. Additionally, DQNs are well known to provide 
an overoptimistic value estimation. We alleviate this problem by leveraging an additional DQN network, in 
the form of DDQN [42]-[43]. With a slight abuse of notation, let us introduce 𝑄(𝑠( ), 𝑎( ); 𝜃

( )
 ) and 

𝑄(𝑠( ), 𝑎( ); 𝜃
( )

 ) as the online network and target network respectively, where 𝜃
( ) and 𝜃

( )
  denote the 

model parameters. To optimize the parameter set 𝜃( ) and approximate the optimal action-value function 
𝑄∗(𝑠( ), 𝑎( ) ), we use the following loss function, 

    𝐿 𝜃
( )

= 𝐸 𝑦
( )

−   𝑄 𝑠( ), 𝑎( ); 𝜃
( )

   

where 𝑦( )
=  = 𝑟( )

+ 𝛾 max
 
  𝑄 𝑠( ), 𝑎( ); 𝜃

( )
  and 𝜃( )

 is copied from 𝜃( )
 at the end of each episode. 

Finally, the objective function of the DDQN model can be written as, 

𝑦
( )

=  = 𝑟( )
+  𝛾 𝑄 𝑠

( )
, argmax

( )
𝑄 𝑠( ), 𝑎( ); 𝜃

( )
; 𝜃

( )
  

where 𝜃
( ) is a local training model used for selecting actions, and 𝜃

( ) is used to evaluate their values 
according to a different policy, thus mitigating over-estimations issues and improving the decision agents' 
performances [42]. The loss function estimates the difference between true action-value and target action-
value. As the overall training procedure aims at minimizing this loss function, we adopt stochastic gradient 
descent (SGD) approach [44] to pursue this goal. 
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6.3.4 FEDERATED DRL FOR RAN SLICING  
FL allows training machine learning models across multiple decentralized entities which have access to a 
limited set of the overall data available. Conversely to multi-agent reinforcement learning, which defines a 
set of autonomous agents that observe a global state (or partial state) of the system, select individual actions 
and receive individual rewards, FL allows to collaboratively learn a shared prediction model by iteratively 
aggregating multiple model updates, thus decoupling the learning procedure from the need of centralized 
data sources. A refined version of the original models, combination of multiple local models according to 
specific federation strategies, is then shared to the agents allowing to significantly improve the learning rate, 
ensure privacy [45] and provide better generalization [46]. 

As depicted in Figure 39, within the context of our FDRL-based framework each agent trains a local DDQN 
model 𝜃 ,

( ) and shares its experience, under the form of model hyperparameters, to those entities belonging 
to the corresponding federation layer. This iterative training approach enables each federation layer to 
aggregate the collected knowledge of single agents into a global updated model Ω( ), usually stored into a 
cloud platform or a nearby edge platform to allow faster feedbacks. 

In order to enhance efficiency and avoid communication overhead, we allow the federation layer to collect 
the local models (and share the updated ones) only every T decision intervals, defining this time period as 
federation episode. 

Different strategies can be adopted to derive the global federated model, each one implementing a 
predefined federation strategy function 𝑓 (⋅). 

In Average federation strategy, dubbed as FDRL in the following of this work, the collective federation model 
for the next time interval Ω( ) is derived as the simple average of the incoming model weights belonging to 
all the agents, as  Ω( ) = ∑ 𝜃 ,

( )
∈  ℬ . 

Aggregated mobile traffic demands follow repetitive spatio-temporal trends due to human activities [47]. In 
this context, it is expected that a good characterization of such processes would allow more accurate 
forecasting of the network utilization and, in turn, enable an efficient and even proactive planning of the 
resource allocation. 

However, as highlighted in [48], it is not enough to leverage the geographical locations and related spatial 
proximity of the BS to obtain a comprehensive view of traffic demands, as the land usage of the slice 
resources may differ even within base stations belonging to the same geographical areas. This introduces an 
additional issue in our framework, as not all the federated agents should exchange knowledge with each 
other, nor this should be restricted to only nearby entities. To address this fundamental issue, in the following 
we propose a clustering algorithm to guide DA subsets definition, based on network monitoring traces and 
their similarity. 

6.3.5 DYNAMIC TRAFFIC-AWARE AGENT SELECTION  
Given the rapid spatio-temporal variation of the traffic demand due to end-user mobility, we advocate for 
the setup of a clustering algorithm to derive the subset of slice agents that should exchange their local 
knowledge, while considering both mobility and traffic demand variations. 
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Let us introduce 𝜏 ,  as the time series describing the downlink traffic demand of the 𝑖-th slice instantiated 
over base station b. Then, for each pair 𝑗, 𝑧 ∈ ℬ, we can compute the similarity of the recorded monitoring 
information as 𝐷𝑇𝑊( , ) = 𝑓 𝜏 , , 𝜏 , , where 𝑓 (⋅) is the Dynamic Time Warping distance [49], a state-
of-the-art distance metric for time series analysis. 

 

 
Figure 41 Comparison between Euclidean distance and Dynamic Time Warping distance over traffic demand 

time series. 

DTW is particularly suitable in our scenario as it allows, conversely to standard distance metrics, e.g., 
Euclidean distance, to calculate accurate similarity value even in presence of differently sized sequences, and 
independently of their time shift. An example of DTW distance calculation is depicted in Figure 41, where it 
can be noticed how maximum and minimum values of the traces are correctly mapped to each other. The 
pairwise distances are then collected into the distance matrix 𝑫 =  𝐷𝑇𝑊( , ) ∈ ℝ|ℬ|×|ℬ|, and provided as 
input of our clustering algorithm. 

DTW has linear space complexity, but quadratic time complexity. To reduce the latter, a number of options 
are available. In our case, we limit the maximal shift by setting a fixed time a window of few hours, thus 
reducing the complexity even in case of long sequences. Nevertheless, recent work from [50] proposed a 
novel efficient implementation which breaks the quadratic time complexity to 𝑂(𝑛  𝑙𝑜𝑔{𝑛}), where n is the 
length of the sequence.  

