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1 Executive Summary 
The scope of this deliverable focuses on the way the Decision Engine (DE) is integrated and interacts with the 
rest of the components of the MonB5G project, namely the Analytics Engine (AE) and the Monitoring System 
(MS). This deliverable differentiates itself from D4.2 [1] in which the latter focuses on “the devised DE 
algorithms” for which detailed descriptions of the problem domains they target (i.e. admission control, intra-
slice orchestration, among others) are provided, as well as formulations for the contributed solutions. With 
these contributions in hand, D4.3 presented here analyses the integration of the DE with the rest of the 
MonB5G components (AE and MS), its integration with controlled systems and implementation results when 
available. The emphasis of this deliverable is on the appropriate functional testing, validation of 
interoperability of the MonB5G components with the DE, as well as the used data models (when necessary) 
and any other additional components and functionalities added to ensure its correct deployment. 

The first part of this deliverable (Section 2) starts with a review of the generic architecture of the DE and the 
overall MonB5G architecture in order to provide enough contextual information for the subsequent sections. 
This section will also review the details of the different components and interfaces involved among the 
communication of its components, so that it is feasible to understand the corresponding integrations of the 
DE. 

The second part of this document (Sections 3) details the DE algorithms that have been integrated and have 
had functional validation when integrated with other MonB5G components. Each of the corresponding sub-
sections in this part includes: 

 Brief description of the Artificial Intelligence (AI) or Machine Learning (ML) Algorithm of the 
corresponding solution (already explored in more detail in D4.2 and previous MonB5G deliverables),  

 Description of the messaging interfaces used by the DE implementation to communicate with other 
(MonB5G) components, 

 Description of the integration APIs, which refers to the application level details that allow for the 
messages interfaces to be implemented 

 Description on the Development Frameworks used to develop and implement the DE, its APIs and 
ease its integration with other components, and 

 Key Performance Indicator (KPI) mappings of the DE to the performance objectives set by the MonB5G 
project. 

The final part of this deliverable (Section 4) will provide insight on the final deployment of the DE and the 
rest of the MonB5G components on an experimental platform, with a very brief description on the immediate 
work and a very rough timeline for the completion of this deployment. This last section works as a prelude 
to the technical reports on system integration and operation of the MonB5G components. 
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2 Overall DE Architecture and MonB5G Component Integration 
The generic architecture of the DE was first introduced in [2], and has been improved since then in order to 
provide an updated version in the current deliverable. The DE can be described as being composed of several 
internal sub-blocks: 

 The Input/output Pre-processors (presented already in [2]),  
 the Control Trigger (CT) [2], and  
 the Decision Algorithm (DA) [2] 
 the Input/Output Interfaces, formally introduced in the current version.  

 
The improvements have been added in order to make it compliant with the ETSI-ENI standard [3]. The generic 
architecture of the DE and its internal sub-blocks are shown in Figure 1. The specific implementation of each of 
these components is mutually dependent, being defined by the particularities of the problem domain targeted by 
the Decision-Making Algorithm (DMA) and the underlying controlled system. The DMA can be an algorithm of any 
type (i.e. linear programming, fuzzy logic, etc), including ML algorithms, or any type of combinatorial or 
optimization solution. 
. 

 
Figure 1. Generic Architecture of the DE. 
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As mentioned in [2], the Input Pre-processor will sample multiple metrics from the controlled system (arriving via 
de MS/AE) and re-format and normalize them into a bounded domain and based on this re-formatted variables, 
it will build an instance of the state vector that will be part of the state representation of the underlying Markov 
Decision Process (MDP) for which the Reinforcement Learning (RL) algorithm is deployed. 
 
Similarly, the Output Pre-Processor will re-format the output of the DMA and de-normalize it into a domain that 
matches the constraint of the controlled system and the communication interfaces. As mentioned earlier, the 
specifics of the (de-)normalization and re-formatting for both the Input and Output Pre-Processors is dependent 
on the specifics of the DMA and the underlying controlled system. 
 
The Input/Output Interfaces have been added to the current version in order to provide a single point of entry 
and exit from the DE, and to ease the way it interfaces with the other MonB5G components and other elements 
in the underlying system. Given that the MS has been implemented with a Kafka Bus Interface, it is expected that 
the AE/DEs communicate with each other extending the Kafka Bus, as it will be shown in Section 3. The 
Input/Output Interfaces also expect to provide support to enable communication across DEs and to an External 
User Interface (EUI) in order to allow for a human operator to interact with the DEs. 
 
The Control Trigger (CT) was added to allow for the DE to be able to respond to operating conditions of the 
controlled system that would require immediate decision making. As explained in [1], the DE is the highest level 
of a Control Loop (CL), and the time window of this CL can vary depending on the problem domain targeted by 
the DMA. However, it is expected that this time window is in the order of a couple of minutes for most problem 
domains, since it will usually take an approximate time window of said size for the system to respond to the 
decisions issued by the DMA and reach the state that the DMA intends for the controlled system (i.e. for the loop 
to close). During this time window, a series of conditions might prompt an immediate change of behavior by the 
system. Examples of these situations could be a fault that triggers a system malfunction, a surge in load, a 
malicious attack, sudden changes to the underlying infrastructure and available physical resources, or even 
changes in the energy consumption for multiple reasons. The CT then offers the functionality to enable the DE to 
trigger actions as a response to these conditions. 
 
It is important to mention that the implementation of some of these sub-blocks within the DE are optional, and 
their presence will be subjected to the particulars of the DMA and the environment in which it is operating, while 
other sub-blocks like the DMA is of fundamental importance, since it is the sub-block that generates the action 
for the system. Similarly, as it was previously mentioned, the particular implementation of each of this sub-blocks 
is also dependent on the specifics of the use case.  

As mentioned in [1], the DE presents different levels of instantiation that can be used at the different scopes 
of data analytics and decision-making in order to minimize the data exchange and allow faster local analysis 
and decisions. This applies to the MS and the AEs as well. The different levels of instantiation are: 

 Virtual Network Function (VNF)/Physical Network Function (PNF) 
 Network Slice Level, where each slice template includes an MS/AE/DE 
 Domain Manager and Orchestrator (DMO)-Level, in which the domains are the Radio Access Network 

(RAN), Edge and Cloud, in which same-level MSs/AEs/Des can perform domain-wide management 
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 Inter-Domain Manager and Orchestrator (IDMO)-level, which manages the lifecycle of end-to-end 
network slices. 

When an instantiation of the MS/AE/DE triplet is deployed, they can be flexibly bounded to each other, and 
communication is established between them through the corresponding interfaces. The design and 
implementation of these communication interfaces will depend on the use case for which the triplet is 
deployed and the specifics of the problem domain. Figure 2 reviews the communication between the 
MS/AE/DE triplet, revisiting the information presented in [1]. 

 
Figure 2. Interfaces between the MS/AE/DE components of the MonB5G architecture. 

