

 871780 — MonB5G — ICT-20-2019-2020

Deliverable D6.2
Technical Report on the Integration of
MonB5G Technologies in the Network

Architecture

Document Summary Information

Grant Agreement No 871780 Acronym MonB5G

Full Title Distributed Management of Network Slices in beyond 5G

Start Date 01/11/2019 Duration 42 months

Project URL https://www.monb5g.eu/

Deliverable D6.2 – Technical Report on the Integration of MonB5G Technologies in the
Network Architecture

Work Package WP6

Contractual due date M42 Actual submission date 31 May 2023

Nature Technical Report Dissemination Level Public

Lead Beneficiary IQU

Responsible Author Engin Zeydan (CTTC), Luis A. Garrido (IQU)

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 2

Contributions from Luis A. Garrido (IQU), Kostas Ramantas (IQU), Sergio Barrachina (CTTC), Farhad
Rezazadeh (CTTC), Luis Blanco (CTTC), Engin Zeydan (CTTC), Luca Vettori (CTTC),
Sarang Kahvazadeh (CTTC), Lanfranco Zanzi (NEC), Francesco Devoti (NEC),
Sihem Cherrared (OR-FR), Robert Kołakowski (ORA-PL), Rafał Tępiński (ORA-PL),
Sławomir Kukliński (ORA-PL), Georgia Pantelide (eBOS), Karim Boutiba (EUR),
Sofiane Messaoudi (EUR), Adlen Ksentini (EUR), Ashima Chawla (LMI), Anne
Marie Cristina Bosneag (LMI), Vasiliki Vlahodimitropoulou (OTE), Cédric Morin
(BCOM), Eric Gatel (BCOM), Cao-Thanh Phan (BCOM)

Disclaimer

The content of the publication herein is the sole responsibility of the publishers and it does not necessarily
represent the views expressed by the European Commission or its services.

While the information contained in the documents is believed to be accurate, the authors(s) or any other
participant in the MonB5G consortium make no warranty of any kind with regard to this material including,
but not limited to the implied warranties of merchantability and fitness for a particular purpose.

Neither the MonB5G Consortium nor any of its members, their officers, employees or agents shall be
responsible or liable in negligence or otherwise howsoever in respect of any inaccuracy or omission herein.

Without derogating from the generality of the foregoing neither the MonB5G Consortium nor any of its
members, their officers, employees or agents shall be liable for any direct or indirect or consequential loss
or damage caused by or arising from any information advice or inaccuracy or omission herein.

Copyright message

© MonB5G Consortium, 2019-2022. This deliverable contains original unpublished work except where clearly
indicated otherwise. Acknowledgement of previously published material and of the work of others has been
made through appropriate citation, quotation or both. Reproduction is authorised provided the source is
acknowledged.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 3

