

 871780 — MonB5G — ICT-20-2019-2020

Deliverable D4.3
Report on Integration and testing of the

MonB5G Decision Engine

Document Summary Information

Grant Agreement No 871780 Acronym MonB5G

Full Title Distributed Management of Network Slices in beyond 5G

Start Date 01/11/2019 Duration 42 months

Project URL https://www.monb5g.eu/

Deliverable D4.3 – Report on Integration and testing of the MonB5G

Work Package WP4

Contractual due date M37 Actual submission date 07/12/2022

Nature Report Dissemination Level Public

Lead Beneficiary IQU

Responsible Author Luis A. Garrido (IQU), Kostas Ramantas (IQU)

Contributions from Kostas Ramantas (IQU), Luis A. Garrido (IQU), Anestis Dalgkitsis (IQU), Anne-
Marie Bosneag (LMI), Ashima Chawla (LMI), Lanfranco Zanzi (NEC), Francesco
Devoti (NEC), Farhad Rezazadeh (CTTC), L. Blanco (CTTC), E. Zeydan (CTTC), L.

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 2

Vettori (CTTC), J. Mangues (CTTC), S.Kahvazadeh (CTTC), Robert Kołakowski
(ORA-PL), Rafał Tępiński (ORA-PL), Pavlos Doanis(EUR), Sihem Cherrared (ORA-
FR)

Revision history

Version Issue Date % Complete Changes Contributor(s)

Disclaimer

The content of the publication herein is the sole responsibility of the publishers and it does not necessarily
represent the views expressed by the European Commission or its services.

While the information contained in the documents is believed to be accurate, the authors(s) or any other
participant in the MonB5G consortium make no warranty of any kind with regard to this material including,
but not limited to the implied warranties of merchantability and fitness for a particular purpose.

Neither the MonB5G Consortium nor any of its members, their officers, employees or agents shall be
responsible or liable in negligence or otherwise howsoever in respect of any inaccuracy or omission herein.

Without derogating from the generality of the foregoing neither the MonB5G Consortium nor any of its
members, their officers, employees or agents shall be liable for any direct or indirect or consequential loss
or damage caused by or arising from any information advice or inaccuracy or omission herein.

Copyright message

© MonB5G Consortium, 2019-2022. This deliverable contains original unpublished work except where clearly
indicated otherwise. Acknowledgement of previously published material and of the work of others has been
made through appropriate citation, quotation or both. Reproduction is authorised provided the source is
acknowledged.

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 3

TABLE OF CONTENTS

List of Figures ... 5

List of Tables .. 6

List of Acronyms ... 7

1 Executive Summary ..10

2 Overall DE Architecture and MonB5G Component Integration ..11

3 DE Integration: Implementation of AI Algorithms and Corresponding Modules15

3.1 Heuristically assisted DRL approach for network slice placement ..15

3.1.1 Development frameworks ...15

3.1.2 Messaging interfaces ..17

3.1.3 Integration apis With external elements And ae ..17

3.1.4 Mapping to KPIs ..18

3.2 Multi-domain Slice Orchestration: SafeSCHEMA and SCHE2MA Orchestration Frameworks19

3.2.1 Development frameworks ...20

3.2.2 Messaging interfaces ..21

3.2.3 Integration apis ...23

3.2.4 Mapping to KPIs ..23

3.3 RL-based Slice Admission Control ...24

3.3.1 Development frameworks ...25

3.3.2 Messaging interfaces ..26

3.3.3 Integration apis ...26

3.3.4 Mapping to KPIs ..28

3.4 Time-of-day Aware Slice Admission Control (DE) based on traffic prediction, LSTM-based anomaly
and fault detection...28

3.4.1 Development frameworks ...30

3.4.2 Messaging interfaces ..30

3.4.3 Integration apis ...31

3.4.4 Mapping to KPIs ..32

3.5 Distributed Slice Resource Allocation in the RAN domain ..32

3.5.1 Development frameworks ...33

3.5.2 Messaging interfaces ..36

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 4

3.5.3 Integration apis ...38

3.5.4 Mapping to KPIs ..38

3.6 Independent DQN Agents for Slice Reconfiguration ..38

3.6.1 Development frameworks ...39

3.6.2 Messaging interfaces ..41

3.6.3 Integration apis ...42

3.6.4 Mapping to KPIs ..42

3.7 FISH Recommender for Control Loop Coordination ...43

3.7.1 Development frameworks ...44

3.7.2 Messaging interfaces ..44

3.7.3 Integration apis ...45

3.7.4 Mapping to KPIs ..45

4 Timeline for Deployment and Completion...46

5 Conclusions ..47

6 Bibliography ...48

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 5

List of Figures

Figure 1. Generic Architecture of the DE. ...11

Figure 2. Interfaces between the MS/AE/DE components of the MonB5G architecture.13

Figure 3. The DRL-HA deployment frameworks. ...16

Figure 4. AE and DE messages data flow diagram. ...17

Figure 5. Evaluation Results of the DRL approach in 50% and 90% network load. (β parameter is used to
control how much HEU influence the policy). ..19

Figure 6. The GUI developed for the SCHE2MA Framework. ..21

Figure 7. Overview of the SafeSCHEMA multi-domain and distributed Auction Mechanism.22

Figure 8. SafeSCHEMA evaluation results in low-latency services...24

Figure 9. Experimental Platform for the implementation of PreBAC (DE). ..26

Figure 10. Example placement of TASAC DE in DMO and its integration with MonB5G Architecture
components ..29

Figure 11. Histogram of slice admission and rejection depending on the requested resources.30