To perform the final classification, we rely on an extended version of the Density-based spatial clustering of 
applications with noise (DBSCAN) algorithm, introduced in [51]. DBSCAN is a non-parametric density-based 
clustering algorithm that allows finding the most representative points within a dataset (also known as core 
samples) based on their density in a multi-dimensional space and expands clusters from them. It expects two 
inputs: ϵ , representing the maximum distance between two samples for one to be considered as in the 
neighborhood of the other, and 𝑛 , which defines the minimum number of samples in a neighborhood of 
a point to be considered as a core sample. 
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Given the above, at the end of each federation episode, we can derive in a dynamic way (and based on 
updated mobile monitoring information) the clusters 𝛹  ∈   𝛹 , 𝑘 = {1, … , |ℐ|}, where 𝛹  is the cluster set. 
Each cluster includes the set of base station 𝑏 ∈   𝛹  that should be involved in the following model update 
procedure. Therefore, the framework spawns multiple federation models Ω , one for each detected cluster 
k, which evolve in parallel till the next federation episode. 

It follows that the updated federation model, combination of the information coming from the elements of 
the cluster Ψ , can be derived following the Full-Cluster strategy, namely 𝑓 (⋅), as: 

    Ω ,
( )

=
| |

ω ,
( )

 𝜃̃ ,
( )

 
∈

, ∀ ψ ∈ ψ   

where |𝜓 | is the cardinality of ψ  , and ω ,
( )

=
̂ ,
( )

 

̂ ,
( )

  
∈

  is a weight parameter. 

It should be noted that within these settings, the federation step will occur among models with high degree 
of similarity, thus favoring the specialization of the agents towards the most common traffic statistics. 

 

6.3.6 VALIDATION RESULTS 
To assess the performance of the proposed architecture, we consider 3 different network slices, i.e., URLLC, 
eMBB, and mMTC, each one characterized by the SLA latency values of Λ =  [10,40,20] ms, and deployed 
over a wide area network comprising 50 BSs. The distribution of the BS follows the RAN deployment of the 
city of Milan, Italy, collected from publicly available sources4. We simulate user mobility patterns as per [52]. 
The throughput requirement of each slice depends on its user mobility pattern. Therefore, we set 𝜆 , = 𝜑 ,

( ) 
to let agents adapt to the instantaneous traffic volume. The SNR variability follows a Rayleigh distribution 
with average value set to 25 dB. The minimum PRB allocation step is set to 𝜄 =  10 PRBs. 

Per each DA we consider a DNN architecture comprised by two fully connected hidden layers with 24 neurons 
with ReLU activation function for both the Online and Target networks. Each learning episode consists of 5 
decision intervals of duration of 60 seconds, within which local monitoring information is collected to build 
the local agent state. For the training, we consider Adam optimizer, a discount factor 𝛾 = 0.99, and learning 
rate 𝜉 = 0.001. The replay buffer size of each agent 𝛽 ,  is set to 20000 samples, out of which a batch of 32 
samples is extracted for each episode. We set 𝜂 = 100 as penalty value for all the slices.  

6.3.6.1 LOCAL AGENT PERFORMANCE ASSESSMENT 

First, we compare the performances of different RL algorithms when dealing with radio resource allocation, 
without involving federated learning.  

 
4 see https://opencellid.org 
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Figure 42. The convergence performance of different local decision algorithms and an FDRL approach for a 

single decision agent. 

Figure 42 depicts the training procedure for the eMBB slice, comparing different local decision algorithms. In 
particular, we consider the single DQN approach, which implements standard Q-Learning procedures, 
discretized Deep Deterministic Policy Gradient (d-DDPG) a popular reinforcement learning algorithm, and our 
DDQN scheme. We gradually limit the exploration capabilities of the agents up to a minimum of 2 % in favor 
of the adoption of the learned policies. 

The variability of the network slicing environment leads to experience learning curves with high fluctuations. 
As expected, the DQN approach hardly copes with the definition of suitable PRB allocation policies, providing 
lower performances in terms of cumulative reward and convergence time. Similarly, d-DDPG suffers the 
temporal periodicity of the traffic demand, resulting in a steep learning curve that saturates to suboptimal 
performances. Conversely, the DDQN approach can allocate in a more consistent way correct amount of PRBs 
to each slice according to the corresponding real-time traffic and latency demands. It is worth highlighting 
that in terms of convergence time, in general, FDRL schemes do not necessarily provide better performances 
when compared against standard DRL approaches. In fact, one of the main features of FL is that it allows local 
DRL agents to indirectly gain knowledge on a wider state space, extending their local experience with that 
coming from other DAs deployed within the same environment. This enables the DAs to provide better 
performances when deployed in realistic environments. Nevertheless, Figure 42 provides an overview of the 
local model training procedure, with and without the adoption of FL schemes. It can be noticed how DRL 
curves present slower convergence time and higher fluctuations when compared against Federated DDQN 
approach. Additionally, DRL curves present lower cumulative reward after 400 episodes, suggesting a lower 
capability of the DAs to adapt their decisions at the current traffic conditions. 

6.3.6.2 COMPARISON OF DIFFERENT FEDERATION STRATEGIES 

We consider a dynamic agent selection method based on the time similarity of traffic demands, dubbed as 
Dynamic Clustering (DC). In particular, we consider three DC aided approaches, namely Full-Cluster (FC), Best-
Representative (BR) and Random-Representative (RR) and compare their performances against a standard 
federation strategy which derives a new federated model by averaging all available local models (i.e., without 
DC), dubbed as FDRL. 
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Figure 43. Comparison of global performances for different dynamic and non-dynamic federation 

approaches. 

Figure 43 provides a comparison of learning performances for different federation strategies in terms of 
average reward. Interestingly, from our experiments it turns out that aggregation of widely heterogeneous 
local models limits the capability of the global federated model to converge to a one-fits-all unified model, 
motivating our dynamic agent selection approach which favors the specialization of federated agents working 
under similar RAN and mobility contexts. From the figure, we can observe how Full-Cluster approach achieves 
better generalization of the learning policies, resulting in stable performances. Conversely, Best-
Representative, Random-Representative and FDRL suffer the dynamic behavior of the underlying traffic 
conditions, presenting inconsistent reward traces. 