TABLE OF CONTENTS

List of Figures ... 5

List of Tables .. 8

List of Acronyms ... 9

1 Executive Summary ..14

2 Introduction ...17

2.1 Objectives of the Performance Evaluation of the MonB5G Distributed Architecture and Enablers 17

2.2 Deliverable Overview and Structure ..17

3 Infrastructure Setup, Testing and Deployment of Software Components in MonB5G Architecture19

3.1 PoCs Testbed and Summary of Experimental Scenarios...19

3.1.1 Scenario Description and Mapping of PoC#1 Solutions ..19

3.1.2 Scenario Descriptions and Mapping of PoC#2 Solutions ..21

3.1.3 MonB5G Architecture in PoC Testbed ...24

3.2 Infrastructure Details of the Testbed and Interconnection ..25

3.2.1 Testbed for PoC-1 ...25

3.2.2 Testbed for PoC-2 ...29

3.3 Application for PoC-1 Setup ..32

3.3.1 Video Streaming Overview ..32

3.3.2 Example Video ..32

3.3.3 The RTSP Protocol ...33

3.3.4 Emulating High Demanding VR Video Streaming with Transcoding ..33

3.4 KPIs for the POCs and Summary of Integrated Solutions ...34

3.4.1 KPI Mapping to Experimental Scenarios in PoC-1...34

3.4.2 KPI Mapping to Experimental Scenarios in PoC-2...41

4 Evaluation of KPIs of MonB5G Components in the Experimental Framework for PoC-147

4.1 Recap on the Deployment of MonB5G Monitoring System in PoC-1 ..47

4.1.1 Multi-gNodeB RAN setup ..47

4.1.2 Amarisoft Remote UE ..50

4.1.3 Monitoring Sampling Functions ...52

4.1.4 Grafana Visualization ..53

4.2 Datasets from Experimental Trials ..54

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 4

4.2.1 Federated Learning Dataset ..54

4.2.2 5G RTSP Video Streaming Dataset for Anomaly Detection ...55

4.3 Evaluating KPIs of MonB5G Solutions at the PoC-1 Scenario 1 Testbed ...57

4.3.1 Traffic Prediction with Context Awareness ..57

4.3.2 FL Predictor ...60

4.3.3 Slice KPI Prediction with Interpretable Multivariate Anomaly Detection....................................77

4.3.4 LSTM-Based Anomaly Detection ..82

4.4 Evaluating KPIs of MonB5G Solutions at the PoC-1 Scenario 2 Testbed ...86

4.4.1 Slice Admission control (DE) Based on traffic Prediction ..86

4.4.2 A multi-agent learning for distribution resource allocation in the RAN domain89

4.4.3 RL-based slice admission control ... 100

5 Evaluating KPIs of the MonB5G Components over the Experimental Framework for PoC-2 102

5.1 Recap on the deployment scenarios in PoC-2 .. 102

5.1.1 MonB5G PoC-2 Scenario 1: mMTC attack .. 102

5.1.2 MonB5G PoC-2 Scenario 2: Federated Learning attacks ... 102

5.1.3 MonB5G PoC-2 Scenario 3: aLTEr attack .. 103

5.2 Datasets from experimental trials ... 109

5.2.1 MonB5G PoC-2 Scenario 2: FL attack ... 109

5.2.2 MonB5G PoC-2 Scenario 3: aLTEr attack .. 112

5.3 Evaluating KPIs of MonB5G Solutions at the PoC-2 Scenario 1 Testbed: mMTC ATTACK 113

5.4 Evaluating KPIs of MonB5G Solutions at the PoC-2 Scenario 2 Testbed: FL Attack 119

5.5 Evaluating KPIs of MonB5G Solutions at the PoC-2 Scenario 3 Testbed: aLTEr attack 124

6 Lessons Learnt from Experiments ... 127

7 Conclusions .. 129

8 Appendixes ... 130

9 References .. 146

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 5

List of Figures
Figure 3-1: MonB5G architecture mapped to PoC. ...24
Figure 3-2: 5G hardware components. ...26
Figure 3-3: PoC1 Architecture components ..27
Figure 3-4: Outdoor and Indoor Radio Units ..29
Figure 3-5: Global architecture of the 5G Facility ...31
Figure 3-6: VR Video Streaming infrastructure and PoC #1 setup. ..32
Figure 3-7: Integration of AEs and DEs with MS and ACTs for various solutions in PoC#135
Figure 3-8: Integration of AEs and DEs with MS and ACTs for various solutions ...38
Figure 3-9: Integration Solutions for DDOS Attack ...42
Figure 3-10: Integrating solution for Poisoning attack ..44
Figure 3-11: MonB5G security orchestrator integration for the aLTEr attack scenario45
Figure 4-1: Deploying edge and cloud cluster in a multi-domain environment. ..47
Figure 4-2: Setting up a 5G network with 2 gNBs in Amarisoft. ...48
Figure 4-3: Schematic for the integration Callbox Ultimate – Simbox – Callbox Mini.49
Figure 4-4: Components and interfaces for Callbox Ultimate – Simbox – Callbox Mini.50
Figure 4-5: Remote UE setup with N UEs emulated by Simbox but run at remoteue VM.50
Figure 4-6: Remote UE deployment for Poc1.1. ...51
Figure 4-7: Displaying video clients for different UEs at remoteue. ..51
Figure 4-8: Monitoring System Sampling Functions at edge sites. ..52
Figure 4-9: Flowchart of the Amarisoft-gnb SF. ..52
Figure 4-10. Flowchart of the pod-infra-metrics SF. ...53
Figure 4-11: Grafana dashboard for PoC1.1. ..54
Figure 4-12: Sample dataset ..55
Figure 4-13: Traffic pattern throughout a day in terms of number of users per eNB sector area.56
Figure 4-14: Metrics shown in Grafana for the dataset ..56
Figure 4-15: Features and sample of the dataset ...57
Figure 4-16: Quality of Prediction of ECATP compared with state-of-the-art predictors.59
Figure 4-17: Probability of SLA violations in ECATP compared with state-of-the-art predictors.60
Figure 4-18: Performance of ECATP compared with state-of-the-art predictors. ..60
Figure 4-19: Congestion in the VR video streaming server due to overload ..61
Figure 4-20: FL deployment sites, VR video streaming servers and clients ...62
Figure 4-21: Different patterns of number of VR-streaming users for each sites used for experiments64
Figure 4-22: FL training steps ...69
Figure 4-23: Sidecar container on aggregation server to collect log and visualize ..71
Figure 4-24: VR video streaming server outbound traffic versus number of VR video streaming clients72
Figure 4-25: VR video streaming Server CPU load versus number of VR video streaming clients73
Figure 4-26: Pair Plot. ..74
Figure 4-27: Power Consumption at container at UP versus N ...75
Figure 4-28: FL Training phase (a) average NMSE (b) average computation time ...76
Figure 4-29: Analytics Engine reference Architecture...78
Figure 4-30: Prediction Comparison among Different Methods ...79