Figure 12. Generic Federated DRL architecture for RAN slicing. ...33

Figure 13. Software architecture and protocol stack overview. ..34

Figure 14. Simulation data overview. ...34

Figure 15. Testbed Architecture...35

Figure 16. Monitoring System. ...37

Figure 17. Schematic representation of the DE. ...40

Figure 18. A simple testbed example. ..41

Figure 19. Cooperation of FISH Recommender with in MonB5G Architecture. ...44

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 6

List of Tables

Table 1. Internal and external APIs endpoints. ...18

Table 2. API endpoints of the SafeSCHEMA agents and the Auction Mechanism. ...23

Table 3. Integration APIs with other MonB5G components ..27

Table 4. EUI integration APIs with the DE. ...28

Table 5. Messages exchanges via the SBI. ..31

Table 6. TASAC DE Norhbound API. ..32

Table 7. Amarisoft Callbox gNodeB Technical Specifications. ...36

Table 8. Methods for interaction with the DE. ...42

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 7

List of Acronyms

Acronym Description
3GPP Third Generation Partnership Project

5GC 5G Core

A3C Asynchronous Advantage Actor Critic

AE Analytic Engine

AI Artificial Intelligence

API Application Programming Interface

BS Base Station

CL Closed Loop

CLC Control Loop Coordination

COMS Common Storage

CSS Cascading Style Sheets

CT Control Trigger

DA Decision Agent

DB Database

DDQN Duelling Deep Q-Network

DE Decision Engine

DMA Decision-Making Algorithm

DMO Domain Manager and Orchestrator

DNN Deep Neural Networks

DQN Deep Q-Network

DRL Deep Reinforcement Learning

eMBB Enhanced Mobiled Broadband

eNB eNodeB

EPC Enhanced Packet Core

ETSI European Telecommunications Standards Institute

ECATP Enhanced Context-Aware Traffic Predictor

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 8

ENI Experiential Networked Intelligence

EUI External User Interface

FDRL Federated Deep Reinforcement Learning

GCN Graph Convolutional Networks

gNB gNodeB

HA-DRL Heuristically-Assisted DRL

HTML Hypertext Markup Language

IDMO Inter-Domain Manager and Orchestrator

IDQN Independent Deep Q Network

KPI Key Performance Indicator

LCM Lifecycle Management

LTE Long Term Evolution

LTE-M TE Machine Type Communication

LXD Linux Container Hypervisor

MDP Markov Decision Process

ML Machine Learning

MS Monitoring System

NB-IoT Narrowband Internet of Thing

NBI North-bound Interface

NFV Network Function Virtualization

NR New Radio

NSA Non-Standalone

NSP Network Slice Placement

NSPR Network Slice Placement Request

OPEX Operational Expenditure

P2C Power of two choice

PNF Physical Network Function

PRB Physical Resource Block

PreBAC Prediction-based Admission Control

PSN Physical Substrate Network

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 9

QL Q-Learning

QoS Quality of Service

RAN Radio Access Network

REST Representational State Transfer

Rpi Raspberry Pi

RL Reinforcement Learning

SAC Soft Actor-Critic

SBI South-bound Interface

SCHE2MA Service CHain Energy-Efficient MAnagement

SLA Service Level Agreement

SDK Software Development Kit

SDN Software-Defined Network

SFC Service Function Chain

SFL Slice Functional Layer

SFTP Secure File Transfer Protocol

SML Slice Management Layer

SM Slice Manager

SSH Secure Shell

TASAC Time-of-day Aware Slice Admission Control

TSDB Time-series Database

UE User Equipment

uRLLC Ultra-Reliable Low-Latency Communication

USR User Service Request

VM Virtual Machine

VNF Virtual network Function

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 10

1 Executive Summary
The scope of this deliverable focuses on the way the Decision Engine (DE) is integrated and interacts with the
rest of the components of the MonB5G project, namely the Analytics Engine (AE) and the Monitoring System
(MS). This deliverable differentiates itself from D4.2 [1] in which the latter focuses on “the devised DE
algorithms” for which detailed descriptions of the problem domains they target (i.e. admission control, intra-
slice orchestration, among others) are provided, as well as formulations for the contributed solutions. With
these contributions in hand, D4.3 presented here analyses the integration of the DE with the rest of the
MonB5G components (AE and MS), its integration with controlled systems and implementation results when
available. The emphasis of this deliverable is on the appropriate functional testing, validation of
interoperability of the MonB5G components with the DE, as well as the used data models (when necessary)
and any other additional components and functionalities added to ensure its correct deployment.

The first part of this deliverable (Section 2) starts with a review of the generic architecture of the DE and the
overall MonB5G architecture in order to provide enough contextual information for the subsequent sections.
This section will also review the details of the different components and interfaces involved among the
communication of its components, so that it is feasible to understand the corresponding integrations of the
DE.

The second part of this document (Sections 3) details the DE algorithms that have been integrated and have
had functional validation when integrated with other MonB5G components. Each of the corresponding sub-
sections in this part includes:

 Brief description of the Artificial Intelligence (AI) or Machine Learning (ML) Algorithm of the
corresponding solution (already explored in more detail in D4.2 and previous MonB5G deliverables),

 Description of the messaging interfaces used by the DE implementation to communicate with other
(MonB5G) components,

 Description of the integration APIs, which refers to the application level details that allow for the
messages interfaces to be implemented

 Description on the Development Frameworks used to develop and implement the DE, its APIs and
ease its integration with other components, and

 Key Performance Indicator (KPI) mappings of the DE to the performance objectives set by the MonB5G
project.

The final part of this deliverable (Section 4) will provide insight on the final deployment of the DE and the
rest of the MonB5G components on an experimental platform, with a very brief description on the immediate
work and a very rough timeline for the completion of this deployment. This last section works as a prelude
to the technical reports on system integration and operation of the MonB5G components.

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 11

2 Overall DE Architecture and MonB5G Component Integration
The generic architecture of the DE was first introduced in [2], and has been improved since then in order to
provide an updated version in the current deliverable. The DE can be described as being composed of several
internal sub-blocks:

 The Input/output Pre-processors (presented already in [2]),
 the Control Trigger (CT) [2], and
 the Decision Algorithm (DA) [2]
 the Input/Output Interfaces, formally introduced in the current version.

The improvements have been added in order to make it compliant with the ETSI-ENI standard [3]. The generic
architecture of the DE and its internal sub-blocks are shown in Figure 1. The specific implementation of each of
these components is mutually dependent, being defined by the particularities of the problem domain targeted by
the Decision-Making Algorithm (DMA) and the underlying controlled system. The DMA can be an algorithm of any
type (i.e. linear programming, fuzzy logic, etc), including ML algorithms, or any type of combinatorial or
optimization solution.
.

Figure 1. Generic Architecture of the DE.

Decision Engine

Input Pre-processor

Decision-Making
(Intelligent Algorithm)

Output Pre-processorControl Trigger

Data Normalization

External
User

Interface

Other
DEs

Data Ingestion

Output Generation

Denormalization

Policy Management

Situation Awareness

Model-Driven Engineering

Actuator
(ACT)/Controlled

Element (CE)

AE

Input/Output Interfaces

Kafka I/F
API for specific modulesHandshake I/F

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 12

As mentioned in [2], the Input Pre-processor will sample multiple metrics from the controlled system (arriving via
de MS/AE) and re-format and normalize them into a bounded domain and based on this re-formatted variables,
it will build an instance of the state vector that will be part of the state representation of the underlying Markov
Decision Process (MDP) for which the Reinforcement Learning (RL) algorithm is deployed.

Similarly, the Output Pre-Processor will re-format the output of the DMA and de-normalize it into a domain that
matches the constraint of the controlled system and the communication interfaces. As mentioned earlier, the
specifics of the (de-)normalization and re-formatting for both the Input and Output Pre-Processors is dependent
on the specifics of the DMA and the underlying controlled system.

The Input/Output Interfaces have been added to the current version in order to provide a single point of entry
and exit from the DE, and to ease the way it interfaces with the other MonB5G components and other elements
in the underlying system. Given that the MS has been implemented with a Kafka Bus Interface, it is expected that
the AE/DEs communicate with each other extending the Kafka Bus, as it will be shown in Section 3. The
Input/Output Interfaces also expect to provide support to enable communication across DEs and to an External
User Interface (EUI) in order to allow for a human operator to interact with the DEs.

The Control Trigger (CT) was added to allow for the DE to be able to respond to operating conditions of the
controlled system that would require immediate decision making. As explained in [1], the DE is the highest level
of a Control Loop (CL), and the time window of this CL can vary depending on the problem domain targeted by
the DMA. However, it is expected that this time window is in the order of a couple of minutes for most problem
domains, since it will usually take an approximate time window of said size for the system to respond to the
decisions issued by the DMA and reach the state that the DMA intends for the controlled system (i.e. for the loop
to close). During this time window, a series of conditions might prompt an immediate change of behavior by the
system. Examples of these situations could be a fault that triggers a system malfunction, a surge in load, a
malicious attack, sudden changes to the underlying infrastructure and available physical resources, or even
changes in the energy consumption for multiple reasons. The CT then offers the functionality to enable the DE to
trigger actions as a response to these conditions.

It is important to mention that the implementation of some of these sub-blocks within the DE are optional, and
their presence will be subjected to the particulars of the DMA and the environment in which it is operating, while
other sub-blocks like the DMA is of fundamental importance, since it is the sub-block that generates the action
for the system. Similarly, as it was previously mentioned, the particular implementation of each of this sub-blocks
is also dependent on the specifics of the use case.

As mentioned in [1], the DE presents different levels of instantiation that can be used at the different scopes
of data analytics and decision-making in order to minimize the data exchange and allow faster local analysis
and decisions. This applies to the MS and the AEs as well. The different levels of instantiation are:

 Virtual Network Function (VNF)/Physical Network Function (PNF)
 Network Slice Level, where each slice template includes an MS/AE/DE
 Domain Manager and Orchestrator (DMO)-Level, in which the domains are the Radio Access Network

(RAN), Edge and Cloud, in which same-level MSs/AEs/Des can perform domain-wide management

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 13

 Inter-Domain Manager and Orchestrator (IDMO)-level, which manages the lifecycle of end-to-end
network slices.

When an instantiation of the MS/AE/DE triplet is deployed, they can be flexibly bounded to each other, and
communication is established between them through the corresponding interfaces. The design and
implementation of these communication interfaces will depend on the use case for which the triplet is
deployed and the specifics of the problem domain. Figure 2 reviews the communication between the
MS/AE/DE triplet, revisiting the information presented in [1].

Figure 2. Interfaces between the MS/AE/DE components of the MonB5G architecture.

The DE will read the inputs to its DMA component either from the AE or from the MS. The input coming from
the MS can be the current system status sampled by the MS, or from the Common Storage (COMS)
component, which is included inside the MS. A more detailed description of the interfaces show in Figure 2
was given in [1], which we recap here for convenience:

 IAD: DE Reads the predicted KPI from AE
 IMD: DE reads MS measurements, either directly or from the COMS
 IMA: AE reads MS measurements, either directly or from the COMS
 IUD: EUI reads/Changes DE configuration
 IUA: EUI reads/Changes AE configuration (e.g., prediction interval, learning rate)
 IUM: EUI reads/changes MS configuration (e.g., granularity)

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 14

 IUC: EUI reads/changes actuation configuration (e.g., API primitives’ parameters)
 IDACT: DE sends decisions to Actuators.