6.3.6.3 OVERHEAD COMPARISON FOR DIFFERENT FEDERATION STRATEGIES 

Federated Learning aims at building global knowledge from the exchange of multiple locally trained models 
towards a centralized entity. Such a frequent model exchange however introduces significant communication 
overhead and synchronization issues, especially in wide scenarios as those considered in our work. 
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Figure 44. Communication overhead per federation episode for different federation strategies (top-part) and 

for different number of BSs deployed (bottom-part). RR and BR federation strategies are referred as 
Representative. 

Figure 44 shows the model exchange overhead per federation episode for a different number of BSs. The 
benchmark FDRL approach assumes the exchange of all the locally trained model weights to derive the 
federated ones, which implies the highest communication overhead.  The BR and RR approaches (referred to 
as Representative) allow reducing the uplink information exchange by selecting a single representative of 
each cluster, regardless of the dimensions of the group itself, thus minimizing the communication overhead 
in each federation episode. Finally, the Full-Cluster approach is characterized by an intermediate average 
value but higher variance due to the variable size of the DAs clusters, which follows the real-time traffic 
variations, saving communication resources from those base stations that presented peculiar traffic traces 
and remain unclustered. 

On the lower part of the picture, we differentiate between uplink and downlink model exchange overhead. 
The FDRL approach presents a symmetric behavior matching the model exchange of all the running DAs, in 
both directions. Conversely, the RR/BR approaches show an asymmetric behavior that favors the upload 
communication with respect to the downlink one, as only a single DA per cluster shares its local model during 
the federation process, resulting in a logarithmic trend (with respect to the number of BSs) characterizing 
the overhead in uplink. This would guarantee better scalability, at the expense of suboptimal performances, 
as shown in our evaluation. Finally, the FC approach shows a sublinear trend, with a slower growth rate than 
the benchmark FDRL, but with significant better performances thanks to the specialization of the DAs. It is 
safe to assert that the proposed dynamic clustering approach enhances the efficiency of the federated 
learning scheme, limiting the overall communication overhead with respect to traditional approaches, while 
providing better performances. 
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6.4 Statistical methods for VNF bottleneck localization  
In Deliverable D4.1, we introduced in chapter 7.1.2, the concept of Service Function Chaining (SFC), see Figure 
45. Then, we presented the theoretical modelling of the SFC monitoring use case and validated the concept 
with simulation. 

 

 
Figure 45 Service Function Chaining architecture 

 

This section explains an application of the described solution in a more practical use case relying of on a 
docker based Service Chaining Function. 

6.4.1 PROBLEM DESCRIPTION 
In 5G networks, the core network functions are deployed with cloud native technologies as containers to 
guarantee the scalability and resilience. Even the evolution of the random-access network is going on this 
trend with the development of the cloud ran and edge cloud concepts. One of the key enablers for this 
evolution are the support of the heterogeneous cloud environment and the ability to orchestrate resources 
among multiple technical domains like RAN, edge cloud, central/core cloud, private and public cloud. All the 
capability coming from the hardware acceleration should be exposed to the services to enable more flexible 
function placement to address high performance.  

The adoption of a cloud native [53] approach for the implementation and deployment of virtual network 
functions helps to achieve the required flexibility and autonomy. The use of containers enables to reduce the 
overhead and enhances the availability of the network services [54]. Future networks must be able to support 
multiple applications with different quality of service requirements. Eventually, the VNFs that compose these 
services will share the same infrastructure and will enter in competition for resources if the demand is too 
high. This situation may be more frequent in environments with limited resources such as the Edge [55]. 

The Kubernetes technology represents an essential tool for the management and orchestration of cloud 
infrastructures. This technology has shown great industrial maturity and is becoming the key player in cloud-
native environments. It offers several features for automatic management, scalability, and services 
availability. Meanwhile, the price of this flexibility is losing control of the physical layer. For example, when 
a problem occurs on the underlay layer, all the virtual services sharing this resource may have performance 
degradation. The cause of such incidents may be a networking problem, a worker node failure, or a 
cloud/network resource shortage. Tracking the root cause of the incident is tough due to the adopted 
abstraction mechanisms like services and load-balancers. The proposed solution aims to adapt the 
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tomography approach for node failure localization for anomaly root causes analysis in virtual network 
services deployed with Docker and Kubernetes. 

6.4.2 SOLUTION TOOL 
 

 
Figure 46 : Solution deployment and call flow. 

This section describes an application of the proposed DE algorithm to detect the failed nodes in a network 
service deployed with Kubernetes.  

Figure 46 explains the main steps of our solution: 

o The DE sends a request to the K8S master to get the topology of the deployed service. The topology, 
in this case, means the list of the deployed VNFs, the number of replicas for each VNF, and the replicas 
pods' IP addresses. Note that each VNF is deployed as a K8S replica set. 

o The K8S master sends the requested information in JSON format. 
o The probing DE generates all the possible probing paths and selects the best one according to the 

strategy described in algorithm “Probing path selection”. 
o The probing path information is sent to the actuator called “sender” in Figure 46. This information 

includes the Pods' IP addresses forming the paths and other metadata. 
o The Sender creates a Post HTTP request including all the path information in the body in a JSON 

format. This request is sent to the first pod in the list. Its IP address is removed from the path. 
o Each pod repeats the same process until reaching the destination. 
o The pod destination adds the sending and the reception time in the body response call back to be 

sent to the sender to the DE. 
o The DE computes the E2E metric and computes the state of the pods denoted by α following the 

procedure described in Algorithm “Probing path selection”. 
o If the algorithm converges the anomaly detection process is finished unless the DE selects a new path 

and the whole process is repeated. 
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6.4.3 KRS: KUBERNETES RESOURCE SCHEDULER FOR RESILIENT NFV NETWORKS 
6.4.3.1 KUBERNETES ARCHITECTURE 

Cloud native and container technologies have significantly evolved, offering great opportunities for network 
operators to enhance their infrastructure management. The adoption of the cloud native approach in the 
implementation of VNFs enables building highly resilient and autonomous networks. Indeed, moving to Cloud 
native Network Functions (CNFs) for NFV networks might make it easier to overcome multiple limitations of 
VNFs by transforming most network functions into scalable containers. In this context, the Kubernetes 
ecosystem becomes an essential tool for the deployment and management of NFV infrastructures. The 
interest of this technology is mainly explained by its ability to manage dynamic, complex, and distributed 
infrastructures with great flexibility and agility. 