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 6

Figure 4-31: Interpretable Anomaly Detection depicting contributing factors. ...80
Figure 4-32: Cloud Implementation of the AE deployment ...80
Figure 4-33: AE deployed and running in the testbed (CTTC) ...81
Figure 4-34: Docker deployed and running. ...81
Figure 4-35: Multivariate Anomalies been detected by the model (CPU, O, R at same time)82
Figure 4-36: The metrics collected during non-anomalous network operation. ..84
Figure 4-37: Non-anomalous signal traffic ...85
Figure 4-38: Signal with anomalies ..85
Figure 4-39: The evaluation approach of TASAC enabler ..87
Figure 4-40: Comparison in terms of: (a) obtained reward (b) resources..88
Figure 4-41: Comparisons in terms of: (a) resources (b) violations ratio ...89
Figure 4-42: Federated RAN slicing architecture ..90
Figure 4-43: Testbed architecture ..90
Figure 4-44: MonB5G MS and monitored dataset. ...92
Figure 4-45: Decision Agents ...92
Figure 4-46: Multi-agent setup ..93
Figure 4-47: Evaluation Scenario ...94
Figure 4-48: GUI: Graphical User Interface...95
Figure 4-49: Communication Overhead ...96
Figure 4-50: The convergence performance of agents A and agent B in first gNB ...97
Figure 4-51: The convergence performance of agents A and agent B in the second gNB.97
Figure 4-52: Allocation gap performance for agents A and agent B in gNB1. ..98
Figure 4-53: Allocation gap performance for agents A and agent B in gNB2. ..98
Figure 4-54: The CDF of experienced allocation gap (in Mbps) within network slices.99
Figure 4-55: Performance evaluation for different network loads. ... 100
Figure 4-56: KPI evaluation of PreBAC for the current use case.. 101
Figure 4-57: KPI evaluation of the baseline solution for the current use case .. 101
Figure 5-1: Overview of TQFL Framework. ... 103
Figure 5-2: Mapping between the implementation and the architecture. .. 104
Figure 5-3: The actual platform implementation for the scenario aLTEr ... 105
Figure 5-4: The security of data plane is continuously monitored and the aLTEr attack is ongoing. 106
Figure 5-5: Raw data at the N6 interface are collected and sent the MS via a VXLAN tunnel. 106
Figure 5-6: Meaningful logs of DNS transactions at the N6 interface received by the AE 107
Figure 5-7: The AE raises an event indicating the aLTEr attack is occurring for the UE. 107
Figure 5-8: The ACT is executing the action plan provided by the DE. .. 108
Figure 5-9: Effective protection of DNS transactions using TLS to eradicate the attack aLTEr 109
Figure 5-10: Test platform and technological components... 113
Figure 5-11: AE’s components. .. 114
Figure 5-12: Results of the detection algorithm over normal traffic. .. 115
Figure 5-13: Results of the detection algorithm over abnormal traffic. .. 115
Figure 5-14: The result of the statics method over abnormal traffic... 116
Figure 5-15: The result of the statics method over normal traffic .. 116
Figure 5-16: Flowchart of the DE’s components. .. 118

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 7

Figure 5-17: Overview of TQDL framework .. 120
Figure 5-18: LDA + K-means for different number of malicious nodes (ADAM optimizer). 121
Figure 5-19: LDA + KNN for different number of malicious nodes (ADAM optimizer) 122
Figure 5-20: LDA + K-means for different number of malicious nodes (SGD optimizer) 122
Figure 5-21: LDA + KNN for different number of malicious nodes (SGD optimizer). 122
Figure 5-22: PCA + K-means for different number of malicious nodes (ADAM optimizer) 123
Figure 5-23: PCA + KNN for different number of malicious nodes (ADAM optimizer) 123
Figure 5-24: PCA + K-means for different number of malicious nodes (SGD optimizer). 123
Figure 5-25: PCA + KNN for different number of malicious nodes (SGD optimizer) 124
Figure 5-26: The information path defined to measure the attack detection time 125
Figure 5-27: The information path defined to measure the attack response time 125
Figure 5-28: MTTD and MTTR measured over 100 attacks and mitigations. ... 126

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 8

List of Tables
Table 1: Objective mapping to PoC #2 Experimental Scenarios ..21
Table 2: Objective mapping to PoC #2 Experimental Scenarios ..24
Table 3. Original video file information. ...33
Table 4: Target KPIs versus experimental results for solutions in ES1.1 ..36
Table 5: Experimental results versus target KPIs for solutions in ES1.2 ..39
Table 6: Experimental results versus target KPIs for solutions in ES2.1: DDoS attack43
Table 7: Experimental results versus target KPIs for solutions in ES2.2 Poisoning attack44
Table 8; Experimental results versus target KPIs for solutions in aLTEr attack scenario.46
Table 9: Dataset features and output used in FL ..69
Table 10: Parameters of regression analysis model ..72
Table 11: Monitoring overhead comparison between centralized solution and FL-based algorithms76
Table 12: Energy consumption comparisons ..77
Table 13: The accuracy of the statistical model considering different Duration values 117
Table 14: Impact of the AE Detection threshold. .. 117
Table 15: Impact of the DE Detection threshold .. 119