 

The DE will read the inputs to its DMA component either from the AE or from the MS. The input coming from 
the MS can be the current system status sampled by the MS, or from the Common Storage (COMS) 
component, which is included inside the MS. A more detailed description of the interfaces show in Figure 2 
was given in [1], which we recap here for convenience: 

 IAD: DE Reads the predicted KPI from AE 
 IMD: DE reads MS measurements, either directly or from the COMS 
 IMA: AE reads MS measurements, either directly or from the COMS 
 IUD: EUI reads/Changes DE configuration 
 IUA: EUI reads/Changes AE configuration (e.g., prediction interval, learning rate) 
 IUM: EUI reads/changes MS configuration (e.g., granularity) 
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 IUC: EUI reads/changes actuation configuration (e.g., API primitives’ parameters) 
 IDACT: DE sends decisions to Actuators. 

The Actuators encompass the interface to the controlled system, and it is the point of entry of the commands 
coming from the DE. The actuators are the ones in charge of executing the actions in the controlled system 
and transitioning its state. These are the lowest level of the CL in the MonB5G architecture. The Actuators 
will vary depending on the use case and its implementation, and the solutions provided in Section 3 will 
demonstrate different actuators being used with the MonB5G components. 
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3 DE Integration: Implementation of AI Algorithms and Corresponding 
Modules 

3.1 Heuristically assisted DRL approach for network slice placement 
In order to optimize the acceptance ratio in the case of random slice request arrivals and random holding 
times of resources by slices, we proposed a hybrid placement solution based on Deep Reinforcement Learning 
(DRL) and a dedicated optimization heuristic based on the "Power of Two Choices" principle. The DRL 
algorithm uses the so-called Asynchronous Advantage Actor Critic (A3C) [4] algorithm for fast learning, and 
Graph Convolutional Networks (GCN) [5] to automate features extraction from the physical substrate 
network. The proposed Heuristically-Assisted DRL (HA-DRL) enables a significant acceleration of the learning 
process and substantial gain in resource usage when compared against other state-of-the-art approaches, as 
evidenced by evaluation results. In the following, we will present the framework and technologies applied to 
integrate the HA-DRL solution. 

3.1.1 DEVELOPMENT FRAMEWORKS 
The architecture of the proposed Network Slice Placement (NSP) solution is illustrated in the Figure 3. The 
proposed framework is divided into three main components: 

A. The Analytics Engine (AE): 

The AE contains the Physical Substrate Network (PSN) database that stores the updated data about the 
available resources of the PSN.  It also contains the Network Slice Placement Request (NSPR) generator that 
is used to generate NSPR arrivals according to a specific network load regime. It generates slice requests 
arrivals considering three different network load scenarios: stationary, cycle-stationary, and non-stationary 
network load scenario. The stationary network load scenario static while the cycle-stationary and non-
stationary loads vary in time. The former varies with a predictable periodic load while the latter in a non-
predictable change.  The NSPR requirements and PSN available resources data are used as inputs to the DRL 
algorithm by the placement module. 

B. The Decision Engine (DE): 

The placement module implements the DRL-based algorithms and also the Power of two choice (P2C) 
heuristic algorithm referred to in the following as HEU used by HA-DRL and HA-eDRL algorithms to accelerate 
convergence. Both algorithms calculate:  

i) a VNF placement decision, that is, where each VNF of the NSPR is to be placed and  

ii) a VNF chaining decision, that is, which paths in the network to use to interconnect the different VNFs. 
The Placement module can be configured to use one of the Placement algorithms or both if comparison 
of Placement solutions is necessary. 

Once the calculation of the Placement decision is done for one NSPR, an update of the available resources in 
the PSN is made and some key performance metrics are registered in the form of data series; the key metrics 
are the acceptance ratio of network slices and the resource usage. 
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C. Visualization modules: 

The time series introduced above are used by the Data visualization component to build two dashboards: an 
acceptance ratio dashboard and a network load dashboard. 

Both dashboards are used to show the performance of the algorithms according to variations on the network 
load in real time. Finally, the graph visualization component is used to allow the visualizations of the PSN and 
NSPR graphs. 

 

Figure 3. The DRL-HA deployment frameworks. 

 

The technologies applied for the implementation of the different components are: 

• Python: We use Python and PyTorch for implementing the different elements of the Analytic and 
Decision Engines. 

• Neo4j: A Neo4j graph database represents and displays the PSN graph and the NSPR graph together 
with its requirements. 

• MySQL: We use the MySQL database manager system to implement the Key metrics database with one 
table for the Acceptance ratio data series and another one for the Network load data series. 

• Grafana: We use the Grafana tool to implement the Data visualization component in which we 
represent two dashboards using the MySQL database of Key metrics as data-source. 
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3.1.2 MESSAGING INTERFACES 
To learn the model, the reinforcement learning algorithm applies a set of actions on the environment. Each 
action results in a reward that evaluates the new state of the environment. In the proposed framework, the 
learning process generates messages between the AE and DE modules. Figure 4 presents the message flow 
diagram between the DC and DE modules including the internal messages exchanged in each module.  In the 
learning procedure, first the DE receives a NSPR request from the network generator with the slice 
description. The PSN graph is then send to the GCN module in the DE to maximize the graph learned features 
and used as inputs to the DRL algorithm. Each NSPR represents a set of actions to place VNFs of the slice. An 
action represents a NSPR VNF placement in one PSN node. If the action is successful and the path is defined 
between the VNF to be placed and the old placed VNFs, the DE sends an update request to the AE in order to 
update the PSN. One the learning is concluded; the acceptance ratio and the network load metrics are stored 
in the database. 

 

 
Figure 4. AE and DE messages data flow diagram. 

 

3.1.3 INTEGRATION APIS WITH EXTERNAL ELEMENTS AND AE 
In the framework, we define two APIs the internal API is the interface between the AE and DE. The external 
API provides the results and metrics from the DE to external modules such as the visualization modules. Table 
1 showcases the different endpoints. 
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Endpoint Type method Data 

API/PSN Internal AE GET Returns the description of the current PSN 
graph status. 

API/PSN/update Internal AE POST Updates the PSN with the new slice and VNFs 
placements. 

API/NSPR Internal AE GET Returns the description of the slice 
described in the current NSPR. 

API/NSPR/next Internal AE GET Returns the next received slice request to be 
placed 

API/learn External DE POST Learns a new model with the specified 
parameters. 

API/solve External DE POST Provide solutions with the last learned 
model. 

API/metrics External DE GET Returns the performance Metrics for the 
visualization tools. 

 

Table 1. Internal and external APIs endpoints. 

 

3.1.4 MAPPING TO KPIS 
The proposed solution covers a number of Monb5G KPIs with regards to scalability and the AI algorithm 
performance.  The simulation results applied to the DRL-HA solution presents a fast convergence of the 
algorithm, for instance 1000 episodes less training phases than the state-of-the-art baseline. The algorithm 
execution time is less than 1s. The algorithm was also tested under different network loads up to 90%. Figure 
5 showcases the results of DRL approach in the case of the use of a heuristic (HA-DRL) and without (DRL) in 
two different network loads (normal 50% and critical 90%). We notice that even in an excessive network load 
(90%) the DRL with heuristic β =2 can achieve high slice acceptances ratio (>90%) compared to other methods. 
This responds to the Monb5G KPIs that consider to maximize the NS acceptance ratio (UC1/ES1 KPI-5, 
UC1/ES2 KPI-3). 
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Figure 5. Evaluation Results of the DRL approach in 50% and 90% network load. (β parameter is used to 

control how much HEU influence the policy). 