 
Figure 47. Kubernetes cluster components 

Figure 47 illustrates the main components of the Kubernetes architecture which is based on multiple 
abstraction levels. The first one is the cluster which gathers multiple physical or virtual machines representing 
the available resources in terms of memory and CPU. Each cluster has a master node responsible for the 
management and scheduling of these resources. The cluster is composed of multiple nodes that can be either 
physical or virtual. These nodes host the pods, the most basic entity that can be created and controlled by 
Kubernetes. Each pod runs a single service instance (a VNF instance in our case), and it can be composed of 
one or several containers. 

6.4.3.2 RESOURCE ALLOCATION AND SCHEDULING IN KUBERNETES 

Kubernetes offers multiple tools for resource management shared by the deployed CNFs. The network 
infrastructure can host heterogeneous services, allowing to take full advantage of the available resources 
and reduce consumption costs. On the other hand, sharing the infrastructure between heterogeneous 
services can reveal resource allocation problems, especially in case of a resource shortage. The allocation of 
cloud resources must be highly efficient. They must be neither under-used, as this means a loss of revenue, 
nor over-used, as this can lead to service failures or SLA degradation causing penalties.  

Kubernetes offers some features for pods/containers resources scheduling which are mainly requests and 
limits [56]. For each pod, we can configure the requested memory or CPU which correspond to the 
guaranteed resources that will be reserved for it. Thus, the sum of the requested resources for the containers 
inside a node must be less than the total node capacity. Limits specify the maximum limit of resources that 
can be used by a container. These parameters are very important for the CNF lifecycle management as they 
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are taken into consideration in the priority and location of pods deployment by the scheduler and also in the 
allocation of resources inside a node, especially when it is overloaded.  

Let’s take an example of a node that hosts pods and their memory consumption reaches its limit. The 
Kubernetes orchestrator has to select a pod on the host to stop it. The pods that do not have a fixed requests 
value will be the first to be stopped. Then, the orchestrator selects those that consume the most compared 
to their requests value. 

 
Figure 48: Different CNF deployment configurations 

For instance, in Figure 48 we represent three pods deployed on a single node. The first one is deployed with 
“best-effort” QoS, the requests and limits are not specified. The second is deployed with a “non-guaranteed” 
QoS, where the requests value is less than the limits. The third one has a “guaranteed” QoS since the requests 
value is equal to the limits. In this situation, if there is a lack of resources, the pods will be stopped in the 
given order, the first one, then the second one, and finally the third one, to liberate the required resources.  

The objective of this work is to give a method to schedule the resources for the pods hosting the VNF 
instances, to limit the failures and the caused damage in the case of lack of resources. Our strategy aims to 
avoid the resource shortage in the first step. However, if it is unavoidable, the goal is to protect the most 
critical functions. 
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Table 4. List of main used variables 

 
 

In this section, we give the problem formulation for the CPU and memory scheduling. The objective is to find 
the optimal parameters of limits and requests that minimizes the risk of resource shortage. Table 4 
summarizes the notation adopted in this section.  

We consider a Kubernetes cluster hosting multiple VNF instances. 𝑁  denotes the set of nodes composing it 
and 𝑁  refers to the ith node. Each node has a fixed memory and CPU capacities denoted by 𝑀  and Ci 
respectively. The set of pods deployed on node Ni is denoted by 𝑉 . For each pod j on a node 𝑁 , the values 
of requests and limits are denoted by 𝑀 ,  and 𝑀 , respectively for the memory, 𝐶 , and 𝐶 ,  for the CPU. The 
resources that will be consumed by each pod vary over time and depend on the VNF that hosts them. 
Therefore, the future resource demand for each pod is considered as a random variable denoted by 𝑀 ,  and 
𝐶 , for the memory and CPU respectively. The VNF instances must support the traffic load, otherwise they 
will be stopped, and this can introduce penalties according to their importance. We denote by 𝑃 , the penalty 
introduced when stopping CNF 𝑉 , .  

The objective of this work is to propose an algorithm that identifies the appropriate parameters of the 
requests and limits for each CNF, to reduce the expected penalty in a given period, where the profile of the 
future resource demand is known. This information is presented in the form of the probabilistic distribution 
of random variables 𝑀  and 𝐶  which can be obtained from the monitoring system. When the demanded 
resources exceed the capacity of the node, the orchestrator selects the pod to stop. Variable 𝑏 ,  represents 
the state of the CNF. The selected ones should respect the condition described by: 
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for i = 1, 2, . . . , N and for all j, j′ such that 𝑏 , = 1 and 𝑏 ,  = 0. The objective is to find the appropriate 
parameters 𝑀   , 𝑀 , 𝐶   and 𝐶  that minimize the expected penalties: 

 
Following a statistical formulation allows to deal with the randomness of the input information. The obtained 
optimization problem is non-linear due to the pod kubernetes scheduler behavior. Thus, we cannot rely for 
the resolution on the well-known existing algorithms for linear problems. Thus, we try to design a specific 
solution based on genetic algorithms detailed in paper named KRS (Kubernetes Resource Scheduler) [56].  