The Actuators encompass the interface to the controlled system, and it is the point of entry of the commands
coming from the DE. The actuators are the ones in charge of executing the actions in the controlled system
and transitioning its state. These are the lowest level of the CL in the MonB5G architecture. The Actuators
will vary depending on the use case and its implementation, and the solutions provided in Section 3 will
demonstrate different actuators being used with the MonB5G components.

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 15

3 DE Integration: Implementation of AI Algorithms and Corresponding
Modules

3.1 Heuristically assisted DRL approach for network slice placement
In order to optimize the acceptance ratio in the case of random slice request arrivals and random holding
times of resources by slices, we proposed a hybrid placement solution based on Deep Reinforcement Learning
(DRL) and a dedicated optimization heuristic based on the "Power of Two Choices" principle. The DRL
algorithm uses the so-called Asynchronous Advantage Actor Critic (A3C) [4] algorithm for fast learning, and
Graph Convolutional Networks (GCN) [5] to automate features extraction from the physical substrate
network. The proposed Heuristically-Assisted DRL (HA-DRL) enables a significant acceleration of the learning
process and substantial gain in resource usage when compared against other state-of-the-art approaches, as
evidenced by evaluation results. In the following, we will present the framework and technologies applied to
integrate the HA-DRL solution.

3.1.1 DEVELOPMENT FRAMEWORKS
The architecture of the proposed Network Slice Placement (NSP) solution is illustrated in the Figure 3. The
proposed framework is divided into three main components:

A. The Analytics Engine (AE):

The AE contains the Physical Substrate Network (PSN) database that stores the updated data about the
available resources of the PSN. It also contains the Network Slice Placement Request (NSPR) generator that
is used to generate NSPR arrivals according to a specific network load regime. It generates slice requests
arrivals considering three different network load scenarios: stationary, cycle-stationary, and non-stationary
network load scenario. The stationary network load scenario static while the cycle-stationary and non-
stationary loads vary in time. The former varies with a predictable periodic load while the latter in a non-
predictable change. The NSPR requirements and PSN available resources data are used as inputs to the DRL
algorithm by the placement module.

B. The Decision Engine (DE):

The placement module implements the DRL-based algorithms and also the Power of two choice (P2C)
heuristic algorithm referred to in the following as HEU used by HA-DRL and HA-eDRL algorithms to accelerate
convergence. Both algorithms calculate:

i) a VNF placement decision, that is, where each VNF of the NSPR is to be placed and

ii) a VNF chaining decision, that is, which paths in the network to use to interconnect the different VNFs.
The Placement module can be configured to use one of the Placement algorithms or both if comparison
of Placement solutions is necessary.

Once the calculation of the Placement decision is done for one NSPR, an update of the available resources in
the PSN is made and some key performance metrics are registered in the form of data series; the key metrics
are the acceptance ratio of network slices and the resource usage.

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 16

C. Visualization modules:

The time series introduced above are used by the Data visualization component to build two dashboards: an
acceptance ratio dashboard and a network load dashboard.

Both dashboards are used to show the performance of the algorithms according to variations on the network
load in real time. Finally, the graph visualization component is used to allow the visualizations of the PSN and
NSPR graphs.

Figure 3. The DRL-HA deployment frameworks.

The technologies applied for the implementation of the different components are:

• Python: We use Python and PyTorch for implementing the different elements of the Analytic and
Decision Engines.

• Neo4j: A Neo4j graph database represents and displays the PSN graph and the NSPR graph together
with its requirements.

• MySQL: We use the MySQL database manager system to implement the Key metrics database with one
table for the Acceptance ratio data series and another one for the Network load data series.

• Grafana: We use the Grafana tool to implement the Data visualization component in which we
represent two dashboards using the MySQL database of Key metrics as data-source.

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 17

3.1.2 MESSAGING INTERFACES
To learn the model, the reinforcement learning algorithm applies a set of actions on the environment. Each
action results in a reward that evaluates the new state of the environment. In the proposed framework, the
learning process generates messages between the AE and DE modules. Figure 4 presents the message flow
diagram between the DC and DE modules including the internal messages exchanged in each module. In the
learning procedure, first the DE receives a NSPR request from the network generator with the slice
description. The PSN graph is then send to the GCN module in the DE to maximize the graph learned features
and used as inputs to the DRL algorithm. Each NSPR represents a set of actions to place VNFs of the slice. An
action represents a NSPR VNF placement in one PSN node. If the action is successful and the path is defined
between the VNF to be placed and the old placed VNFs, the DE sends an update request to the AE in order to
update the PSN. One the learning is concluded; the acceptance ratio and the network load metrics are stored
in the database.

Figure 4. AE and DE messages data flow diagram.

3.1.3 INTEGRATION APIS WITH EXTERNAL ELEMENTS AND AE
In the framework, we define two APIs the internal API is the interface between the AE and DE. The external
API provides the results and metrics from the DE to external modules such as the visualization modules. Table
1 showcases the different endpoints.

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 18

Endpoint Type method Data

API/PSN Internal AE GET Returns the description of the current PSN
graph status.

API/PSN/update Internal AE POST Updates the PSN with the new slice and VNFs
placements.

API/NSPR Internal AE GET Returns the description of the slice
described in the current NSPR.

API/NSPR/next Internal AE GET Returns the next received slice request to be
placed

API/learn External DE POST Learns a new model with the specified
parameters.

API/solve External DE POST Provide solutions with the last learned
model.

API/metrics External DE GET Returns the performance Metrics for the
visualization tools.

Table 1. Internal and external APIs endpoints.

3.1.4 MAPPING TO KPIS
The proposed solution covers a number of Monb5G KPIs with regards to scalability and the AI algorithm
performance. The simulation results applied to the DRL-HA solution presents a fast convergence of the
algorithm, for instance 1000 episodes less training phases than the state-of-the-art baseline. The algorithm
execution time is less than 1s. The algorithm was also tested under different network loads up to 90%. Figure
5 showcases the results of DRL approach in the case of the use of a heuristic (HA-DRL) and without (DRL) in
two different network loads (normal 50% and critical 90%). We notice that even in an excessive network load
(90%) the DRL with heuristic β =2 can achieve high slice acceptances ratio (>90%) compared to other methods.
This responds to the Monb5G KPIs that consider to maximize the NS acceptance ratio (UC1/ES1 KPI-5,
UC1/ES2 KPI-3).

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 19

Figure 5. Evaluation Results of the DRL approach in 50% and 90% network load. (β parameter is used to

control how much HEU influence the policy).

3.2 Multi-domain Slice Orchestration: SafeSCHEMA and SCHE2MA Orchestration
Frameworks

SafeSCHEMA and SCHE2MA are both Service CHain Elastic MAnagement frameworks for VNF placement and
migration, with the difference that SafeSCHEMA is based on Safe RL to ensure the safety of the systems and
the agents upon deployment. On the other hand, SCHE2MA focuses on optimizing latency and energy jointly
in a purely distributed RL framework. SafeSCHEMA and SCHE2MA share the same core infrastructure for
deployment and integration, and also share a lot of the software constructs. They differ in the following two
ways:

 SafeSCHEMA is designed to optimize end-to-end latency of Service Function Chains (SFCs), while
SCHE2MA focuses on jointly improving latency and energy consumption for end-to-end slices.

 SafeSCHEMA employs safe RL in order to restrict the states/actions that the intelligent agents can
visit in the process of learning a VNF placement policy, while SCHE2MA has no such restriction.

SafeSCHEMA is a modular architecture capable of safe and automated slice management for networks that
consist of multiple interconnected domains that span multiple locations. The architecture consists of multiple
distributed intelligent agents that co-operate to orchestrate the slice elements, specifically to manage the
placement of the slice VNFs. The RL agents are wrapped with a Safety Shield, which prevents the execution
of unsafe placement actions that can be proven dangerous for the operation of the E2E slice performance.

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 20

Previous results demonstrated improved performance over competing solutions, while ensuring the safety
of the performed actions during real-time slice orchestration.

Along the same lines, SCHE2MA has been implemented as a DE using pure distributed RL that can intelligently
deploy SFCs with shared VNFs per se into a multi-domain network. It is a distributed zero-touch management
and orchestration algorithm that requires no intervention. It comprises of multiple distributed DEs based on
DRL that orchestrate the VMs locally, limiting the computationally and energy costly frequent inter-domain
migration and total slice orchestration. SCHE2MA was evaluated through model validation and simulation
while demonstrating its ability to jointly reduce average service latency by 103.4% and energy consumption
by 17.1%, contributing to the minimization of the Operational Expenditure (OPEX), compared to a centralized
RL solution.