 

                

3.2 Multi-domain Slice Orchestration: SafeSCHEMA and SCHE2MA Orchestration 
Frameworks  

 

SafeSCHEMA and SCHE2MA are both Service CHain Elastic MAnagement frameworks for VNF placement and 
migration, with the difference that SafeSCHEMA is based on Safe RL to ensure the safety of the systems and 
the agents upon deployment. On the other hand, SCHE2MA focuses on optimizing latency and energy jointly 
in a purely distributed RL framework. SafeSCHEMA and SCHE2MA share the same core infrastructure for 
deployment and integration, and also share a lot of the software constructs. They differ in the following two 
ways:  

 SafeSCHEMA is designed to optimize end-to-end latency of Service Function Chains (SFCs), while 
SCHE2MA focuses on jointly improving latency and energy consumption for end-to-end slices. 

 SafeSCHEMA employs safe RL in order to restrict the states/actions that the intelligent agents can 
visit in the process of learning a VNF placement policy, while SCHE2MA has no such restriction. 

 

SafeSCHEMA is a modular architecture capable of safe and automated slice management for networks that 
consist of multiple interconnected domains that span multiple locations. The architecture consists of multiple 
distributed intelligent agents that co-operate to orchestrate the slice elements, specifically to manage the 
placement of the slice VNFs. The RL agents are wrapped with a Safety Shield, which prevents the execution 
of unsafe placement actions that can be proven dangerous for the operation of the E2E slice performance. 
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Previous results demonstrated improved performance over competing solutions, while ensuring the safety 
of the performed actions during real-time slice orchestration. 

Along the same lines, SCHE2MA has been implemented as a DE using pure distributed RL that can intelligently 
deploy SFCs with shared VNFs per se into a multi-domain network. It is a distributed zero-touch management 
and orchestration algorithm that requires no intervention. It comprises of multiple distributed DEs based on 
DRL that orchestrate the VMs locally, limiting the computationally and energy costly frequent inter-domain 
migration and total slice orchestration. SCHE2MA was evaluated through model validation and simulation 
while demonstrating its ability to jointly reduce average service latency by 103.4% and energy consumption 
by 17.1%, contributing to the minimization of the Operational Expenditure (OPEX), compared to a centralized 
RL solution.  

 

 

3.2.1 DEVELOPMENT FRAMEWORKS 
 

The distributed intelligent agents of the SafeSCHEMA and SCHE2MA frameworks were developed on a 
custom-made OpenAI Gym environment using Python 3.8 and deployed using Docker containers. TensorFlow 
2.4.0-rc0 [7] and with the high-level Keras 2.4.2 open-source libraries were used to build their Neural 
Networks. The network environment used for the emulation is a fork of Containernet, an advanced branch 
of Mininet network emulator used for evaluation by many works in related literature. It simulates a realistic 
virtual network, VM or container hosting, switching, and application code for developing and experimenting 
with SDN-NFV networks. The network topology used is a variation of the 2005 Nordu European network, from 
The Internet Topology Zoo online database, adjusted to accommodate multiple computational domains and 
fit the requirements of the study.  

The FastAPI Python module was used for the development of a REST-ful inter-domain communications 
system, called the Auction Mechanism. For the case of SCHE2MA, a Graphical User Interface (GUI) was 
developed using Hypertext Markup Language (HTML) and Cascading Style Sheets (CSS), and other web-based 
tools. This GUI is shown in Figure 6. The purpose of this GUI is to ease the monitoring of SCHE2MA’s 
behaviour, observe the way VNF placements are occurring and in general to improve the controllability of 
SCHE2MA. 
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Figure 6. The GUI developed for the SCHE2MA Framework. 

 

 

3.2.2 MESSAGING INTERFACES 
 

Internally, all SafeSCHEMA and SCHE2MA modules communicate through multiple REST API calls. The 
interface used to transfer system state information is used to transfer network and computational state 
messages and post data relevant to the local decision-making of the domain agents. All messages are 
serialized and then stored locally in multiple SQLite3 databases. 

 

Auction Mechanism 
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Figure 7. Overview of the SafeSCHEMA multi-domain and distributed Auction Mechanism. 

 

The Auction Mechanism is a system that enables inter-domain VNF migration in a distributed multi-domain 
network. The Auction Mechanism enables scalability and parallel operation between the slice domains, as 
shown in Figure 7. 

The operation of the Auction Mechanism can be described in the following steps: 

1. Selection: The Auction Mechanism chooses the next service VNF and advertises to the distributed 
domains the requirements of the VNF placement. 

2. Participation: The distributed Safe RL agents of the domains generate their local action or 
Confidence Vector to propose a local placement for the advertised VNF, ensuring minimum data 
transfers. 

3. Auction: The Auction Mechanism receives the Confidence Metric of each domain and chooses the 
highest bidder or the domain with the maximum Confidence Metric as a candidate to receive the 
VNF currently in auction. The Auction Mechanism notifies the candidate domain with an 
acknowledgment response. 

4. Orchestration: If the candidate domain is different from the current domain that hosts the VNF in 
the auction, the inter-domain migration is initiated. Contrariwise, the domain agent performs an 
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intra-domain migration to the node with the highest Confidence Metric of the local Confidence. If 
the VNF is already instantiated in the same node, the procedure of migration is declined. 

 

3.2.3 INTEGRATION APIS 
All SafeSCHEMA intelligent agents, as well as the intelligent agents of SCHE2MA and their respective modules, 
communicate via REST API calls. The messages are structured with JSON format. Python and the FastAPI 
module were used for the construction of the interfaces. 

 

API Endpoints 

The communication between the distributed agents of SafeSCHEMA and SCHE2MA and their respective 
Auction Mechanisms through the API are described in Table 2: 

 

Endpoint Method Message 

/modules/state/ POST Network state JSON Message. 

/modules/heartbeat/ GET Acknowledgement and health status messages channel for the local 
Safe RL agents. 

/migrate/ POST Migration request from the Auction Mechanism to the source domain. 

Table 2. API endpoints of the SafeSCHEMA agents and the Auction Mechanism. 

 

 

3.2.4 MAPPING TO KPIS 
 

The evaluation and testing of our proposed framework, show that, compared to our proposed solution, 
unrestricted RL agents explore unsafe regions of the state-action space during exploration, leading to the 
SLAs being broken. In contrast, SafeSCHEMA leads to better performance, scalability and stability thanks to 
the use of safe RL. Figure 8 presents the performance of the compared algorithms during the operation of 
multiple slices in distributed domains, hence their ability to maintain performance, demonstrating the ability 
to scale horizontally. The average slice latency is plotted against the number of chained VNFs on each of 4 
slices. It is clear, especially in the case of 2 and 4 chained slice VNFs that SafeSCHEMA was able to maintain 
a lower slice latency by 126.62% from Static in the case of 8 VNFs. 
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Figure 8. SafeSCHEMA evaluation results in low-latency services. 