 

6.4.4 VALIDATION RESULTS 
In this section we evaluate the performances of our KRS module compared to the Kubernetes best effort 
mode where the resource scheduling parameters are not configured on the CNFs. For this evaluation, we use 
simulation as follows. At the beginning, for a given cluster with a known number of nodes, we generate 
randomly the memory and CPU capacity values for these nodes. Then, on each node, we vary the number of 
deployed CNFs between 10 and 20. For each CNF, the future demand of resource is considered as a random 
variable (𝑀 ,𝐶 ) following a Poisson distribution. The parameters of this distribution are randomly 
generated. The penalty for stopping the CNF is randomly generated and takes normalized values between 0 
and 1. Then, the KRS algorithm is performed to find the correct CNFs configuration.  

The outcome of this algorithm will be the α distribution, representing the unknown variables, which often 
converges to an exact value. Finally, the penalty expectation for the obtained configuration is calculated and 
compared to the one given by the Kubernetes best effort mode. 

Figure 49 illustrates the performance of the two approaches, namely the KRS module and the best effort 
mode. The number of nodes in the cluster varies between 2 and 10. For each configuration we make 50 tests 
with different input data and then make the average of the results (the penalty and the computing time). The 
tests show that our solution always performs better than best effort mode. For example, for tests done with 
6 nodes in the cluster, the penalty expectation for the best effort mode is more than 6 while it is less than 3 
with the KRS module.  
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Figure 49: Comparing the accumulated penalty for KRS and the best effort Kubernetes mode for different 

node number in the cluster 

This result is expected since the best effort mode does not differentiate between the deployed functions, 
and they are treated equally in the resource allocation. Concerning the computing complexity, Figure 50 
shows the required time to compute these parameters. We can see that it evolves linearly with the number 
of nodes. This is because the algorithm processes each node independently of the others, and it can lead to 
miss the optimal decisions globally, but it ensures the horizontal scalability of the solution. Meanwhile, 
regarding the vertical scalability of the algorithm, i.e., when we have many pods on the same node, the 
computation time increases significantly. This remains a point to improve in our approach.  

 
Figure 50: Comparing the computing time for KRS and the best effort Kubernetes mode for different node 

number in the cluster 

6.4.5 MONB5G RELATED CHECKBOXES/KPIS 
✓ Utilize key inputs (capacity, load of links, congestion level of local and alternative computing resources, 
history thereof, and KPI predictors from the distributed AEs. 

✓ Quantify the confidence in the ability of the locally optimized/reconfigured slice to resolve the potential 
problem. 
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7  Control loops coordination  

7.1 Introduction to control loops 
The control loop-based optimisation is a popular accepted solution to automate the network, slice or service 
management. The management is typically very complex and must deal with multiple goals. It has been 
widely accepted that management systems implement FCAPS services; however, each of the services can be 
composed of numerous mechanisms that must be used to achieve the management service goal. Due to 
complexity and lack of programmability (modification/update of management services), the use of a single, 
multi-objective optimisation function has been rejected. The use of AI in such a case is also not feasible 
because the state-action space is becoming too big to converge (learn) in an acceptable time. 

In practice, therefore, a single objective optimisation is in use, but this leads to implementing numerous 
Control Loop (CL)-based management functions. Various functions, each trying to optimise a single goal, can 
lead to suboptimal results or even chaotic system behaviour. Such conflicts can be of different natures. An 
exhaustive list of conflict types is provided [57]. Among them, there are mentioned the following conflicts: 

 conflicts related to the modification of the same system parameter(s) by two or more CL-based 
functions (see conflict concerning parameter P2 in Figure 51a); 

 an indirect impact of a change of a parameter, which is not used by a specific function, on the function 
output (KPI). In Figure 51a), Function 3 is the only controller of parameters P4 and P5, but their value 
change impacts the environment and indirectly impacts KPIs controlled by other functions. This is a 
so-called logical dependency conflict. 

The management community has been trying to solve the problem of cooperation/coordination of multiple 
functions for about a decade. It has been researched, mostly in the case of SON [58], [59], [60], [61], [62]; 
however, the problem is generic. An exhaustive overview of the proposed solutions can be found in [57]. So 
far, no satisfactory solution has been found. One practical, simple approach is making time-scale separation 
of functions operations [68], defining priorities or defining some policy rules. There are also approaches 
based on machine learning [63], [64], [65], [66], [67] and game-theoretical approach [71]. Most of them are 
not agnostic to coordinated functions [69]. It must be noted that the coordination problem can be solved by 
hierarchical reinforcement learning techniques that have been extensively reviewed in [72] and [73]. 

The MonB5G project assumes the existence of multiple CL-based functions, and their coordination is a must. 
The MonB5G architecture includes components related to coordinating several AI-driven functions (see 
Deliverable D2.4 of the MonB5G project). In contrast to the existing approaches, MonB5G assumes that CL-
based functions can be dynamically added or removed. Such an approach calls for flexible and CL-function 
agnostic coordination.  

In this section, we will first describe a Coordination Framework compliant with the MonB5G architecture. 
Later, we will show how it can be used in an implementation where the coordinator treats the CL-based 
management functions as black boxes. The approach performs the role of a recommender that uses 
predictions to avoid or minimise conflicts related to network or slice configuration parameters. 
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Figure 51. Example of conflicts of DE-driven functions (a) and the proposed approach to Functions 
coordination (b) 

In Figure 51b), the proposed Coordination Framework (CF) is depicted. The framework is partly distributed - 
it consists of coordination-related components added to each function, which is typically composed of 
MS/AE/DE and KPI-C (KPI Calculator). The MS/AE and DE components were described in deliverable D2.4 of 
the MonB5G project. The KPI-C calculates the KPI of every Function. The goal of each Function is to keep the 
KPI above the level (threshold) defined by the operator. For example, fault management doesn’t have such 
an entity, but in terms of coordination, we are focused on the network (slice) optimisation problems. The 
roles of Function components (except the already mentioned ones) are the following:  

 Configuration History Database (CHDB) keeps records of historical system parameters and Function-
specific KPI. CHDB can be used to interpolate KPI values or restore the system to a stable 
configuration. CHDB can also be used to evaluate the impact of each parameter on KPI. 

 Coordinator Agent (CA) of each function, responsible for the dialogue with Functions’ Coordinator 
(FC). 