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 9

List of Acronyms

Acronym Description

3GPP Third Generation Partnership Project

5GC 5G Core

ACT

AD

Actuator

Anomaly Detection

AE Analytic Engine

AI Artificial Intelligence

AMF Access and Mobility Management Function

API Application Programming Interface

AR Augmented Reality

B5G

CCI

Beyond-5G

Cloud Continuum Infrastructure

CN Core Network

CNF

CPU

Cloud Native function

Central Processing Unit

CQI Channel Quality Indicator

CSMF Communication Service Management Function

DB DataBase

DDOS Distributed Denial-of-Service

DE Decision Engine

DMO Domain Manager and Orchestrator

DNN Deep Neural Network

DNS Domain Name System

DRL Deep Reinforcement Learning

DSM Domain Slice Manager

ECATP Enhanced Context-Aware Traffic Predictor

EPC Enhanced Packet Core

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 10

EEM Embedded Element Manager

eMBB Enhanced Mobile Broadband

ECA Event Condition Action

ENI Experiential Networked Intelligence

ES Experimental Scenario

ETSI European Telecommunications Standards Institute

FCAPS Fault, Configuration, Accounting, Performance, Security

G5IAD Graph-based Interpretable Anomaly Detection

GCN Graph Convolutional Network

HA-DRL Heuristically Assisted DRL

IDM Infrastructure Domain Manager

IDMO Inter-Domain Manager and Orchestrator

IDSM Inter-Domain Slice Manager

InP Infrastructure Provider

ISM In-Slice Management

IoT Internet of Things

ITU International Telecommunication Union

K8 Kubernetes

KNN k-nearest neighbours

KPI Key Performance Indicator

LCM Lifecycle Management

LDA Linear Discriminant Analysis

LSTM Long-Short Term Memory

LXC Linux Containers

ML Machine Learning

MANO Management and Orchestration

MaaS Management as a Service

MAN-F Management Function

MCC Mobile Country Code

MEC Multi-access Edge Computing

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 11

MECapp MEC applications

MEO MEC Orchestrator

MEP MEC Edge Platform

MGEN Multi-Generator

ML Machine Learning

MNC Mobile Network Code

MNO Mobile Network Operator

mMTC Massive Machine Type Communications

MS Monitoring System

MSE Mean Squared Error

MVAD Multi-variate time series anomaly detection

NF Network Function

NFMF NF Management Function

NFVI Network Function Virtualization Infrastructure

NFVO Network Function Virtualization Orchestrator

NSD Network Service Descriptor

NSM Network Slice Manager

NSO Network Service Orchestrator

NSP Network Service Provider

NSPR Network Slice Placement Request

NSI Network Slice Instance

NSM Network Slice Manager

NSMF Network Slice Management Function

NSSMF Network Slice Subnetwork Management Function

NST Network Slice Template

NSSI Network sub-Slice Instance

NGMN Next Generation Mobile Networks

NFVI NFV Infrastructure

OAI Open Air Interface

ONAP Open Network Automation Platform

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 12

OPEX Operational Expenditure

OSM Open-Source MANO

OSS Operation System Support

PaaS Platform as a Service

PCA Principal Component Analysis

PoC Proof of Concept

PRB Physical Resource Block

PSN Physical Substrate Network

PV Persistent Volumes

PVC Persistent Volume Claims

QoE Quality of Experience

QoS

RAM

Quality of Service

Random Access Memory

RAN Radio Access Network

RBAC Role-Based Access Control

RNN Recurrent Neural Networks

RTSP Real Time Streaming Protocol

SDN Software Defined Networks

SFC Service Function Chain

SON Self-Organizing Network

SLA Service Level Agreement

SFL Slice Functional Layer

SML Slice Management Layer

SM Slice Manager

SO Slice Orchestrator

TASAC Time Aware Slice Admission Control

TD Technology Domain

ToD Time of the Day

TQFL Trust deep Q-learning Federated Learning

UC Use Case

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 13

UDM Unified Data Management

UE User Equipment

UV

uRLLC

Univariate

Ultra-Reliable Low-Latency Communication

VIM Virtual Infrastructure Manager

VM Virtual Machine

VNF Virtual network Function

VNFM Virtual Network Function Manager

VoD Video-on-Demand

VR Virtual Reality

XAI interpretable Artificial Intelligence

ZSM Zero-touch network and Service Management

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 14

1 Executive Summary
MonB5G aims to provide zero-touch management and orchestration to support network slicing at scale for
5G LTE and beyond. The vision is to build a decentralized zero-touch management and orchestration system
that supports network slicing for Beyond-5G (B5G) networks. This deliverable presents and quantifies the
main outcomes of the MonB5G project towards achieving the vision. The scope of this deliverable focuses
on the performance validation of the components of the MonB5G concept developed in previous deliverables
(WP2, WP3, WP4, and WP5) (architecture, proposed algorithms, and the state-of-the-art Artificial Intelligence
(AI) algorithms) and how they are integrated into the testbed to perform the envisioned control-loop
capabilities. The methodology for performing this validation requires the following:

1. The mechanisms that serve as the basis for performance comparison.
2. Representative use-cases of Beyond-5G networks with their representative workloads for the Proof-

of-Concepts (PoCs) and their respective Experimental Scenarios (ES).
3. The Key Performance Indicators (KPIs) for each PoC and ES, previously described in WP2.