3.2.1 DEVELOPMENT FRAMEWORKS

The distributed intelligent agents of the SafeSCHEMA and SCHE2MA frameworks were developed on a
custom-made OpenAI Gym environment using Python 3.8 and deployed using Docker containers. TensorFlow
2.4.0-rc0 [7] and with the high-level Keras 2.4.2 open-source libraries were used to build their Neural
Networks. The network environment used for the emulation is a fork of Containernet, an advanced branch
of Mininet network emulator used for evaluation by many works in related literature. It simulates a realistic
virtual network, VM or container hosting, switching, and application code for developing and experimenting
with SDN-NFV networks. The network topology used is a variation of the 2005 Nordu European network, from
The Internet Topology Zoo online database, adjusted to accommodate multiple computational domains and
fit the requirements of the study.

The FastAPI Python module was used for the development of a REST-ful inter-domain communications
system, called the Auction Mechanism. For the case of SCHE2MA, a Graphical User Interface (GUI) was
developed using Hypertext Markup Language (HTML) and Cascading Style Sheets (CSS), and other web-based
tools. This GUI is shown in Figure 6. The purpose of this GUI is to ease the monitoring of SCHE2MA’s
behaviour, observe the way VNF placements are occurring and in general to improve the controllability of
SCHE2MA.

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 21

Figure 6. The GUI developed for the SCHE2MA Framework.

3.2.2 MESSAGING INTERFACES

Internally, all SafeSCHEMA and SCHE2MA modules communicate through multiple REST API calls. The
interface used to transfer system state information is used to transfer network and computational state
messages and post data relevant to the local decision-making of the domain agents. All messages are
serialized and then stored locally in multiple SQLite3 databases.

Auction Mechanism

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 22

Figure 7. Overview of the SafeSCHEMA multi-domain and distributed Auction Mechanism.

The Auction Mechanism is a system that enables inter-domain VNF migration in a distributed multi-domain
network. The Auction Mechanism enables scalability and parallel operation between the slice domains, as
shown in Figure 7.

The operation of the Auction Mechanism can be described in the following steps:

1. Selection: The Auction Mechanism chooses the next service VNF and advertises to the distributed
domains the requirements of the VNF placement.

2. Participation: The distributed Safe RL agents of the domains generate their local action or
Confidence Vector to propose a local placement for the advertised VNF, ensuring minimum data
transfers.

3. Auction: The Auction Mechanism receives the Confidence Metric of each domain and chooses the
highest bidder or the domain with the maximum Confidence Metric as a candidate to receive the
VNF currently in auction. The Auction Mechanism notifies the candidate domain with an
acknowledgment response.

4. Orchestration: If the candidate domain is different from the current domain that hosts the VNF in
the auction, the inter-domain migration is initiated. Contrariwise, the domain agent performs an

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 23

intra-domain migration to the node with the highest Confidence Metric of the local Confidence. If
the VNF is already instantiated in the same node, the procedure of migration is declined.

3.2.3 INTEGRATION APIS
All SafeSCHEMA intelligent agents, as well as the intelligent agents of SCHE2MA and their respective modules,
communicate via REST API calls. The messages are structured with JSON format. Python and the FastAPI
module were used for the construction of the interfaces.

API Endpoints

The communication between the distributed agents of SafeSCHEMA and SCHE2MA and their respective
Auction Mechanisms through the API are described in Table 2:

Endpoint Method Message

/modules/state/ POST Network state JSON Message.

/modules/heartbeat/ GET Acknowledgement and health status messages channel for the local
Safe RL agents.

/migrate/ POST Migration request from the Auction Mechanism to the source domain.

Table 2. API endpoints of the SafeSCHEMA agents and the Auction Mechanism.

3.2.4 MAPPING TO KPIS

The evaluation and testing of our proposed framework, show that, compared to our proposed solution,
unrestricted RL agents explore unsafe regions of the state-action space during exploration, leading to the
SLAs being broken. In contrast, SafeSCHEMA leads to better performance, scalability and stability thanks to
the use of safe RL. Figure 8 presents the performance of the compared algorithms during the operation of
multiple slices in distributed domains, hence their ability to maintain performance, demonstrating the ability
to scale horizontally. The average slice latency is plotted against the number of chained VNFs on each of 4
slices. It is clear, especially in the case of 2 and 4 chained slice VNFs that SafeSCHEMA was able to maintain
a lower slice latency by 126.62% from Static in the case of 8 VNFs.

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 24

Figure 8. SafeSCHEMA evaluation results in low-latency services.

The SafeSCHEMA framework contributes and improves the following MonB5G KPIs:

 [UC1/ES1 KPI-1]: Reduction of SLA Violations.
 [UC1/ES1 KPI-7]: Improve the accuracy of the AE/DE mechanisms for detection of slice performance

degradation.

In the case of the SCHE2MA framework, as previously mentioned, it is designed to minimize the end-to-end
average slice latency and energy consumption via monitoring and orchestrating the slice VMs in the multiple
local network domains, which leads to a reduction of the OPEX incurred by infrastructure providers. The
SCHE2MA framework mainly contributes and improves the following MonB5G KPIs:

 [UC1/ES1 KPI-5] OPEX reduction due to the automation of service management: Approximately
20% reduction in energy consumption and 103.4% reduction in E2E service latency were validated via
testing. Energy efficiency targets and service KPIs and SLAs were met during evaluation.

3.3 RL-based Slice Admission Control
This section describes the integration of another DE instance called Prediction-based Admission Control
(PreBAC), which is an RL-based Admission Control solution that exploits future state prediction from an
Enhanced Context Aware Traffic Predictor (ECATP) [8]. PreBAC works by admitting or rejecting (optionally

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 25

can also delay it) a User Service Request (USR) into the network slice for which it requires to get service from.
The admission or rejection is done based on bandwidth resource availability at the Base Station (BS), and
PreBAC dynamically allocates the available capacity among the active network slices. The admission/rejection
and optional delay occurs depending on how PreBAC allocates the bandwidth resources to the slices in a
specific control cycle.

3.3.1 DEVELOPMENT FRAMEWORKS

The DE implementation of PreBAC has been implemented using Python 3.8, with Tensorflow 2.7.0 [7]. The
Reinforcement Learning algorithm used in its implementation is the Soft Actor-Critic (SAC) [9]. The agent runs
inside a container supported by the Linux Container Hypervisor (LXD), from which it communicates with the
MS and the AE running within their own respective containers. All the MonB5G components deployed for
this use case are running on site with a BS with its respective gNB.

The development of the interfaces between the EUI and the DE for this instance were done using cURL and
FLASK, which are both available as libraries in Python 3.8. The utilization of these two frameworks fall in line
with the design and implementation provided by the MS, which basically set the blueprint for the
communication interfaces.

For performance and compatibility purposes, a PreBAC Proof of Concept has been implemented, deployed
and functional tested in an experimental platform at Iquadrat premises that will be used exclusively for the
project that consists on the components shown in Figure 9. The performance results will be reported in the
D6.1-Technical report on system integration and operation. This platform consists of two Amarisoft mini gNBs
with their MEC nodes directly associated to it. The Amarisoft mini gNBs are connected to a 5G Core working
in 5G Standalone (SA) mode running in a container in a LXD server. The UEs in these setting consist on two
5G OnePlust 8T phones, and a SIM8200EA-M2 5G HAT attached to a Raspberry Pi (Rpi) 3/4.

The HAT component is a 5G module that can be attached to the Rpi in order to allow connectivity of the Rpi
to the Amarisoft gNB through the 5G network. The Rpi has computational capabitilities that can be used to
perform some data processing, or to use it as a 5G hotspot to a remote LAN attached to the Rpi. The utilization
of the HAT opens the possibility to try out a plethora of different use cases.

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 26

Figure 9. Experimental Platform for the implementation of PreBAC (DE).

3.3.2 MESSAGING INTERFACES
In its current deployment, PreBAC communicates with the rest of the MonB5G elements by extending Kafka
Bus Interface deployed in the MS. This is feasible for PreBAC since it is deployed on-site within the same
technological domain in which the MS and AE are deployed.

The communication from the EUI towards PreBAC is used mainly to alter configuration parameters of PreBAC,
and some details about its control loop behaviour. The messaging interface used for this are POST requests
through a REST interface. These requests are used to load JSON files that contain information on the
configuration that controls PreBAC’s behaviour. In the current implementation as of the time of this writing,
the request can be issued to upload new configuration files, but the configurations won’t take effect until the
DMA sub-block is restarted. Future implementations, will include functionality for the configuration changes
to take effect while running, as long as it is feasible for the specific type of configuration. All configuration
files used by PreBAC are in JSON format.