The SafeSCHEMA framework contributes and improves the following MonB5G KPIs: 

 [UC1/ES1 KPI-1]: Reduction of SLA Violations. 
 [UC1/ES1 KPI-7]: Improve the accuracy of the AE/DE mechanisms for detection of slice performance 

degradation.  

 

In the case of the SCHE2MA framework, as previously mentioned, it is designed to minimize the end-to-end 
average slice latency and energy consumption via monitoring and orchestrating the slice VMs in the multiple 
local network domains, which leads to a reduction of the OPEX incurred by infrastructure providers. The 
SCHE2MA framework mainly contributes and improves the following MonB5G KPIs: 

 [UC1/ES1 KPI-5] OPEX reduction due to the automation of service management: Approximately 
20% reduction in energy consumption and 103.4% reduction in E2E service latency were validated via 
testing. Energy efficiency targets and service KPIs and SLAs were met during evaluation. 

 

 

3.3 RL-based Slice Admission Control 
This section describes the integration of another DE instance called Prediction-based Admission Control 
(PreBAC), which is an RL-based Admission Control solution that exploits future state prediction from an 
Enhanced Context Aware Traffic Predictor (ECATP) [8]. PreBAC works by admitting or rejecting (optionally 
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can also delay it) a User Service Request (USR) into the network slice for which it requires to get service from. 
The admission or rejection is done based on bandwidth resource availability at the Base Station (BS), and 
PreBAC dynamically allocates the available capacity among the active network slices. The admission/rejection 
and optional delay occurs depending on how PreBAC allocates the bandwidth resources to the slices in a 
specific control cycle. 

 

 

3.3.1 DEVELOPMENT FRAMEWORKS 
 

The DE implementation of PreBAC has been implemented using Python 3.8, with Tensorflow 2.7.0 [7]. The 
Reinforcement Learning algorithm used in its implementation is the Soft Actor-Critic (SAC) [9]. The agent runs 
inside a container supported by the Linux Container Hypervisor (LXD), from which it communicates with the 
MS and the AE running within their own respective containers.  All the MonB5G components deployed for 
this use case are running on site with a BS with its respective gNB. 

The development of the interfaces between the EUI and the DE for this instance were done using cURL and 
FLASK, which are both available as libraries in Python 3.8. The utilization of these two frameworks fall in line 
with the design and implementation provided by the MS, which basically set the blueprint for the 
communication interfaces. 

For performance and compatibility purposes, a PreBAC Proof of Concept has been implemented, deployed 
and functional tested in an experimental platform at Iquadrat premises that will be used exclusively for the 
project that consists on the components shown in Figure 9. The performance results will be reported in the 
D6.1-Technical report on system integration and operation. This platform consists of two Amarisoft mini gNBs 
with their MEC nodes directly associated to it. The Amarisoft mini gNBs are connected to a 5G Core working 
in 5G Standalone (SA) mode running in a container in a LXD server. The UEs in these setting consist on two 
5G OnePlust 8T phones, and a SIM8200EA-M2 5G HAT attached to a Raspberry Pi (Rpi) 3/4.  

The HAT component is a 5G module that can be attached to the Rpi in order to allow connectivity of the Rpi 
to the Amarisoft gNB through the 5G network. The Rpi has computational capabitilities that can be used to 
perform some data processing, or to use it as a 5G hotspot to a remote LAN attached to the Rpi. The utilization 
of the HAT opens the possibility to try out a plethora of different use cases. 
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Figure 9. Experimental Platform for the implementation of PreBAC (DE). 

 

 

3.3.2 MESSAGING INTERFACES 
In its current deployment, PreBAC communicates with the rest of the MonB5G elements by extending Kafka 
Bus Interface deployed in the MS. This is feasible for PreBAC since it is deployed on-site within the same 
technological domain in which the MS and AE are deployed. 

The communication from the EUI towards PreBAC is used mainly to alter configuration parameters of PreBAC, 
and some details about its control loop behaviour. The messaging interface used for this are POST requests 
through a REST interface. These requests are used to load JSON files that contain information on the 
configuration that controls PreBAC’s behaviour. In the current implementation as of the time of this writing, 
the request can be issued to upload new configuration files, but the configurations won’t take effect until the 
DMA sub-block is restarted. Future implementations, will include functionality for the configuration changes 
to take effect while running, as long as it is feasible for the specific type of configuration. All configuration 
files used by PreBAC are in JSON format. 

 

3.3.3 INTEGRATION APIS 



871780 — MonB5G — ICT-20-2019-2022 
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE  

 

 

©MonB5G, 2019                                                                                                                                               Page | 27 

 

The MS and the AE are able to send messages to the DE using the Publisher/Subscriber interface provided by 
the Kafka Bus [10]. The DE includes a Kafka Interface that subscribes to two topics: one belonging to the MS 
and another to the AE. The DE communicates back to the COMS of the MS in order to store the action it 
issued for the current control cycle. To send this message, it also uses the Kafka Bus, with a separate topic of 
its own. The information flowing from the MS towards the AE are all marshalled in the same message, 
formatted according to the topic to which the DE is subscribed to. A similar procedure is applied do the 
messages coming from the AE. Table 3 shows the messages exchanged by the DE and the rest of the MonB5G 
components. 

The information arriving to the DE from the AE and MS are firstly given to the Input Pre-Processor, which 
normalizes each field independently from each other, and then builds the state space representation 
necessary for PreBAC to carry out its decision-making process.  

 

Sampled Metric Source/Destination I/O Data 

Timestamp MS/DE Current aggregate bandwidth consumption in the 
domain (for all deployed slices) 

Traffic load of slice ‘s’ in 
current timestamp 

MS/DE The traffic load for a slice ‘s’ in the current 
timestamp. The message sent includes the traffic 
load of each slice separately. 

Total bandwidth 
capacity of BS 

MS/DE The total bandwidth capacity available in the BS. 

Predicted traffic load of 
slice ‘s’ 

AE/DE The predicted traffic load for the next timestep for 
slice ‘s’. This prediction is generated in the AE 
through an inference process performed by ECATP. 

Decision for current 
control cycle 

DE/MS This is the resulting action issued by the DMA of the 
DE. It is stored in the COMS of the MS for 
visualization and evaluation purposes. 

Table 3. Integration APIs with other MonB5G components 

 

For a human user to communicate with the REST API of the DE, the POST requests that can be issued are 
shown in Table 4. The configuration files for PreBAC contains the parameters used by the SAC algorithm, 
which makes up the core of PreBAC. These parameters include the file path to the internal neural network 
parameters of SAC, the frequency of training, parameters of the neural networks of the SAC algorithm, and 
other related ML configurations. 

 

REST API call Source/Destination Description 
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/config/prebac EUI/DE Upload configuration file for PreBAC, which is one of 
the DMAs implemented within the DMA. 

/config/static EUI/DE Upload configuration file for static allocator, which is 
one of the DMAs implemented within the DA. This 
static allocator is deployed temporarily whenever 
PreBAC is being restarted or unavailable due to other 
maintenance processes. 