To provide context to the performance evaluation methodology, this deliverable also details PoC testbeds,
namely the specifics of the hardware, the deployment process of use cases, the baseline mechanisms used
for reference, and the KPIs used for comparison, as well as how they are measured and monitored.

After a review of MonB5G architecture and components, that is, the Monitoring Systems (MS), Analytics
Engines (AE), Decision Engines (DE) and Actuators (ACT) in PoC testbed, performance validations using these
MonB5G components are shown. The contributions in this deliverable consist of presentation of the KPIs
associated with the previously studied MonB5G enablers, as well as details of the deployment on the testbed,
that go beyond D6.1. Appropriate baseline scenarios are used as a reference for performance comparison.

The main objective of PoC-1 scenario 1 is to assess the data-driven management systems in a multi-domain
scenario with respect to their ability to guarantee the stringent end-to-end service level agreement (SLA) of
the B5G applications. The automated zero-touch service management and multiple redundancy mechanisms
aims practically zero downtime due to the critical, high-availability. The PoC-1 scenario 2 demonstration
shows how MonB5G mechanisms respond to local performance issues in different technological domains as
well as to changes in traffic patterns in different timescales. Finally, there is a special focus on data-driven
mechanisms for radio resource management to optimize the RAN sub-slice.

PoC-2 scenario 1 proposes a zero-touch security management solution that addresses the challenges of in-
slice DDoS attack detection and mitigation, using mMTC (massive machine type communication) network
slices as an example. The critical challenge addressed in this work is the detection of a DDoS attack originated
from a compromised set of MTC devices within a network slice. PoC-2 scenario 2 the ZSM concept in B5G
aims to automate the management and orchestration of running network slices. This scenario addresses the
robustness of FL algorithms against attacks, such as the poisoning attack. PoC-2 scenario 3 proposes a zero-
touch security management solution with a local security orchestrator, that addresses the challenges of aLTEr
attack detection and mitigation. To detect the attacks, AI/ML (Machine Learning) algorithms have been
studied to detect the aLTEr attack executed on AE. The mitigation step executed by DE is to update the
security policy on the firewall to block the private DNS address of the UE (User Equipment).

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 15

In PoC-1, D6.2 evaluates the KPIs of MonB5G solutions in the PoC-1 testbed, including various scenarios such
as FL predictor, Slice KPI prediction with Interpretable and multivariate anomaly detection and LSTM-Based
Anomaly Detection and ECATP (Enhanced Context-Aware Traffic Predictor), Slice Admission Control based on
traffic prediction and resource allocation in the RAN domain using a multi-agent deep reinforcement learning
(DRL) approach. In PoC-2, D6.2 evaluates the DDoS attack mitigation, malicious users blacklisting, secure FL,
trust deep Q learning, incident detection and incident response of MonB5G security orchestrator techniques.
Performance validation of MonB5G enablers and their compliance with KPIs defined in WP2. The analysed
KPIs are of paramount importance as they demonstrate the benefits of the MonB5G architecture,
components and algorithms compared to the baseline mechanisms and validate the contributions of MonB5G
for what they are worth. More specifically, the key achievements covered by this deliverable are the
following:

 In PoC-1 scenario 1, the solutions aimed to enhance network performance, reduce reaction time
to malfunctions, optimize resource allocation, and improve the efficiency of service management
and orchestration. Together with data-driven management systems, the monitoring overhead is
reduced by more than 11 times, signalling and monitoring overhead by a factor of 10 compared
to the centralized SLA-constrained algorithm. This resulted in a 10-fold improvement in the
energy efficiency. By distributing MonB5G architecture components across multiple sites, the
local elements handled a greater portion of service management and slice lifecycle tasks. This
reduced dependency on centralized systems and improved performance and response times.
OPEX reduction due to service management automation is achieved by automating the network
service management through distributed AI and reducing monitoring overhead and energy
consumption. Automated ZSM techniques and proactive anomaly detection across a network slice
show approximately 20.42% faster convergence on training and reduced reaction time to
malfunctions.

 In PoC-1 scenario 2, solutions aimed to reduce SLA violations, optimize resource management,
improve performance isolation, and reduce monitoring and management overhead. These
advancements contributed to enhancing the cost-effectiveness of network slice management and
service provisioning. Slice admission control techniques reduced the number of SLA performance
violations by more than 30% by reducing the number of slices deployed, enabling better use of
network resources through automatic slice admission. A three-fold increase in user service
request admission during resource shortages and potential OPEX reductions were also achieved.
The data-driven radio resource management mechanisms achieved an average 3.5%
improvement in SLA violations, while minimizing radio resource utilization. In addition, the time
required to manage RAN resources for network slices was reduced, ensuring fair resource access
and slice performance isolation. Compared to centralized management system, the management
overhead and the amount of monitored data were reduced by up to 25%.