3.3.3 INTEGRATION APIS

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 27

The MS and the AE are able to send messages to the DE using the Publisher/Subscriber interface provided by
the Kafka Bus [10]. The DE includes a Kafka Interface that subscribes to two topics: one belonging to the MS
and another to the AE. The DE communicates back to the COMS of the MS in order to store the action it
issued for the current control cycle. To send this message, it also uses the Kafka Bus, with a separate topic of
its own. The information flowing from the MS towards the AE are all marshalled in the same message,
formatted according to the topic to which the DE is subscribed to. A similar procedure is applied do the
messages coming from the AE. Table 3 shows the messages exchanged by the DE and the rest of the MonB5G
components.

The information arriving to the DE from the AE and MS are firstly given to the Input Pre-Processor, which
normalizes each field independently from each other, and then builds the state space representation
necessary for PreBAC to carry out its decision-making process.

Sampled Metric Source/Destination I/O Data

Timestamp MS/DE Current aggregate bandwidth consumption in the
domain (for all deployed slices)

Traffic load of slice ‘s’ in
current timestamp

MS/DE The traffic load for a slice ‘s’ in the current
timestamp. The message sent includes the traffic
load of each slice separately.

Total bandwidth
capacity of BS

MS/DE The total bandwidth capacity available in the BS.

Predicted traffic load of
slice ‘s’

AE/DE The predicted traffic load for the next timestep for
slice ‘s’. This prediction is generated in the AE
through an inference process performed by ECATP.

Decision for current
control cycle

DE/MS This is the resulting action issued by the DMA of the
DE. It is stored in the COMS of the MS for
visualization and evaluation purposes.

Table 3. Integration APIs with other MonB5G components

For a human user to communicate with the REST API of the DE, the POST requests that can be issued are
shown in Table 4. The configuration files for PreBAC contains the parameters used by the SAC algorithm,
which makes up the core of PreBAC. These parameters include the file path to the internal neural network
parameters of SAC, the frequency of training, parameters of the neural networks of the SAC algorithm, and
other related ML configurations.

REST API call Source/Destination Description

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 28

/config/prebac EUI/DE Upload configuration file for PreBAC, which is one of
the DMAs implemented within the DMA.

/config/static EUI/DE Upload configuration file for static allocator, which is
one of the DMAs implemented within the DA. This
static allocator is deployed temporarily whenever
PreBAC is being restarted or unavailable due to other
maintenance processes.

/config/utilityParamet
ers

EUI/DE Upload configuration about the relative utility of the
traffic load from different slices and their impact on
the behavior of PreBAC.

Table 4. EUI integration APIs with the DE.

The utility parameter configuration files establish the relative revenue generated by servicing USRs from each
slice. It also contains information of the penalties incurred when USRs are delayed and rejected. All these
parameters are a representation of the actual penalties and utilities associated to each slice, but are
represented in a way that can be consumed by PreBAC, and alter its behavior and policy.

3.3.4 MAPPING TO KPIS
PreBAC’s ultimate objective is to reduce the overall rate of rejection of incoming USRs for the different slices,
while increasing the overall utility of users, slice owners and infrastructure providers. The rate of rejection of
USRs can be specified as an SLA.

PreBAC seeks to ensure that traffic that is considered more critical in terms of its Quality of Service (QoS)
constraints and the amount of revenue it generates gets processed as it arrives, while at the same time
preventing service starvation by the USRs for other slices that generate less marginal benefits.

In more concrete terms, the KPIs that PreBAC seeks to improve is the reduction of the probability of SLA
violations. In this context, the probability of SLA violations translates into an overall traffic reject rate across
the slices in the system, which PreBAC seeks to reduce. Specifically, we can map the KPI to the following:

[UC1/ES2 KPI-1]: Reduce the number of SLA performance violations by 20%

3.4 Time-of-day Aware Slice Admission Control (DE) based on traffic prediction,
LSTM-based anomaly and fault detection

The goal of Time-of-day Aware Slice Admission Control (TASAC) DE is to derive optimal slice admission policy
on the basis of current resources usage by the network slices and the predicted future consumption (see

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 29

MonB5G Deliverable D4.2 [1]. The TASAC DE is placed in DE sublayer of MonB5G architecture either in the
DMO or IDMO. Figure 10 shows the implementation architecture of the TASAC DE in the DMO scenario along
with the type of information it exchanges with specific MS (Resource KPI Aggregator) and AE (Aggregate
Resource Consumption Predictor) components within MonB5G architecture.

Figure 10. Example placement of TASAC DE in DMO and its integration with MonB5G Architecture

components

The TASAC DE is integrated with the Time-series Database (TSDB), which is the current implementation of
the COMS component, and Slice Requester solutions. The TSDB is responsible for storing the information
about consumed resources, predicted resource consumption, TASAC DE algorithm-specific metrics, and
metadata of all accepted slices. The algorithm-specific metrics of TASAC DE include variables such as the
Deep Q-Network (DQN) rewards, DQN penalties, output Q-values and DQN decision history. The Slice
Requester simulates the influx of slice admission requests issued by the slice tenants (sent over Iid/Ipi

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 30

interface to DMO/IDMO). The most common use case would involve using the TASAC DE as a block assisting
DMO or IDMO. It has to be noted however that the implementation is generic and the scope of operation of
the TASAC DE can be adjusted to specific use cases (e.g. better usage of a part of domain's resources).

3.4.1 DEVELOPMENT FRAMEWORKS

Both TASAC DE as well as Slice Requester have been implemented using Python 3.10 and containerized with
Docker. TASAC exposes the REST API complementary with the OpenAPI framework [11]. The AI-driven
mechanisms (such as DQN agent) are implemented using Keras and Tensorflow [7] as the compute backend.
The example results of Kubernetes-based TASAC DE deployment that aims to maximize the utilization of
system bandwidth is presented in Figure 11.

Figure 11. Histogram of slice admission and rejection depending on the requested resources.

3.4.2 MESSAGING INTERFACES
TASAC DE implements two interfaces to communicate with MonB5G entities the web-based North-bound
Interface (NBI), implemented as a REST interface, and message-based a South-bound Interface (SBI)
implemented with Kafka [10]. The NBI exposes the methods for requesting Slice Admission Decisions based

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 31

on the parameters of a slice request issued by a tenant. The SBI is a Kafka-based interface that is used to
consume network state messages (current and predicted resource consumption) as well as post data related
to the undertaken slice admission decisions and other metrics that can be leveraged by other MS/AE/DE (e.g.
to verify the module stability, DQN agent performance, etc.). The messages published to the message bus are
serialized to the line protocol format to facilitate easier consumption by the metric collector (Telegraf [12])
and injection to the TSDB (InfluxDB [13]).

3.4.3 INTEGRATION APIS
The TASAC DE communicates with the MonB5G entities via the message bus and web-based interface (Section
3.4.2). Therefore, the southbound integration with MonB5G system is achieved by specifying a common list
of message keys. The analyzed use case involves the deployment of TASAC DE cooperating with MS and
Resource Consumption Predictor (described in [14]) to maximize the utilization of bandwidth in the domain.
The exemplary list of messages published and subscribed by the TASAC DE (marked as PUB and SUB
respectively) is presented in Table 5.

Message key Type I/O Data

ms.ms.total_bw SUB Current aggregate bandwidth consumption in the domain (for all
deployed slices)

ae.rcp.total_bw_pred SUB The total bandwidth prediction for the next sample (based on the
predefined interval)

ae.rcp.api.prediction.r
eq

PUB Prediction requests containing the time range of prediction, unique
request id

de.sac.new_slice PUB The message generated in case of slice admission request
acceptance (used by RCP to monitor the list of all accepted slices for
the purpose of prediction)

ae.rcp.api.prediction.r
es

PUB Prediction response containing the predicted values of the resource
consumption in the requested time period together with the unique
request id

Table 5. Messages exchanges via the SBI.

The upper-layer entities (e.g. DMO, IDMO) can communicate with TASAC DE using the API described in Table
6.

Endpoint Method Data

/api/v1/admission/requ
est/

POST Slice Admission request containing the request ID, slice type, the
maximum amount of requested resources, the time of slice

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 32

deployment and termination, priority and the REST-based
endpoint to communicate the slice admission decision

/api/v1/healthcheck/ GET Returns the health of TASAC DE

/api/v1/ GET API Index

Table 6. TASAC DE Norhbound API.