/config/utilityParamet
ers 

EUI/DE Upload configuration about the relative utility of the 
traffic load from different slices and their impact on 
the behavior of PreBAC.  

Table 4. EUI integration APIs with the DE. 

 

The utility parameter configuration files establish the relative revenue generated by servicing USRs from each 
slice. It also contains information of the penalties incurred when USRs are delayed and rejected. All these 
parameters are a representation of the actual penalties and utilities associated to each slice, but are 
represented in a way that can be consumed by PreBAC, and alter its behavior and policy. 

 

3.3.4 MAPPING TO KPIS 
PreBAC’s ultimate objective is to reduce the overall rate of rejection of incoming USRs for the different slices, 
while increasing the overall utility of users, slice owners and infrastructure providers. The rate of rejection of 
USRs can be specified as an SLA. 

PreBAC seeks to ensure that traffic that is considered more critical in terms of its Quality of Service (QoS) 
constraints and the amount of revenue it generates gets processed as it arrives, while at the same time 
preventing service starvation by the USRs for other slices that generate less marginal benefits.  

In more concrete terms, the KPIs that PreBAC seeks to improve is the reduction of the probability of SLA 
violations. In this context, the probability of SLA violations translates into an overall traffic reject rate across 
the slices in the system, which PreBAC seeks to reduce. Specifically, we can map the KPI to the following: 

[UC1/ES2 KPI-1]: Reduce the number of SLA performance violations by 20% 

 

 

3.4 Time-of-day Aware Slice Admission Control (DE) based on traffic prediction, 
LSTM-based anomaly and fault detection 

The goal of Time-of-day Aware Slice Admission Control (TASAC) DE is to derive optimal slice admission policy 
on the basis of current resources usage by the network slices and the predicted future consumption (see 
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MonB5G Deliverable D4.2 [1]. The TASAC DE is placed in DE sublayer of MonB5G architecture either in the 
DMO or IDMO. Figure 10 shows the implementation architecture of the TASAC DE in the DMO scenario along 
with the type of information it exchanges with specific MS (Resource KPI Aggregator) and AE (Aggregate 
Resource Consumption Predictor) components within MonB5G architecture. 

 

 
Figure 10. Example placement of TASAC DE in DMO and its integration with MonB5G Architecture 

components 

 

The TASAC DE is integrated with the Time-series Database (TSDB), which is the current implementation of 
the COMS component, and Slice Requester solutions. The TSDB is responsible for storing the information 
about consumed resources, predicted resource consumption, TASAC DE algorithm-specific metrics, and 
metadata of all accepted slices.  The algorithm-specific metrics of TASAC DE include variables such as the 
Deep Q-Network (DQN) rewards, DQN penalties, output Q-values and DQN decision history. The Slice 
Requester simulates the influx of slice admission requests issued by the slice tenants (sent over Iid/Ipi 
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interface to DMO/IDMO). The most common use case would involve using the TASAC DE as a block assisting 
DMO or IDMO. It has to be noted however that the implementation is generic and the scope of operation of 
the TASAC DE can be adjusted to specific use cases (e.g. better usage of a part of domain's resources). 

 
3.4.1 DEVELOPMENT FRAMEWORKS 
  

Both TASAC DE as well as Slice Requester have been implemented using Python 3.10 and containerized with 
Docker. TASAC exposes the REST API complementary with the OpenAPI framework [11]. The AI-driven 
mechanisms (such as DQN agent) are implemented using Keras and Tensorflow [7] as the compute backend. 
The example results of Kubernetes-based TASAC DE deployment that aims to maximize the utilization of 
system bandwidth is presented in Figure 11. 

 

 

Figure 11. Histogram of slice admission and rejection depending on the requested resources. 

 

3.4.2 MESSAGING INTERFACES 
TASAC DE implements two interfaces to communicate with MonB5G entities the web-based North-bound 
Interface (NBI), implemented as a REST interface, and message-based a South-bound Interface (SBI) 
implemented with Kafka [10]. The NBI exposes the methods for requesting Slice Admission Decisions based 
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on the parameters of a slice request issued by a tenant. The SBI is a Kafka-based interface that is used to 
consume network state messages (current and predicted resource consumption) as well as post data related 
to the undertaken slice admission decisions and other metrics that can be leveraged by other MS/AE/DE (e.g. 
to verify the module stability, DQN agent performance, etc.). The messages published to the message bus are 
serialized to the line protocol format to facilitate easier consumption by the metric collector (Telegraf [12]) 
and injection to the TSDB (InfluxDB [13]). 

 

3.4.3 INTEGRATION APIS 
The TASAC DE communicates with the MonB5G entities via the message bus and web-based interface (Section 
3.4.2). Therefore, the southbound integration with MonB5G system is achieved by specifying a common list 
of message keys. The analyzed use case involves the deployment of TASAC DE cooperating with MS and 
Resource Consumption Predictor (described in [14]) to maximize the utilization of bandwidth in the domain. 
The exemplary list of messages published and subscribed by the TASAC DE (marked as PUB and SUB 
respectively) is presented in Table 5. 

Message key Type I/O Data 

ms.ms.total_bw SUB Current aggregate bandwidth consumption in the domain (for all 
deployed slices) 

ae.rcp.total_bw_pred SUB The total bandwidth prediction for the next sample (based on the 
predefined interval) 

ae.rcp.api.prediction.r
eq 

PUB Prediction requests containing the time range of prediction, unique 
request id 

de.sac.new_slice PUB The message generated in case of slice admission request 
acceptance (used by RCP to monitor the list of all accepted slices for 
the purpose of prediction) 

ae.rcp.api.prediction.r
es 

PUB Prediction response containing the predicted values of the resource 
consumption in the requested time period together with the unique 
request id 

Table 5. Messages exchanges via the SBI. 

 

The upper-layer entities (e.g. DMO, IDMO) can communicate with TASAC DE using the API described in Table 
6. 

 

Endpoint Method Data 

/api/v1/admission/requ
est/ 

POST Slice Admission request containing the request ID, slice type, the 
maximum amount of requested resources, the time of slice 
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deployment and termination, priority and the REST-based 
endpoint to communicate the slice admission decision 

/api/v1/healthcheck/ GET Returns the health of TASAC DE 

/api/v1/ GET API Index 

Table 6. TASAC DE Norhbound API. 

 

3.4.4 MAPPING TO KPIS 
The primary goal of the TASAC algorithm is to increase the utilization of resources in the given time period 
by taking optimal slice admission decisions. The approach can also potentially lead to indirect gains such as 
e.g. improved OPEX (higher return under the same available resource pool). Also, the adopted DQN-based 
algorithm penalizes heavily any possible excessive admission (i.e. over the available resource pool) to 
mitigate SLA violations. 