 Configuration Engine (CE) is the entity that manages all Function’s entities involved in the 
coordination procedure. It is used for setup operator’s preferences, thresholds, etc.   

 Model (MOD) is a model of the environment that can be used to estimate the system’s output for a 
new set of parameters proposed by FC or CE. 

 KPI Predictor (KPI-P) is a predictor of KPI for a set of parameters that can be generated by the CE. 
KPI-P may use CHDB to estimate KPI; it may also use MS/AE/DE stack with artificial input generated 
by MOD or FC. In case of minor changes in the existing reconfiguration parameters, the CHDB can be 
used to estimate the KPI change. 

 Functions Coordinator (FC) is an entity that approves, modifies, or rejects reconfiguration requests. 
It interacts with all Functions and collects information about their present KPIs. It may send requests 
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to all Functions asking them for estimation of KPI for a specific parameter set. Finally, based on the 
obtained information, it sends a compromised set of parameters to ACT for execution. 

A generic procedure of messages exchange of CF is shown in Figure 52. The configuration change Requester 
is a management Function that proposes a new parameter set. In response to this request, the FC asks all 
Functions to estimate their KPIs for the new configuration. After collecting all responses, the FC checks if 
there are KPIs that are below an acceptable level or not. Based on the responses, the FC may accept the 
reconfiguration, reject it or propose a new configuration set, which is sent to ACT for execution. All Functions 
record the new values within their CHDB. 

Function x: 
Requester

Functions’ Coordinator 
All Functions 

(including Requester) ACT

 
 

Figure 52. A generic message exchange chart between FC and CAs 

The proposed solution allows for direct parameter conflict avoidance; however, due to overall complexity, 
the future behaviour of the network (or slice) can be different than assumed. As the solution is generally 
agnostic to how CL-based operations are performed, coordination-related entities can be implemented 
differently, especially KPI-P, MOD and CE. The presented concept intentionally does not specify the FC 
algorithm that governs the coordination. It is assumed that many different algorithms for that purpose can 
be used. A usage example of the proposed framework is described in the following subsection. 

7.2 Example instantiation of the Coordination Framework 
In this section, an example of the instantiation of the Coordination Framework will be described. In the 
proposed heuristic approach, the impact of a new reconfiguration proposed by one Function on KPIs of other 
Functions is estimated. If the overall impact on other KPIs is negative (according to the evaluation of the 
algorithm), the proposed reconfiguration is rejected; in the opposite case, it is accepted. In future work, the 
usage of the approach for the modification of the change will be analysed. The concept, called HFMM 
(Heuristic Fisher Market Model) is an instantiation of the presented in the previous subsection framework. 



871780 — MonB5G — ICT-20-2019-2020 
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G 
Decision Engine [Public]  

 

 

©MonB5G, 2019                                                                                                                                            Page | 95 

 

The core operations of HFMM are based on the Fisher Marked Model [74]. The model is used to estimate the 
impact of the change of any system parameter on all Functions’ KPI. Before we present the overall approach, 
a short description of the Fisher Market Model (FMM) will be provided in the following subsection. The idea 
has been already used for management conflict resolution [70], but in the mentioned case, only one system 
configuration parameter was considered. 

7.3 Fisher Market Model 
In FMM [74], there are buyers and products. Each of the buyers has its budget. The game’s goal is to find the 
price for all the products that will lead to market clearance while providing the highest possible satisfaction 
to buyers. The satisfaction for each buyer depends on the amount of the product it buys and its (predefined) 
value to the buyer. As a result, the number of products purchased by each buyer and the price of all products 
is known. 

A Fisher market consists of a set N = 1, ..., n of buyers (agents) and a set M = 1, ..., m of divisible products. 
Each product j  has price cj > 0. Every buyer i has: 

• specified budget Bi > 0, which can be used by the buyer to acquire products; 
• utility function ui, which defines the value of a bundle of products, represented by a vector x = x1, ..., 

xm, where is xj is the quantity of the product j, purchased by the buyer. The value of product j for 
buyer i is defined by the wij parameter of the utility function. 

In the model, it is often assumed that the supply of each product is one unit, and the total budget of all buyers 
is normalised to one. The utility functions typically used by FMM belong to the Constant Elasticity of 
Substitution (CES) utility functions family that takes the generic form of 

𝑢 (𝑥 ) = 𝑤 𝑥

/

 

where ρ parametrises the functions’ family, and -∞ < ρ≤1,  ρ ≠ 0.  
The three CES functions are    typically used in FMM: 

• Leontief (for ρ approaching -∞) 

𝑢 (𝑥 ) = 𝑚𝑖𝑛 ∈[ ]

𝑥

𝑤
 

• Cobb-Douglas (for ρ approaching 0) 

𝑢 (𝑥 ) = 𝑥  

• Linear  (for ρ =1) 

𝑢 (𝑥 ) = 𝑤 𝑥  
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The Leontief function captures the utility of complementary products; the Cobb-Douglas function 
expresses a balance between complements and substitutes. Finally, the Linear function captures the 
utility of products that are substitutes.  

The FMM market equilibrium maximises the utility of each buyer, considering its budget constraints, and 
clears the market (all items are entirely sold but not oversold). Formally, FMM market equilibrium is 
achieved if and only if: 

• for all i ∈ N, xi maximizes buyer i utility for given prices Pand budget Bi; 
• each product j either is completely sold or has a price 0, i.e. 

 

𝑥 − 1 𝑐 = 0, ∀𝑗 ∈ [𝑚] 

• all budgets get spent, i.e. 

𝑥 𝑐 = 𝐵 , ∀𝑖 ∈ [𝑛] 

Market equilibrium is guaranteed to exist if at least one buyer desires each item and each buyer desires at least 
one item [75]. For buyers with utility functions from the same class of the CES family (i.e., for the same ρ), the 
equilibrium allocation can be found by the Eisenberg-Gale formula, and it maximizes 

 

𝑚𝑎𝑥 (𝑢 )

/

 

where B is the overall budget. This maximization is equivalent to the maximization of 

𝐵 𝑙𝑜𝑔(𝑢 ) 

It has been proved that for the Linear utility function if for each product j some buyer i has wij ≥   0, then the prices 
clear the market - a budget of each buyer is spent, and each item is completely distributed among buyers. There 
are several algorithms proposed to solve the FMM problem [76], [79], [78], including online ones [80], [81], [82]. 