3.4.4 MAPPING TO KPIS
The primary goal of the TASAC algorithm is to increase the utilization of resources in the given time period
by taking optimal slice admission decisions. The approach can also potentially lead to indirect gains such as
e.g. improved OPEX (higher return under the same available resource pool). Also, the adopted DQN-based
algorithm penalizes heavily any possible excessive admission (i.e. over the available resource pool) to
mitigate SLA violations.

Altogether, the TASAC enabler contributes to the maximization of NS acceptance ratio and improves the
folowing MonB5G KPIs [15]:

 (UC1/ES2 KPI-1): Reduction of SLA Violations
 (UC1/ES2 KPI-4): OPEX reduction due to the automation of service management

3.5 Distributed Slice Resource Allocation in the RAN domain
While advanced admission and control mechanisms could select the set of slices to be admitted to the system
and set static resource allocation limits to satisfy the available capacity, the dynamic and heterogeneous
nature of the slice's traffic load and wireless channel statistics may lead to suboptimal network performance
in the long run. Due to rapid traffic fluctuations, slice resource allocation decisions in the RAN domain should
be dynamic, proactive, and flexible to avoid degradation of service and performance.

For these reasons, we use an FDRL-based architecture to address RAN resource allocation in the slicing
scenario. In particular, we rely on local Decision Agents DAs, one per slice, running as software instances
within the premises of each BS, as shown in Figure 12. Each agent is responsible for making slice Physical
Resource Block (PRB) allocation decisions based on local monitoring information received from the
underlying network monitoring system. We refer to such monitoring information as Base Station context.

To solve the above problems simultaneously, we introduce a FL layer that allows inter-agent information
exchange and expedites the learning procedure of local knowledge sharing. Unlike multi-agent reinforcement
learning, which defines a set of autonomous agents that observe a global state (or partial state) of the system,
select individual actions and receive individual rewards, FL enables training of machine learning models over

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 33

multiple decentralized entities that have access to a limited portion of the overall available data, i.e., in our
case, access to local monitoring information only.

FL allows local DEs to collaboratively learn a shared prediction model by iteratively aggregating multiple
model updates and returning a refined version of it that combines multiple local models according to specific
federation strategies. This decouples the learning procedure from the need for centralized data sources. The
refined model is then shared with the agents which significantly allows to improve the learning rate, ensure
privacy and enable better generalization.

Figure 12. Generic Federated DRL architecture for RAN slicing.

Related work and large-scale simulation results of the overall framework have already been presented in
Deliverable 4.2. To further validate our key idea and architectural components, we plan to develop a working
testbed consisting of 5G equipment and control software. Below, we outline the key architectural
components and perquisites for full implementation as well as the initial APIs required to monitor KPI metrics
and enforce allocation decisions.

3.5.1 DEVELOPMENT FRAMEWORKS
We implement our framework in Python programming language, exploiting OpenAI Gym library [6] and
interfacing DRL agents with a custom base station simulator environment, which includes virtual transmission
queues and main PHY/MAC/RLC functionalities, together with O-RAN E2 interface to allow gathering the
networking statistics from each distributed unit (O-DU), and to enforce PRB policy decisions in the BS slice
scheduler based on defined state space and action space, as depicted in Figure 13.

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 34

Figure 13. Software architecture and protocol stack overview.

.

In order to validate our framework in realistic settings, we consider the city of Milan, Italy, as scenario of
study. We collect city-wide RAN deployment information including more than 50 BSs from publicly available
sources, and simulate realistic human mobility patterns leveraging the work of [16]. An example of the
generated data is available in the following Figure 14.
The softwarized agent instances interact with the simulation environment and collects simulated base station
traffic. We evaluate our proposed architecture through an ad-hoc simulator running on a dedicated server
that is equipped with two Intel(R) Xeon(R) Gold 5218 CPUs @ 2.30GHz and two NVIDIA GeForce RTX 2080 Ti
GPUs.

Figure 14. Simulation data overview.

We refer the reader to Deliverable 4.2 for a more in-depth evaluation of the overall framework.

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 35

Figure 15. Testbed Architecture.

Additionally, a preliminary implementation exploiting a fully-fledged 5G emulator has been already achieved,
as part of WP6 activities. Figure 15 shows the architecture of our distributed slice resource allocation solution
in the RAN domain.

The preliminary testbed implementation includes the following main components:

 Amarisoft Callbox: It acts as a 3rd Generation Partnership Project (3GPP) compliant with eNodeBs
(eNBs)/gNodeBs (gNBs) and Enhanced Packet Core (EPC)/5G Core (5GC) and enables functional and
performance testing. Thanks to its multi-cell configuration, it is also suitable for handover and
reselection tests. It also supports 5G New Radio (NR) Non-Standalone (NSA) mode. Table 7
summarizes the technical specification of the device.

 Amarisoft Symbox: It is capable of simulating hundreds of User Equipments (UEs) sharing the same
spectrum with different types of traffic within multiple cells. Each UE can be independently
configured as a Long Term Evolution (LTE), 5G NR, Narrowband Internet of Things (NB-IoT) or LTE
Machine Type Communication (LTE-M) device.

 Monitoring System: It allows real-time monitoring information to be retrieved from the gNBs
platform. Such information is processed by the local decision agent to develop its radio resource
allocation policy.

 Local Decision Agent: It is developed within the MonB5G framework, runs as a container instance on
the base station premises, collects and consumes local monitoring information from MS and adjusts
the radio resource allocation policies accordingly. The decision-making task is supported by the AI/ML
algorithm.

 Federated Learning Layer: It acts as an aggregation point for the local decision engines deployed in
RAN. It collects locally trained (and therefore heterogeneous) decision models and combines them to
gain global knowledge about the underlying infrastructure behaviour and improve the generalization
of the decision process.

.

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 36

3GPP release release 16

Frequency bands All FDD and TDD bands in sub-6GHz

Bandwidth Up to 50 MHz

Supported number of cells 3

Number of active UEs Up to 1000 UEs distributed within the
configured cells

Carrier aggregation Up to 3 carriers in DL and 3 in UL allowing
mixed FDD/TDD combinations in DL

Supported modes NSA, SA

Transmission modes 1 (single antenna) to 10 (MIMO 4x4)

Modulation schemes Up to 1024QAM in DL and 256QAM in UL

AS encryption and integrity protection AES, SNOW3G, ZUC

Handover NG, Xn and 5GS to EPS handover support

eNodeB network interfaces S1AP and GTP-U to EPC X2AP between eNodeBs
M1 and M2 for eMBMS

ng-eNodeB network interfaces NGAP and GTP-U to 5GC XnAP between ng-
eNodeBs

Subcarrier spacing Data subcarrier spacing: 15, 30, 60 or 120 kHz
SSB subcarrier spacing: 15, 30, 120 or 240 KHz

Table 7. Amarisoft Callbox gNodeB Technical Specifications.

3.5.2 MESSAGING INTERFACES

Local Decision agent <–> Monitoring System

Decision engines are responsible for making reconfiguration decisions to optimize the performance of the
functional layer according to the collected data from the MS sublayer and the analysis results from the AE
sublayer. The input to the DE sublayer is the output of the AE and MS sublayers. For details regarding the
MS/AE sublayers integration and interaction, we refer the reader to the deliverable D3.3.
The generic structure of the proposed MS is shown in Figure 16. In this example, it consists of 11 sampler
functions monitoring and reporting various key parameters belonging to the different protocol stack layers
composing the Amarisoft and 5G RAN software.

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 37

Figure 16. Monitoring System.

The MS sublayer deals with both telemetry data (continuous time series) and event data (e..g., alarms, faults,
and topology changes). It enables monitoring with varying temporal granularity and varying degrees of data
aggregation, depending on the optimization goal.

Local Decision agent <– > Federated Layer

As shown in Figure 12, each DE agent in our Federated Deep Reinforcement Learning-based framework
embeds and trains a local Duelling Deep Q-Network (DDQN) model. The trained model, that has learned a
policy from the available data, is shared under the form of model weights to the entities that belong to the
corresponding federation layer. Each federation layer aggregates the accumulated knowledge of each agent
into a global updated model, which is typically stored in a cloud platform or a nearby edge platform to enable
faster feedback.

To increase efficiency and avoid communication overhead, we allow the federation layer to collect the local
models only every T decision intervals, being T a tunable parameter. We define this time period as a
federation episode.