  

Altogether, the TASAC enabler contributes to the maximization of NS acceptance ratio and improves the 
folowing MonB5G KPIs [15]:  

 (UC1/ES2 KPI-1): Reduction of SLA Violations  
 (UC1/ES2 KPI-4): OPEX reduction due to the automation of service management  

 

 

 

3.5 Distributed Slice Resource Allocation in the RAN domain 
While advanced admission and control mechanisms could select the set of slices to be admitted to the system 
and set static resource allocation limits to satisfy the available capacity, the dynamic and heterogeneous 
nature of the slice's traffic load and wireless channel statistics may lead to suboptimal network performance 
in the long run. Due to rapid traffic fluctuations, slice resource allocation decisions in the RAN domain should 
be dynamic, proactive, and flexible to avoid degradation of service and performance. 

For these reasons, we use an FDRL-based architecture to address RAN resource allocation in the slicing 
scenario. In particular, we rely on local Decision Agents DAs, one per slice, running as software instances 
within the premises of each BS, as shown in Figure 12. Each agent is responsible for making slice Physical 
Resource Block (PRB) allocation decisions based on local monitoring information received from the 
underlying network monitoring system. We refer to such monitoring information as Base Station context. 

To solve the above problems simultaneously, we introduce a FL layer that allows inter-agent information 
exchange and expedites the learning procedure of local knowledge sharing. Unlike multi-agent reinforcement 
learning, which defines a set of autonomous agents that observe a global state (or partial state) of the system, 
select individual actions and receive individual rewards, FL enables training of machine learning models over 
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multiple decentralized entities that have access to a limited portion of the overall available data, i.e., in our 
case, access to local monitoring information only. 

FL allows local DEs to collaboratively learn a shared prediction model by iteratively aggregating multiple 
model updates and returning a refined version of it that combines multiple local models according to specific 
federation strategies. This decouples the learning procedure from the need for centralized data sources. The 
refined model is then shared with the agents which significantly allows to improve the learning rate, ensure 
privacy and enable better generalization.  

 

 
Figure 12. Generic Federated DRL architecture for RAN slicing. 

 

Related work and large-scale simulation results of the overall framework have already been presented in 
Deliverable 4.2. To further validate our key idea and architectural components, we plan to develop a working 
testbed consisting of 5G equipment and control software. Below, we outline the key architectural 
components and perquisites for full implementation as well as the initial APIs required to monitor KPI metrics 
and enforce allocation decisions. 

 

3.5.1 DEVELOPMENT FRAMEWORKS 
We implement our framework in Python programming language, exploiting OpenAI Gym library [6] and 
interfacing DRL agents with a custom base station simulator environment, which includes virtual transmission 
queues and main PHY/MAC/RLC functionalities, together with O-RAN E2 interface to allow gathering the 
networking statistics from each distributed unit (O-DU), and to enforce PRB policy decisions in the BS slice 
scheduler based on defined state space and action space, as depicted in Figure 13. 
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Figure 13. Software architecture and protocol stack overview. 

. 

In order to validate our framework in realistic settings, we consider the city of Milan, Italy, as scenario of 
study. We collect city-wide RAN deployment information including more than 50 BSs from publicly available 
sources, and simulate realistic human mobility patterns leveraging the work of [16]. An example of the 
generated data is available in the following Figure 14.  
The softwarized agent instances interact with the simulation environment and collects simulated base station 
traffic. We evaluate our proposed architecture through an ad-hoc simulator running on a dedicated server 
that is equipped with two Intel(R) Xeon(R) Gold 5218 CPUs @ 2.30GHz and two NVIDIA GeForce RTX 2080 Ti 
GPUs. 

 

 
Figure 14. Simulation data overview. 

 

We refer the reader to Deliverable 4.2 for a more in-depth evaluation of the overall framework.  
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Figure 15. Testbed Architecture. 

Additionally, a preliminary implementation exploiting a fully-fledged 5G emulator has been already achieved, 
as part of WP6 activities. Figure 15  shows the architecture of our distributed slice resource allocation solution 
in the RAN domain. 

The preliminary testbed implementation includes the following main components: 

 Amarisoft Callbox: It acts as a 3rd Generation Partnership Project (3GPP) compliant with eNodeBs 
(eNBs)/gNodeBs (gNBs) and Enhanced Packet Core (EPC)/5G Core (5GC) and enables functional and 
performance testing. Thanks to its multi-cell configuration, it is also suitable for handover and 
reselection tests. It also supports 5G New Radio (NR) Non-Standalone (NSA) mode. Table 7 
summarizes the technical specification of the device. 

 Amarisoft Symbox: It is capable of simulating hundreds of User Equipments (UEs) sharing the same 
spectrum with different types of traffic within multiple cells. Each UE can be independently 
configured as a Long Term Evolution (LTE), 5G NR, Narrowband Internet of Things (NB-IoT) or LTE 
Machine Type Communication (LTE-M) device. 

 Monitoring System: It allows real-time monitoring information to be retrieved from the gNBs 
platform. Such information is processed by the local decision agent to develop its radio resource 
allocation policy. 

 Local Decision Agent: It is developed within the MonB5G framework, runs as a container instance on 
the base station premises, collects and consumes local monitoring information from MS and adjusts 
the radio resource allocation policies accordingly. The decision-making task is supported by the AI/ML 
algorithm. 

 Federated Learning Layer: It acts as an aggregation point for the local decision engines deployed in 
RAN. It collects locally trained (and therefore heterogeneous) decision models and combines them to 
gain global knowledge about the underlying infrastructure behaviour and improve the generalization 
of the decision process. 

. 



871780 — MonB5G — ICT-20-2019-2022 
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE  

 

 

©MonB5G, 2019                                                                                                                                               Page | 36 

 

3GPP release release 16 

Frequency bands All FDD and TDD bands in sub-6GHz 

Bandwidth Up to 50 MHz 

Supported number of cells 3 

Number of active UEs Up to 1000 UEs distributed within the 
configured cells 

Carrier aggregation Up to 3 carriers in DL and 3 in UL allowing 
mixed FDD/TDD combinations in DL 

Supported modes NSA, SA 

Transmission modes 1 (single antenna) to 10 (MIMO 4x4) 

Modulation schemes Up to 1024QAM in DL and 256QAM in UL 

AS encryption and integrity protection AES, SNOW3G, ZUC 

Handover NG, Xn and 5GS to EPS handover support 

eNodeB network interfaces S1AP and GTP-U to EPC X2AP between eNodeBs 
M1 and M2 for eMBMS 

ng-eNodeB network interfaces NGAP and GTP-U to 5GC XnAP between ng-
eNodeBs 

Subcarrier spacing Data subcarrier spacing: 15, 30, 60 or 120 kHz 
SSB subcarrier spacing: 15, 30, 120 or 240 KHz 

 

Table 7. Amarisoft Callbox gNodeB Technical Specifications. 

 

 

3.5.2 MESSAGING INTERFACES 
 

Local Decision agent <–> Monitoring System  

Decision engines are responsible for making reconfiguration decisions to optimize the performance of the 
functional layer according to the collected data from the MS sublayer and the analysis results from the AE 
sublayer.  The input to the DE sublayer is the output of the AE and MS sublayers. For details regarding the 
MS/AE sublayers integration and interaction, we refer the reader to the deliverable D3.3.  
The generic structure of the proposed MS is shown in Figure 16. In this example, it consists of 11 sampler 
functions monitoring and reporting various key parameters belonging to the different protocol stack layers 
composing the Amarisoft and 5G RAN software. 
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Figure 16. Monitoring System. 