 In PoC-2 scenario 1, solutions focused on detecting and mitigating DDoS attacks, ensuring high
availability of network slices, and achieving fast attack identification and remediation while
maintaining a low false positive rate. Zero-touch Security Management chieved anomaly
detection time for the first occurrence of an attack to be equal to the attack duration plus 10

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 16

milliseconds and for repetitive attacks (UEs that have previously participated in an attack) to be
less than 10 milliseconds while achieving 10 times faster attack/anomaly identification. The
entire procedure of malicious user blacklisting took less than 10 milliseconds and the false
positive rate for attack classification (incorrectly classifying events as attacks) was below 4%.

 In PoC-2 scenario 2, solutions focused on securing federated learning against poisoning attacks,
detecting and blocking malicious FL clients, and ensuring the robustness and accuracy of the
learning process. Secure Federated Learning was able to detect all malicious FL clients, resulting
in a false positive rate of 0%. Trust Deep Q-Learning Federated Learning kept the mean squared
error (MSE) below 0.4 even with an increasing number of malicious FL clients.

 In PoC-2 scenario 3, solutions focused on achieving faster identification of security
attacks/anomalies and accelerate attack remediation and reconfiguration in the order of 10s. In
the Incident Detection of the MonB5G Security Orchestrator solution, the measured Mean Time
to Detect (MTTD) was approximately 500 milliseconds (ms). In the Incident Response of the
MonB5G Security Orchestrator solution, an action plan for the deployment of countermeasures
is created based on rules and facts from DE, while the ACT executed the plan. The time to make
a decision (mean time) was around 200 ms, and the measured Mean Time to Resolve (MTTR)
was around 3 seconds (<10 seconds for reconfiguration).

 Lessons learned from the experimental demonstrations are also summarized at the end of the
deliverable.

In summary, the MonB5G vision of the creating an intelligent, decentralized, and secure zero-touch
management and orchestration framework in B5G networks has been successfully demonstrated through the
tangible results obtained of experimental testbed platforms.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 17

2 Introduction

2.1 Objectives of the Performance Evaluation of the MonB5G Distributed
Architecture and Enablers

This deliverable presents the evaluation and validation of the KPIs defined as the main scope of contribution
for the components of the MonB5G architecture. The functional validation initially achieved in D6.1 is now
extended with a performance validation that materializes autonomic control-loops within the framework of
B5G communication networks, for which matching experimental testbeds were built and designed.

The vision of MonB5G project is to provide autonomic management with the features envisaged for B5G
communication networks. The project aims to achieve this by integrating and validating the MS/AE/DE/ACT
components to materialize autonomic control-loops within the framework of B5G communication networks.
This deliverable will shed further light on the implementation and testing of the AE components, the
implementation of the MS, as well as the integration of these components with the MS. The aim is to
demonstrate the ability of the integrated MonB5G components to fulfil the KPIs presented in WP2, as part of
the MonB5G architectural vision for distributed management. The achievement of this is dependent on the
interoperability and integration of the MonB5G components, presented in this deliverable. In this deliverable,
functional aspects refer to the features and capabilities of a system and the components that actually provide
the service, while performance and deployment aspects refer to how well the system performs and how it is
implemented and deployed, as well as the reliability of the network service elements and the deployment
frameworks of the MonB5G components.

The goal of this deliverable is to go deeper into the details of the infrastructure used to implement the
testbeds, how the PoCs/ES are deployed on the infrastructure, the KPIs that are used for evaluation, the
introduction of MonB5G enablers and applications (including VR video streaming) in each of the considered
scenarios and then to present the actual evaluation with comparisons.

This document addresses the following project objectives:

 Obj. #1: Distributed management plane to support a massive deployment of network slices.
 Obj. #2: Definition of novel e2e slice KPIs and development of AI-based mechanisms for their accurate

prediction from multi-level metrics
 Obj. #3: Data-driven management system based on federated learning.
 Obj. #4: Zero touch network configuration
 Obj. #5: DE decisions tailored to the RAN.
 Obj. #7: AI-driven energy efficient network management

2.2 Deliverable Overview and Structure

This deliverable provides a comprehensive overview of the infrastructure setup, testing, deployment, and
evaluation of MonB5G components in both PoC-1 and PoC-2 scenarios, covering various aspects and
performance metrics. The main part of the information includes the following sections:

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 18

Section 3 focuses on the Infrastructure Setup, Testing, and Deployment of Software Components in the
MonB5G Architecture. It covers the PoCs Testbed and Experimental Scenarios recap, hardware details of the
testbed and interconnection, as well as the application setup for PoC #1, including video streaming overview,
the RTSP protocol, and emulating high-demanding VR video streaming with transcoding. It also includes KPIs
for the PoCs and a summary of integrated solutions.