7.4 The HFMM algorithm 
The HFMM approach uses FMM to evaluate the impact of the proposed reconfiguration on the KPI of Functions; 
more precisely, it estimates the impact of the change of each configuration parameter on the KPI change. The 
HFMM algorithm uses the following data (please note some notations change in comparison to the previous 
subsection): 

• historical vectors of the network (slice, etc.) parameters nct (at time t) with corresponding KPI 
of each Function Fi, stored in CHDB; 
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• the actual configuration vector denoted as ca, and the proposed configuration vector pointed 
as cp; 

• each Function Fi based on the analysis of data stored in CHDB, finds the configuration vector 
cB that has provided the highest KPI of the function; 

• allocated by the operator to each Function budget bi that indicates importance (priority) for 
the operator of the KPI elaborated by the Function. 

The steps of the HFMM algorithm are the following: 
1. The absolute difference between actual (nca) and the proposed configuration (ncp) is calculated, and 

a vector p, that represents the FMM amount of goods available on the market is obtained 

𝑝 = |𝑛𝑐 − 𝑛𝑐 | 

As the goods on the market must have a non-negative value, the absolute value of the difference is taken. 
At this step, we added one additional item to the market. This product has no impact on the system’s 
behavior. Its purpose is to allow each buyer (Function) to spend resources in case the other items already 
present on the market have no value to a Function, i.e., none of these parameters has an impact on KPIs 
or pj . A product on the Fisher market can’t have a zero price, so a small positive amount is added in such 
a case in the simulations. 

2. The ncp, nca values, and other values of nct, where t is the time mark, are used to estimate the sensitivity 
of the KPI of every Function (Fi ) on the change of parameter ncj . Such estimation can use ∆KPI /∆ncj. The 
obtained for Function Fi value, for parameter pj is weight wij of the utility function of Function Fi. 

3. The input data to FMM are prepared: budgets, bi, products pj and weights wij of the utility function, so we 
may try to find the market equilibrium, i.e., prices of each item and their allocation to Functions. This 
can be done using the primal-dual algorithm (equivalent to the Eisenberg-Gale prime) approach. 

4. The interpretation of the values obtained in the previous step. Such analysis can use sophisticated 
(learned) algorithms; however, some direct interpretations of the results are       possible: 

a. A relatively high value of the price of the last ’product’, i.e., additionally added parameter, is 
an indicator of the limited impact of the reconfiguration on other Functions. 

b. A price of an input parameter shows its overall impact on reconfiguration. Please note that 
the budget of each Function doesn’t have to be equal (reflects operator interest in the result of 
the optimization made by a specific Function), which has an impact on the price of parameters. 

c. The value of the utility function of each Function, calculated without the last, artificially added 
parameter, is directly related to the reconfiguration’s impact on this Function. If, for any 
Function, this value is higher than in the case when the Function that has triggered 
reconfiguration, it means that probably such Function’s KPI will be more affected than the KPI 
of the Function that has triggered the reconfiguration and such operation should be avoided. 

d. The FMM-based analysis of the previous step has ignored the sign of the change in 
configuration parameters, showing only the impact of the absolute difference of the 
parameter. However, the change (even high) of a parameter can be positive if the proposed 
reconfiguration is making the ncp closer to ncb that was nc0, where ncb is a vector for which 
function Fi has provided the highest KPI. 
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7.5 HFMM BEHAVIOUR EXAMPLE 
It is difficult to demonstrate the proposed concept’s behaviour in a simulated environment, as it requires the 
implementation of several Functions and scenarios in which the coordination actions should be happening. 
Nevertheless, it is possible to perform HFMM demonstration using a specially prepared dataset, which is the 
approach we have taken. In our simulations, we have assumed that the system has four functions Fi, and the 
configuration parameter set has four elements plus one that has no real impact on the system configuration, but 
it is used for spending of Function’s budget in the case when the reconfiguration has limited impact on the function. 
We have demonstrated the behavior of the HFMM, defining two scenarios. 

Scenario 1 

The input parameters to the HFMM procedure in this scenario are the following: 

• budget of each Function reflecting the importance (priority) of the Function to the operator (element of 
the management policy) 

𝐵 = [200 100 50 300] 

 
• input vector that reflects the number of products in the market. This vector consists of the absolute values 

of changes of each parameter of the configuration set regarding the previous configuration. In Scenario 1, 
this vector is defined in the following way 
 

𝑝 = [10 1 0.1 0.1 5] 

 
• matrix, each row represents the Linear utility function of the market products. The matrix has been 

defined in the following way 

 

𝑊 =

5 1 1 4 1
1 4 0 3 1
2 1 1 0 1
1 0 5 5 5

 

 

The FMM solver has provided the following product allocation matrix A and product prices C for the above-
described parameters 

𝐴 =

10 0 0 0.005 0
0 1 0 0 0
0 0 0 0 5
0 0 0.1 0.095 0

 

 

𝐶 = [192.308 100 153.846 153.846 50] 
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The utility functions values for each Function are the following 

 

𝑈 = [50.02 4 0 0.975] 

 

The matrix A shows an interesting feature – for each Function, important is a change of a single parameter only; 
moreover, this is a different parameter for each function. The parameter is a11, dominant in the matrix and the 
most important for Function F1. Function F2 has noticed an impact of p2. The reconfiguration has no real impact on 
F3 as it decided to ’buy’ only p5, a parameter that has no physical meaning. For F4, the only vital parameters are p3 
and p4; however, their overall value is limited. The prices of each parameter (vector CS1) express the overall impact 
of each parameter on all Functions. The values are dependent on the budget allocated to functions, and it is difficult 
to interpret them directly. There is no significant difference between the obtained values except the value for CS1. 
The last parameter is a measure of the lack of impact of reconfiguration on other functions (in comparison to other 
values of the vector). In Scenario 1, function F3 spent all its budget on the parameter p5. The analysis of the utility 
values of Functions shows that the most impacted is F1 (what is expected, as it has triggered the reconfiguration), 
slightly impacted are functions F2 and F4, and F3 is not impacted at all. Please note the form of Function budget. In 
conclusion, the reconfiguration brings no significant change in KPIs controlled by other Functions. 