 

The MS sublayer deals with both telemetry data (continuous time series) and event data (e..g., alarms, faults, 
and topology changes). It enables monitoring with varying temporal granularity and varying degrees of data 
aggregation, depending on the optimization goal. 

 

Local Decision agent <– > Federated Layer 

As shown in Figure 12, each DE agent in our Federated Deep Reinforcement Learning-based framework 
embeds and trains a local Duelling Deep Q-Network (DDQN) model. The trained model, that has learned a 
policy from the available data, is shared under the form of model weights to the entities that belong to the 
corresponding federation layer. Each federation layer aggregates the accumulated knowledge of each agent 
into a global updated model, which is typically stored in a cloud platform or a nearby edge platform to enable 
faster feedback. 

To increase efficiency and avoid communication overhead, we allow the federation layer to collect the local 
models  only every T decision intervals, being T a tunable parameter. We define this time period as a 
federation episode. 

 

Local Decision agent <–> Analytic Engine 
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The aggregated mobile traffic demands follow recurring spatiotemporal trends due to human activities. In 
this context, it is expected that a good characterization of such processes would allow a more accurate 
forecasting of network utilization and thus a more efficient and even proactive planning of resource 
allocation. We rely on the Analytic Engine to provide this kind of functionality and use its API to obtain this 
additional information. 

 

3.5.3 INTEGRATION APIS 
The decisions of the DE are based on the information available on the underlying MS/AE sublayer. In 
particular, the DE creates the observation state by collecting the quality of the channel, and the aggregate 
traffic demand per slice. We refer the reader to D4.2 for more details about the proposed DE. The information 
mentioned earlier is available at the MS/AE sublayer via the stats sampler function in the gNB, which returns 
the aggregated traffic demand per slice and the channel quality. 

The PRB allocation decisions made by the DE are then sent to the gNB via the config_set web socket message, 
which then allocates the selected PRBs to the radio interface. 

 

3.5.4 MAPPING TO KPIS 
 [UC1/ES2 KPI-4] OPEX reduction due to the automation of service management.   
 [UC1/ES2 KPI-7] Optimize the convergence time for the distributed/federated AI algorithms so that 

it does not exceed that of the centralized solutions.  
 [UC1/ES2 KPI-9] Improve network slice performance prediction 
 [UC1/ES2 KPI-11] Reduce time to manage RAN resources dedicated to network slices, particularly for 

uRLLC (AE and DE are located at the edge).    
 [UC1/ES2 KPI-12] Improve on slice performance isolation by ensuring the latency and reliability 

(uRLLC), as well as bandwidth (eMBB) requirements of coexisting slices (measured in terms of related 
SLA violations and other lower-level metrics).    

 [UC1/ES2 KPI-13] Reduce the management overhead of the RAN by reducing the monitoring 
overhead for RAN-level slice resource (and other) reconfigurations.    

 

 

 

3.6  Independent DQN Agents for Slice Reconfiguration 
In D4.2 (Section 6.2) we proposed a DE utilizing Independent Deep Q Network (IDQN) agents for dynamic 
end-to-end slice reconfiguration. This DE is well in line with the key characteristics of the inter-slice 
orchestration problem, since it has a wide view of the system. The goal in the slice reconfiguration problem 
is to dynamically decide the system’s configuration (each IDQN agent is associated with a VNF and decides 
which will be the host server in the next time-slot), towards maximizing the accumulated reward over a 
discounted infinite time horizon (while not knowing a priori how slice demands evolve over time).  
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The scalability and effectiveness of the IDQN algorithm was extensively validated in D4.2 [1] with realistic 
simulations. In this deliverable we will describe the implementation details. 

 

3.6.1 DEVELOPMENT FRAMEWORKS 
The DE was implemented with Python, while PyTorch was utilized to implement the Deep Neural Networks 
(DNNs) of the agents. Towards a cloud native implementation, the whole DE can be placed inside a Docker 
container. There are two main entities involved in the DE, which are the following: 

System Model. This entity contains three components:   

 Physical  Network: It contains all the information related to the physical network, like system 
configuration, domains, server IDs, server capacities, connectivity, etc. 

 Slices: It contains all the relevant information for the slices to be orchestrated, like slice IDs, VNFs, 
Virtual Links, etc. Also, the timeseries of the slice resource demands are imported from a dataset 
(either Milano or a synthetic Markovian dataset) and are loaded to the corresponding slices. 

 Reward function: This gets as an input the previous state and the current state of the system and 
outputs the  reward as defined in D4.2 [1]. 

Controller. This may be either the proposed IDQN agents or the baseline solution, which include a single-
agent DQN, Q-Learning (QL) and static policies. The input to this component is the state (current configuration 
and resource demands) and the reward given by the system model, while the output is the configuration to 
be applied in the next time-slot. Note that in this implementation the agents operate sequentially. However, 
in a future implementation they could operate in parallel since they are independent, either in a centralized 
way by assigning them to different CPUs, or in a more distributed architecture.  

In Figure 17 there is a schematic representation of the interaction between the IDQN agents of the controller 
and the system model. 
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Figure 17. Schematic representation of the DE. 

 

Towards constructing a very basic cloud-native testbed, we have additionally implemented a simple actuator 
in Python that can enforce the decisions of the DE. The testbed considers a centralized DE (controller + system 
model + actuator) with a global view of the system, while the system consists of VMs hosting containerized 
VNFs (Figure 18). Note that VMs map to the physical nodes of the system model we defined in [1]. The 
actuator can enforce the reconfiguration decisions of the controller using Docker commands to migrate 
containers from the host VMs to the destination VMs. This is implemented can be implemented with the 
Docker Software Development Kit (SDK) for Python. 
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Figure 18. A simple testbed example. 

 

 

3.6.2 MESSAGING INTERFACES 
Controller (IDQN agents) <-> System model 

The two main entities of the DE communicate internally at each time-slot. The agents give as an input to the 
system model the next configuration, and the system model returns the next state and the reward (Figure 
17). 

 

Centralized DE –> VMs 

A secure shell (SSH) connection must be established between the centralized controller and each of the VMs 
so that the controller can communicate with the remote Docker Daemons and enforce its decisions (stop a 
container, commit it into an image, remove a container, or run a container).  

 

VM <–> VM  
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The secure file transfer protocol (SFTP) is used between the VMs in order to transfer files related to container 
migration from the host VM to the destination VM. 

 

3.6.3 INTEGRATION APIS 
The code is written in a Python script, and the physical network, the slices, the reward function, and the 
controller are just different objects with public attributes. Therefore, these attributes can be accessed by 
other objects just by passing them as arguments in corresponding methods.  

The MS in our system stores the resource demand vector at each timeslot. It is equipped with a method called 
“get_demand_vector”, which gets as input argument a list with all the slice objects. So, this method collects 
the resource demands from the different slices and stores them as the current resource demand vector. 