Local Decision agent <–> Analytic Engine

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 38

The aggregated mobile traffic demands follow recurring spatiotemporal trends due to human activities. In
this context, it is expected that a good characterization of such processes would allow a more accurate
forecasting of network utilization and thus a more efficient and even proactive planning of resource
allocation. We rely on the Analytic Engine to provide this kind of functionality and use its API to obtain this
additional information.

3.5.3 INTEGRATION APIS
The decisions of the DE are based on the information available on the underlying MS/AE sublayer. In
particular, the DE creates the observation state by collecting the quality of the channel, and the aggregate
traffic demand per slice. We refer the reader to D4.2 for more details about the proposed DE. The information
mentioned earlier is available at the MS/AE sublayer via the stats sampler function in the gNB, which returns
the aggregated traffic demand per slice and the channel quality.

The PRB allocation decisions made by the DE are then sent to the gNB via the config_set web socket message,
which then allocates the selected PRBs to the radio interface.

3.5.4 MAPPING TO KPIS
 [UC1/ES2 KPI-4] OPEX reduction due to the automation of service management.
 [UC1/ES2 KPI-7] Optimize the convergence time for the distributed/federated AI algorithms so that

it does not exceed that of the centralized solutions.
 [UC1/ES2 KPI-9] Improve network slice performance prediction
 [UC1/ES2 KPI-11] Reduce time to manage RAN resources dedicated to network slices, particularly for

uRLLC (AE and DE are located at the edge).
 [UC1/ES2 KPI-12] Improve on slice performance isolation by ensuring the latency and reliability

(uRLLC), as well as bandwidth (eMBB) requirements of coexisting slices (measured in terms of related
SLA violations and other lower-level metrics).

 [UC1/ES2 KPI-13] Reduce the management overhead of the RAN by reducing the monitoring
overhead for RAN-level slice resource (and other) reconfigurations.

3.6 Independent DQN Agents for Slice Reconfiguration
In D4.2 (Section 6.2) we proposed a DE utilizing Independent Deep Q Network (IDQN) agents for dynamic
end-to-end slice reconfiguration. This DE is well in line with the key characteristics of the inter-slice
orchestration problem, since it has a wide view of the system. The goal in the slice reconfiguration problem
is to dynamically decide the system’s configuration (each IDQN agent is associated with a VNF and decides
which will be the host server in the next time-slot), towards maximizing the accumulated reward over a
discounted infinite time horizon (while not knowing a priori how slice demands evolve over time).

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 39

The scalability and effectiveness of the IDQN algorithm was extensively validated in D4.2 [1] with realistic
simulations. In this deliverable we will describe the implementation details.

3.6.1 DEVELOPMENT FRAMEWORKS
The DE was implemented with Python, while PyTorch was utilized to implement the Deep Neural Networks
(DNNs) of the agents. Towards a cloud native implementation, the whole DE can be placed inside a Docker
container. There are two main entities involved in the DE, which are the following:

System Model. This entity contains three components:

 Physical Network: It contains all the information related to the physical network, like system
configuration, domains, server IDs, server capacities, connectivity, etc.

 Slices: It contains all the relevant information for the slices to be orchestrated, like slice IDs, VNFs,
Virtual Links, etc. Also, the timeseries of the slice resource demands are imported from a dataset
(either Milano or a synthetic Markovian dataset) and are loaded to the corresponding slices.

 Reward function: This gets as an input the previous state and the current state of the system and
outputs the reward as defined in D4.2 [1].

Controller. This may be either the proposed IDQN agents or the baseline solution, which include a single-
agent DQN, Q-Learning (QL) and static policies. The input to this component is the state (current configuration
and resource demands) and the reward given by the system model, while the output is the configuration to
be applied in the next time-slot. Note that in this implementation the agents operate sequentially. However,
in a future implementation they could operate in parallel since they are independent, either in a centralized
way by assigning them to different CPUs, or in a more distributed architecture.

In Figure 17 there is a schematic representation of the interaction between the IDQN agents of the controller
and the system model.

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 40

Figure 17. Schematic representation of the DE.

Towards constructing a very basic cloud-native testbed, we have additionally implemented a simple actuator
in Python that can enforce the decisions of the DE. The testbed considers a centralized DE (controller + system
model + actuator) with a global view of the system, while the system consists of VMs hosting containerized
VNFs (Figure 18). Note that VMs map to the physical nodes of the system model we defined in [1]. The
actuator can enforce the reconfiguration decisions of the controller using Docker commands to migrate
containers from the host VMs to the destination VMs. This is implemented can be implemented with the
Docker Software Development Kit (SDK) for Python.

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 41

Figure 18. A simple testbed example.

3.6.2 MESSAGING INTERFACES
Controller (IDQN agents) <-> System model

The two main entities of the DE communicate internally at each time-slot. The agents give as an input to the
system model the next configuration, and the system model returns the next state and the reward (Figure
17).

Centralized DE –> VMs

A secure shell (SSH) connection must be established between the centralized controller and each of the VMs
so that the controller can communicate with the remote Docker Daemons and enforce its decisions (stop a
container, commit it into an image, remove a container, or run a container).

VM <–> VM

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 42

The secure file transfer protocol (SFTP) is used between the VMs in order to transfer files related to container
migration from the host VM to the destination VM.

3.6.3 INTEGRATION APIS
The code is written in a Python script, and the physical network, the slices, the reward function, and the
controller are just different objects with public attributes. Therefore, these attributes can be accessed by
other objects just by passing them as arguments in corresponding methods.

The MS in our system stores the resource demand vector at each timeslot. It is equipped with a method called
“get_demand_vector”, which gets as input argument a list with all the slice objects. So, this method collects
the resource demands from the different slices and stores them as the current resource demand vector.

The controller object includes a method called “choose_action”, which gets as input arguments the
configuration vector from the physical network object, the resource demand vector from the monitoring
system (these 2 form the state representation of the learning agent), and a reward from the reward function
object, and gives at its output the next configuration to be applied on the system. It also stores the
experiences to the buffers of the agents and updates the DNN parameters of the agents.

The above information is summarized in Table 8.

Object Method Args Functionality

Monitoring system get_resource_demands A list with the slice
objects

Collects resource
demands from all slices
and stores them as the
current resource
demand vector

Controller choose_action physical_network.config
uration,
monitoring_system.reso
urce_demands,

reward_function.reward

Returns the next system
configuration, stores
experience, updates
DNN parameters

Table 8. Methods for interaction with the DE.

Note that the controller could be possibly used separately as a containerized component that gets as an input
all necessary information from an external monitoring system (possibly through a Kafka bus) and gives as an
output the reconfiguration decision (a new system configuration). This decision should be then transferred
to the component responsible for enforcing container migration.

3.6.4 MAPPING TO KPIS

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 43

The IDQN solution was validated by realistic simulations in D4.2 [1]. It relates to the following project KPIs:

 [UC1/ES1 KPI-1], [UC1/ES2 KPI-1]: Reduction of SLA violations
 [UC1/ES2 KPI-2]: Reducing static slicing overhead will result in 30% higher utilization (will be achieved

with dynamic reconfiguration techniques)
 [UC1/ES2 KPI-3]: Compared to Static Slicing, demonstrate the same or better SLA tolerances (or risk

of missing SLAs) when dynamic slicing techniques are used
 [UC1/ES1 KPI5], [UC1/ES2 KPI-4]: OPEX reduction due to the automation of service management
 [UC1/ES2 KPI-7]: Optimize convergence time for the distributed/federated AI algorithms so that it

does not exceed that of centralized solutions

The cost to be minimized by IDQN has been defined as the weighted sum of three different cost terms, the
node utilization cost (it is equal to the number of active nodes and relates to energy consumption and rent
costs), the reconfiguration cost (the cost for migrating VNFs), and the SLA violation cost (a penalty paid to
the slice tenants when an SLA violation is observed for their slice). These cost terms can target all the KPIs of
the first four bullets above. Then, regarding KPI-7 of ES2, the multi-agent IDQN scheme demonstrates faster
convergence compared to the single-agent DQN (validation section of D4.2 [1]). A remark here is that IDQN
conceptually distributes the decision to different agents, but that doesn’t mean that the agents must be also
spatially distributed (they require global information and not local).