Section 4 discusses the Evaluation of KPIs of MonB5G Components in the Experimental Framework for PoC-
1. It provides a recap of the deployment of MonB5G MS in PoC-1, including the multi-gNB RAN setup,
Amarisoft Remote UE, monitoring sampling functions, and Grafana visualization. Additionally, it presents the
datasets from experimental trials, such as the federated learning dataset and the 5G RTSP video streaming
use case for anomaly detection. It then evaluates the KPIs of MonB5G solutions at the PoC-1 Testbed,
including various scenarios such as ECATP, FL predictor, Slice KPI prediction with Interpretable Anomaly
Detection, Multivariate Anomaly Detection, and LSTM-Based Anomaly Detection. It also evaluates MonB5G
DEs in PoC-1, specifically Slice Admission Control based on traffic prediction and resource allocation in the
RAN domain using a multi-agent learning approach.

Section 5 focuses on the Evaluation of KPIs of MonB5G Components in the Experimental Framework for PoC-
2. It begins with a recap of the deployment of MonB5G MS in PoC-2. Then, it focuses on the Evaluation of
KPIs of the MonB5G Components over the Experimental Framework for PoC-2. It begins with a recap of the
deployment of MS in PoC-2 and evaluates the KPIs of MonB5G MS in PoC-2. It then evaluates the MonB5G
AEs at the PoC-2, including gradient boosting interval regression, dimensionality reduction, and anomaly
detection of attacks. Finally, it evaluates the MonB5G DEs in PoC-2, such as in-slice attacks, robustness of
learning algorithms in the face of attacks, AE for mMTC attack and aLTEr attack, and response and mitigation
of both attacks.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 19

3 Infrastructure Setup, Testing and Deployment of Software Components
in MonB5G Architecture

3.1 PoCs Testbed and Summary of Experimental Scenarios

MonB5G has two Proof of Concepts (PoCs) that are being considered to address certain objectives. The first
PoC, known as PoC #1, aims to achieve zero-touch network and service management with end-to-end service
level agreements (SLAs). The second PoC, known as PoC #2, aims to implement AI-assisted policy-driven
security monitoring and enforcement. To achieve these objectives, PoC #1 is considering two experimental
scenarios. The first scenario, ES 1.1, focuses on achieving zero-touch multi-domain service management with
end-to-end SLAs. The second scenario, ES 1.2, focuses on achieving elastic end-to-end slice management. The
purpose of these experimental scenarios is to test the feasibility and effectiveness of the proposed solutions
in real-world settings.

Similarly, PoC #2 is also considering three experimental scenarios to achieve its objectives. The first scenario,
ES 2.1, aims to detect and mitigate attacks using AI-assisted policy-driven security monitoring. The second
scenario, ES 2.2, aims to test the robustness of learning algorithms to attacks and ES2-3 studies aLTEr Attack
detection and mitigation. These experimental scenarios are designed to test the effectiveness of the
proposed solutions in detecting and mitigating potential security threats in real-world settings.

These experimental scenarios help in identifying and testing the feasibility of proposed MonB5G solutions,
which ultimately lead to the development of more robust and effective systems for network and service
management and security monitoring. Descriptions of these Experimental Scenarios as well as their mapping
to project objectives described in Description of Work, along with used MonB5G Solutions, are described
below.

3.1.1 Scenario Description and Mapping of PoC#1 Solutions
Experimental Scenario 1.1: Zero-Touch multi-domain service management with end-to-end SLAs

Objectives: The main objective of this scenario is to assess the data-driven management systems in a multi-
domain scenario w.r.t. their ability to guarantee the stringent end-to-end SLA of the Tactile Internet
application. Automated zero-touch service management and multiple redundancy mechanisms must ensure
practically zero downtime.

Description: In this experimental scenario, multiple NFVIs, hosted in both project testbeds as well as on AWS
infrastructure will be combined to demonstrate Zero-Touch service management in complex multi-domain
services. In this scenario the Storage, Compute, and RAN functions of the Tactile Internet application will be
hosted in different regions under the control of local NFVOs and Decision Engines, while end-to-end SLA must
be honoured. Continuous monitoring and closed-loop autonomic control mechanisms, which will be common
across regions and testbeds, will ensure self-healing, self-configuring and self-scaling of services, to address
faults and performance issues in any of the service technological domains. In this scenario, the following will
be demonstrated:

1. Continuous monitoring of QoS (e.g., bitrate) and QoE (e.g., video quality) metrics across all
technological domains and service functions, by the respective local monitoring engines. MonB5G

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 20

solutions presented in this deliverable are addressing this description where continuous monitoring
of QoS metrics and local monitoring engines are tackled by Monitoring System and design solution.

2. Model updates are forwarded by the local monitoring engines to the centralized Decision Engine
where it is assessed w.r.t. the probability of impacting the SLA. The solutions presented in this
deliverable from MonB5G address the requirement of incorporating local plans and policies with
federated updates while considering SLA restrictions using Statistical Federated Learning resource
predictor and scaling solution.