The controller object includes a method called “choose_action”, which gets as input arguments the 
configuration vector from the physical network object, the resource demand vector from the monitoring 
system (these 2 form the state representation of the learning agent), and a reward from the reward function 
object, and gives at its output the next configuration to be applied on the system. It also stores the 
experiences to the buffers of the agents and updates the DNN parameters of the agents.  

The above information is summarized in Table 8. 

Object Method Args Functionality 

Monitoring system get_resource_demands A list with the slice 
objects 

Collects resource 
demands from all slices 
and stores them as the 
current resource 
demand vector 

 

Controller choose_action physical_network.config
uration, 
monitoring_system.reso
urce_demands, 

reward_function.reward 

Returns the next system 
configuration, stores 
experience, updates 
DNN parameters 

 

Table 8. Methods for interaction with the DE. 

 

Note that the controller could be possibly used separately as a containerized component that gets as an input 
all necessary information from an external monitoring system (possibly through a Kafka bus) and gives as an 
output the reconfiguration decision (a new system configuration). This decision should be then transferred 
to the component responsible for enforcing container migration. 

 

3.6.4 MAPPING TO KPIS 
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The IDQN solution was validated by realistic simulations in D4.2 [1]. It relates to the following project KPIs: 

 [UC1/ES1 KPI-1], [UC1/ES2 KPI-1]: Reduction of SLA violations 
 [UC1/ES2 KPI-2]: Reducing static slicing overhead will result in 30% higher utilization (will be achieved 

with dynamic reconfiguration techniques) 
 [UC1/ES2 KPI-3]: Compared to Static Slicing, demonstrate the same or better SLA tolerances (or risk 

of missing SLAs) when dynamic slicing techniques are used 
 [UC1/ES1 KPI5], [UC1/ES2 KPI-4]: OPEX reduction due to the automation of service management 
 [UC1/ES2 KPI-7]: Optimize convergence time for the distributed/federated AI algorithms so that it 

does not exceed that of centralized solutions 

 

The cost to be minimized by IDQN has been defined as the weighted sum of three different cost terms, the 
node utilization cost (it is equal to the number of active nodes and relates to energy consumption and rent 
costs), the reconfiguration cost (the cost for migrating VNFs), and the SLA violation cost (a penalty paid to 
the slice tenants when an SLA violation is observed for their slice). These cost terms can target all the KPIs of 
the first four bullets above. Then, regarding KPI-7 of ES2, the multi-agent IDQN scheme demonstrates faster 
convergence compared to the single-agent DQN (validation section of D4.2 [1]). A remark here is that IDQN 
conceptually distributes the decision to different agents, but that doesn’t mean that the agents must be also 
spatially distributed (they require global information and not local).  

 

3.7 FISH Recommender for Control Loop Coordination 
Control Loop Coordination (CLC) is a common problem in network optimization. When multiple CLs with 
common modifiable parameters exist in a system, a ping-pong reconfiguration effect can occur, where both 
CLs continuously and selfishly opt for a parameter reconfiguration. In MonB5G architecture [17], we assume 
CLs to be sets of Monitoring Services, AEs and DEs, followed by Actuators. DEs are outermost modules 
responsible for parameter modification inside a CL. The FISH Recommender works as a DE Selector/Arbiter 
located within DE-Sublayer in MonB5G Layer either in DMO, IDMO, or Slice Management Layer (SML) [17], 
evaluating possible impact of reconfiguration on other functions and either allowing or rejecting such 
reconfiguration request. 
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Figure 19. Cooperation of FISH Recommender with in MonB5G Architecture. 

 

3.7.1 DEVELOPMENT FRAMEWORKS 
The FISH Recommender uses a slightly modified Fisher Market Model as an evaluation method. The key 
concept of this approach revolves around treating DEs as “buyers” that want to “buy” certain parameters 
from a reconfiguration request. Every buyer has a certain budget and, based on historical/predicted data, 
each parameter has a certain weight (importance) for each buyer. The Fisher Market Model resolves the 
market in the way that all products on the market are bought and all the money from buyers is spent. The 
final decision regarding reconfiguration is made depending on resulting utility function, which represents 
which of the “buyers” would be affected the most by the proposed reconfiguration. More detailed description 
of described coordination framework is available in Deliverable D4.2 [1]. FISH has been written using Python 
3.10 and can be deployed in Kubernetes [18]. 

 

3.7.2 MESSAGING INTERFACES 
Intercommunication between FISH and other modules has been presented on Figure 19. 
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In order to perform recommendation, FISH needs to collect the following information as an input:  

- proposed parameter modification vector; 
- current KPI and Budget of each considered DE; 
- historical KPI/ Predicted KPI for proposed parameter set for each considered DE. 

 

3.7.3 INTEGRATION APIS 
 DEs can interact with FISH via web-based SBI (REST API) with endpoints: 

/register -> for DE registration, after which they can be passively included in any reconfiguration 
request   assessment 

/reqmod -> in order to send parameter modification request 

 FISH queries historical/predicted as well as current KPI data using a database (DB) API. The type of 
DB used in this solution is a TSDB implemented with InfluxDB [13]. 

 After assessment, FISH publishes its decision onto the Message Bus (i.e. Kafka [10]).   

 

3.7.4 MAPPING TO KPIS 
By providing impact-based function coordination, the FISH Recommender can eliminate unnecessary 
reconfigurations and avoid possible conflicts between different DEs, leading to overall stability and system 
performance improvements. Limiting the number of unfavorable reconfigurations in the RAN domain can 
contribute to a reduction of management overhead of the RAN (by not needing to perform nor fix such 
reconfiguration), which is the goal of UC1/ES2 KPI-13. 
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4 Timeline for Deployment and Completion 
 

The DE and its associated MS/AE implementations for their respective use cases are currently being deployed 
in the available experimental platforms for real use case testing shown in Figure 9 and in Figure 15. Both of 
these experimental platforms conform an industry and state-of-the-art standard 5G platforms in which the 
DEs and its corresponding MSs/AEs will be deployed and validated. 

It is expected that the deployment of the DEs and the respective MonB5G components will be completed by 
February 2023, with enough time to allow for all partners to deploy and converge on their DE 
implementations, and generate the upcoming deliverables for the project. 
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5 Conclusions 
In this deliverable, we have presented details on the integration of the different state-of-the-art DEs proposed 
within the framework of the MonB5G project to solve different open problems regarding the management and 
orchestration of 5G and Beyond 5G communication networks. In this document, each DE implementation was 
presented with detailed information on how it was integrated with its corresponding MS and AE, also 
implemented for particular use case for which a specific DE implementation is deployed. 
 
This work is clearly a continuation of the work already presented in Deliverables D4.1 [2] and D4.2 [1], with an 
incremental improvement of the generic DE architecture that makes it more compliant to the ETSI-ENI standard 
[3], as well as expanding deeper on the way this generic architecture maps to actual implementations. This is 
better understood after including a recap of the generic DE architecture.  
 
The sections corresponding to each implementation of the DE, presented in Section 3, showed the successful 
functional testing and validation of the integrated DE with its corresponding MS and AE components, 
demonstrating the feasibility of deployment and integration.  
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