3.7 FISH Recommender for Control Loop Coordination
Control Loop Coordination (CLC) is a common problem in network optimization. When multiple CLs with
common modifiable parameters exist in a system, a ping-pong reconfiguration effect can occur, where both
CLs continuously and selfishly opt for a parameter reconfiguration. In MonB5G architecture [17], we assume
CLs to be sets of Monitoring Services, AEs and DEs, followed by Actuators. DEs are outermost modules
responsible for parameter modification inside a CL. The FISH Recommender works as a DE Selector/Arbiter
located within DE-Sublayer in MonB5G Layer either in DMO, IDMO, or Slice Management Layer (SML) [17],
evaluating possible impact of reconfiguration on other functions and either allowing or rejecting such
reconfiguration request.

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 44

Figure 19. Cooperation of FISH Recommender with in MonB5G Architecture.

3.7.1 DEVELOPMENT FRAMEWORKS
The FISH Recommender uses a slightly modified Fisher Market Model as an evaluation method. The key
concept of this approach revolves around treating DEs as “buyers” that want to “buy” certain parameters
from a reconfiguration request. Every buyer has a certain budget and, based on historical/predicted data,
each parameter has a certain weight (importance) for each buyer. The Fisher Market Model resolves the
market in the way that all products on the market are bought and all the money from buyers is spent. The
final decision regarding reconfiguration is made depending on resulting utility function, which represents
which of the “buyers” would be affected the most by the proposed reconfiguration. More detailed description
of described coordination framework is available in Deliverable D4.2 [1]. FISH has been written using Python
3.10 and can be deployed in Kubernetes [18].

3.7.2 MESSAGING INTERFACES
Intercommunication between FISH and other modules has been presented on Figure 19.

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 45

In order to perform recommendation, FISH needs to collect the following information as an input:

- proposed parameter modification vector;
- current KPI and Budget of each considered DE;
- historical KPI/ Predicted KPI for proposed parameter set for each considered DE.

3.7.3 INTEGRATION APIS
 DEs can interact with FISH via web-based SBI (REST API) with endpoints:

/register -> for DE registration, after which they can be passively included in any reconfiguration
request assessment

/reqmod -> in order to send parameter modification request

 FISH queries historical/predicted as well as current KPI data using a database (DB) API. The type of
DB used in this solution is a TSDB implemented with InfluxDB [13].

 After assessment, FISH publishes its decision onto the Message Bus (i.e. Kafka [10]).

3.7.4 MAPPING TO KPIS
By providing impact-based function coordination, the FISH Recommender can eliminate unnecessary
reconfigurations and avoid possible conflicts between different DEs, leading to overall stability and system
performance improvements. Limiting the number of unfavorable reconfigurations in the RAN domain can
contribute to a reduction of management overhead of the RAN (by not needing to perform nor fix such
reconfiguration), which is the goal of UC1/ES2 KPI-13.

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 46

4 Timeline for Deployment and Completion

The DE and its associated MS/AE implementations for their respective use cases are currently being deployed
in the available experimental platforms for real use case testing shown in Figure 9 and in Figure 15. Both of
these experimental platforms conform an industry and state-of-the-art standard 5G platforms in which the
DEs and its corresponding MSs/AEs will be deployed and validated.

It is expected that the deployment of the DEs and the respective MonB5G components will be completed by
February 2023, with enough time to allow for all partners to deploy and converge on their DE
implementations, and generate the upcoming deliverables for the project.

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 47

5 Conclusions
In this deliverable, we have presented details on the integration of the different state-of-the-art DEs proposed
within the framework of the MonB5G project to solve different open problems regarding the management and
orchestration of 5G and Beyond 5G communication networks. In this document, each DE implementation was
presented with detailed information on how it was integrated with its corresponding MS and AE, also
implemented for particular use case for which a specific DE implementation is deployed.

This work is clearly a continuation of the work already presented in Deliverables D4.1 [2] and D4.2 [1], with an
incremental improvement of the generic DE architecture that makes it more compliant to the ETSI-ENI standard
[3], as well as expanding deeper on the way this generic architecture maps to actual implementations. This is
better understood after including a recap of the generic DE architecture.

The sections corresponding to each implementation of the DE, presented in Section 3, showed the successful
functional testing and validation of the integrated DE with its corresponding MS and AE components,
demonstrating the feasibility of deployment and integration.

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 48

6 Bibliography

[1] F. Guillemin, L. Blanco, F. Rezazadeh, E. Zeydan, H. Chergui, J. Mangues, S. Kahvazadeh, S. Kuklinski, R.
Kolakowski, R. Tepinski, M. Rosinski, J. Jegier, T. Spyropolous, P. Doanis and K, "Deliverable D4.2: Final
Report on AI-driven Techniques for the MonB5G Decision Engine", June 2022.

[2] T. Spyropoulos, T. Giannakas, P. Doanis, M. Constantini, C. Verikoukis, H. Chergui, D. Pubill, J. Serra, L.
Blanco, S. Kahvazadeh, L. A. Garrido, A. Dalgkitsis, L. Zanzi and Devoti, "Deliverable D4.1: Initial Report
on AI-Driven Techniques for the MonB5G Decision Engine", March 2021.

[3] ETSI GS ENI 005 v2.1.1, "Experiential Networked Intelligence (ENI); System Architecture", December
2021.

[4] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Harley, T. P. Lillicrap, D. Silver and K. Kavukcuoglu,
"Asynchronous methods for deep reinforcement learning", New York: In Proceedings of the 33rd
International Conference on International Conference on Machine Learning - Volume 48 (ICML'16),
2016.

[5] S. Zhang, H. Tong, J. Xu and M. Ross, "Graph convolutional networks: a comprehensive review",
Computational Social Networks, November 2019.

[6] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang and W. Zaremba, "Openai
gym," arXiv preprint arXiv:1606.01540, 2016.

[7] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard and
others, ""TensorFlow: A System for Large-Scale Machine Learning"," in Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI '16), Savannah, GA, USA,
November 2016.

[8] L. A. Garrido, P. V. Mekikis, A. Dalgkitsis and C. Verikoukis, """Context-Aware Traffic Prediction: Loss
Function Formulation for Predicting Traffic in 5G Networks"," in ICC 2021 - IEEE International Conference
on Communications, 2021.

[9] T. Haarnoja, A. Zhou, P. Abbeel and S. Levine, ""Soft Actor-Critic: Off-Policy Maximum Entropy Deep
Reinforcement Learning with a Stochastic Actor"," in Proceedings of the 35th International Conference
on Machine Learning, July 2019.

[10] J. Kreps, N. Narkhede and J. Rao, ""Kafka: A Distributed Messaging System for Log Processing"," in 6th
Workshop on Networking Meets Databases (NetDB), 2011.

[11] Linux Foundation, ""OpenAPI Specification v3.1.0"," Linux Foundation, February 2021. [Online].
Available: https://spec.openapis.org/oas/v3.1.0. [Accessed 28th November 2022].

[12] InfluxData, "Telegraf 1.24 documentation," InfluxData, [Online]. Available:
https://docs.influxdata.com/telegraf/v1.24/.

871780 — MonB5G — ICT-20-2019-2022
Deliverable D4.3 – Report and Integration and testing of the MonB5G DE

©MonB5G, 2019 Page | 49

[13] InfluxData, "InfluxDB OSS 2.5 Documentation," InfluxData, [Online]. Available:
https://docs.influxdata.com/influxdb/v2.5/.

[14] X. Xu, B. Bakhshi, L. Blanco, E. Zeydan, H. Chergui, J. Mangues, J. Serra, G. Tsolis, K. Adlen, M. Costanti,
S. Ben Saad, T. Spyropoulos, A. Dalgkitsis, L. A. Garrido Platero and Bosneag, ""Deliverable D3.2: Final
Report on AI-driven Techniques for the MonB5G AE/MS"," MonB5G, March 2022.

[15] OTE, ""Deliverable D2.2: Techno-economic analysis of the beyond 5G environment, use case
requirements and KPIs"," November 2020.

[16] L. Pappalardo and F. Simini, ""Data-driven Generation of Spatio-Temporal Routines in Human
Mobility"," Data Mining and Knowledge Discovery, vol. 32, no. 3, p. 787–829, 2018.

[17] S. Kukliński, L. Tomaszewski, R. Kołakowski, J. Fabisiak, A. Ksentini, S. Ben Saad, A. N. Abbou, O. Hireche,
C. Benzaid, T. Taleb, A. Boubendir, J. J. Alves Esteves and A. M. Bosneag, ""Deliverable D2.4: Final
release of the MonB5G architecture (including security)"," MonB5G, October 2021.

[18] The Kubernetes Authors, ""Kubernetes: Production-Grade Container Orchestration"," 2022. [Online].
Available: https://kubernetes.io. [Accessed 2022].