 

Scenario 2 

In the case of Scenario 2, the input parameters have been changed compared to Scenario 1 to demonstrate the 
negative impact of reconfiguration on other functions. The function F1, like in the previous scenario, triggers the 
reconfiguration. The new input values are the following: 

• the budget of each Function is now equal to 

𝐵 = [100 300 50 200] 

 please note that the budget of F2 is much higher than the budget of F1; 

• in Scenario 2, this vector, reflecting the change of configuration parameters, has the following values 

𝑝 = [10 1 0.4 0.4 5] 

 

• the matrix W of which row j represents the value of the product on the market for Fi has been defined in 
the following way 

𝑊 =

5 0 1 3 1
5 4 2 3 1
2 1 1 0 1
1 0 5 5 1

 

 

In this Scenario, the FMM solver has generated the following products allocation matrix AS2 and products prices 
CS2 



871780 — MonB5G — ICT-20-2019-2020 
Deliverable D4.2 – Final Report on AI-driven Techniques for the MonB5G 
Decision Engine [Public]  

 

 

©MonB5G, 2019                                                                                                                                            Page | 100 

 

𝐴 =

4.033 0 0 0.064 0
5.967 1 0 0.069 0

0 0 0 0 5
0 0 0.4 0.267 0

 

 

𝐶 = [200 160 120 120 50] 

 

The utility functions values for each Function in this scenario are the following 

 

𝑈 = [20.3592 34.048 0 3.3333] 

 

The most significant difference between the scenarios is that in Scenario 1, the highest value of the utility function 
has Function F1 and in Scenario 2 the highest value has Function F2. This means that the impact of the 
reconfiguration on Function F2 will be much higher than the impact on F1 - a function that has triggered the 
reconfiguration. As the F1 goal is different, such reconfiguration should be avoided. Similarly, to the previous 
Scenario, the reconfiguration has no impact on F3, p1 impacts strongly F1 and F2, and p3 impacts all functions except 
F3. 

7.6 Final remarks concerning the Coordination Framework 
In this section, we have presented the architectural concept of the Coordination Framework, which is a necessary 
element of autonomic or cognitive (i.e., AI-driven) management architecture. In a simple case, we have 
demonstrated the usage of the framework. The proposed instantiation is a recommender that tries to predict the 
reconfiguration’s impact on all the CL-driven management functions according to their value to the operator. The 
proposed approach is agnostic to CL-functions and allows their addition or removal. However, it has some 
limitations because it assumes that configuration changes are linked with an optimization that uses small 
reconfiguration steps. Such an assumption made it possible to use the linear dependency of the configuration 
parameters on KPI, i.e., to define the W matrix. The matrix can be found in a much more accurate way with realistic, 
advanced simulators and machine learning techniques. Moreover, we have provided a straightforward 
interpretation of the obtained results, but also, in this case, the use of machine learning could help in finding all 
necessary dependencies in a much more accurate way. Unfortunately, when writing this section, there was no 
available mobile network simulator that implemented several CL-based management functions. 
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8 Conclusions 
In this deliverable, we have presented the final version of the distributed AI-driven DE algorithms devised in 
WP4. We have covered three key management functions of the life-cycle process of a network slice: 
admission control, intra and inter-slice orchestration. We also added a new topic related to distributed 
decisions: conflict resolution of DE decisions. This deliverable complements D4.1 by either improving the 
initial version of the introduced solutions or adding new solutions. We have improved the solutions of D4.1 
mainly by extending them to cover not only one single domain but also cross-domain and to enhance their 
scalability. 

We started the deliverable with an elaboration of the proposed (distributed) Decision Engine (Chapter 3), 
focusing on intra-DE interfaces and the interfaces with the Monitoring System (MS) and AE as well as other 
DEs. Chapters 4, 5, and 6 presented an example of complete algorithms for Tasks T4.1, T4.2, and T4.3, 
respectively. 

In chapter 4, we presented two schemes for slice admission control: (i) the evolution of a multi-domain data-
driven scheme, originally introduced in D4.1; (ii) a new admission control scheme that also introduces a type 
of “calendaring” and attempts to exploit the periodicity of human activity (and associated traffic). 

In chapter 5, we introduced two solutions for intra-slice orchestration. We first described the evolution of 
our previous solution, SCHEMA, focusing on the various improvements that have been made. We then 
introduced an important extension of this algorithm, SafeSCHEMA, which integrated the SafeRL framework 
to operate in scenarios where the natural tendency of RL algorithms to explore “any” possible (slice) 
configuration might be forbidden (or prohibitively expensive). 

In chapter 6, we focused on inter-slice orchestration, where we introduced an improvement to schemes 
initially presented in D4.1. Indeed, we extended from D4.1: (i) the VNF placement and migration algorithm; 
(ii) the RAN resource allocation algorithm; (iii) the probing scheme for VNF bottleneck localization. 

Finally, in chapter 7, we introduced a new solution that addresses the critical challenge of decision conflicts 
that happen when parallel decisions need to be enforced. Therefore, we devised a novel coordination 
framework that predicted reconfiguration’s impact and generated recommendations to minimise conflicts 
related to network or slice configuration parameters. 

Even though this deliverable included preliminary results from the different mechanisms, more results, 
particularly obtained through Proof of Concept (PoC) will be included in D4.3. Further, we use WP6 use-cases 
(“Zero-Touch multi-domain service management with end-to-end SLAs” and “Elastic end-to-end slice 
management”) to demonstrate a set of the mechanisms devised in WP4 and presented in D4.1 and D4.2 using 
the CTTC testbed. 
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