3. At the Decision Engine model updates are federated and correlated with predicted events (e.g., Peak
Planned Occurrences) and service degradation indicators. MonB5G solutions presented in this
deliverable address the described scenario by incorporating federated model updates. This is
accomplished through the utilization of a Statistical Federated Learning resource predictor and
scaling solution.

4. Local plans and policies are forwarded to local decision engines, who remain responsible for
implementing them (e.g., scaling the respective VNFs). The previously mentioned issue is answered
by MonB5G solutions covered in this deliverable where Fault Detector, LSTM, and graph-based
anomaly algorithms foresee service degradation events.

5. The "energy slicing" subsystem, which is part of the Decision Engines, is responsible for implementing
the energy optimization policies, while ensuring that end-to-end SLAs are not affected. MonB5G
solutions presented in this deliverable propose an energy efficiency in a slice with Statistical
Federated Learning based resource predictor and scaling solution.

Experimental Scenario 1.2: Elastic end-to-end slice management

Objectives: As part of our experiments, we will demonstrate how MonB5G mechanisms react to address local
performance issues in multiple technological domains as well as at changes to traffic patterns in various
timescales. The ability of these mechanisms to guarantee almost zero latency for Tactile Internet applications
by proactively acting (and predicting) spikes in user demand will be assessed. Finally, special emphasis will
be on data-driven Radio Resource Management mechanisms to optimize the RAN sub-slice.

Description: As the number of Network Slice Instances (NSIs) increases, the scale and complexity of lifecycle
management and slice reconfiguration making automation a necessity. Each NSI consists of multiple NSSIs,
generally one per technological domain (i.e., 5G Core, RAN and transport network), while each technological
domain in MonB5G has its own data-driven MS, AE and DE components. In this scenario, in addition to the
Tactile Internet application NSI, a massive number of slices will also be emulated in order to demonstrate the
following:

1. Continuous monitoring of each NSSI by the respective Monitoring Engine at appropriate time-scales,
to identify performance issues (e.g., deteriorating signal reception). MonB5G solutions presented in
this deliverable are addressing this description where continuous monitoring of each NSSI metrics
by the Monitoring Engine are addressed by Monitoring System and design solution.

2. Decision Engines at each domain are able to recover local faults, but also forward model updates
with respect to sub-slice performance to the central Decision Engine. MonB5G solutions presented
in this deliverable are addressing this description where models updated with data Federation for
proactive actions at the Decision Engine is addressed by multi-agent DRL-based resource allocation
solution.

3. Sub-slice performance data will be federated with traffic pattern predictions at the Decision Engine,
and proactive actions will be taken to prevent missing end-to-end service SLAs. MonB5G solutions

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 21

presented in this deliverable are addressing this description where federated solutions at the
decision engine are addressed by multi-agent DRL-based resource allocation solution.

4. Proactive Actions are implemented by the respective domain controller (e.g., forcing UE handovers
at the RAN, or traffic steering to avoid bottleneck points). MonB5G solutions presented in this
deliverable are addressing this description where proactive actions by the domain controller are
addressed by PreBAC solution.

Mapping of PoC #1 Experimental Scenarios to project objectives is presented in Table 1.

Table 1: Objective mapping to PoC #2 Experimental Scenarios

Objectives ES 1.1 ES 1.2

Obj. #1: Distributed management plane to support massive deployment of
network slices

X

Obj. #2: Definition of novel e2e slice KPIs and development of AI-based
mechanisms for their accurate prediction from multi-level metrics

X X

Obj. #3: Data-driven management system based on federated learning X

Obj. #4: Zero touch network configuration X X

Obj. #5: DE decisions tailored to the RAN X

Obj. #7: AI-driven energy efficient network management X

3.1.2 Scenario Descriptions and Mapping of PoC#2 Solutions
Experimental Scenario 2.1: Attack detection and mitigation

Objectives: In this scenario, we propose a Zero-touch Security Management solution that addresses the
challenges of in-slice DDoS attack detection and mitigation, considering the case of mMTC network slices.
Generally, this type of attack targets the 5G CN elements shared among the network slices. The proposed
ZSM solution relies on a closed-control loop composed of a triplet (Monitoring System - MS, Analytical Engine
- AE, and Decision Engine – DE) that interacts with the 5G CN in order to detect attacks and automatically
react by mitigating the attacks. The critical challenge addressed in this work is how to detect a DDoS attack
initiated by a compromised set of MTC devices inside a network slice. Indeed, there is no available traces or
dataset that reproduce abnormal traffic in 5G, unlike other types of networks where many datasets are
available. Besides, it is very challenging to detect during an event if there is an attack and what are the
involved devices in the attack.

Description: In this scenario, an attack is generated that does not follow the distribution specified by 3GPP
(I.e., beta 3,4 distribution). The MonB5G solution should detect and mitigate the attack.

MonB5G solutions: The scenario leverages the closed-control loop components (MS, AE, and DE) that interact
and protect the shared sub-slice components (5G CN and gNBs) against DDoS attacks. Here, the focus is on
protecting AMF as it is the entry point of the 5G CN and treats all the Attach Requests coming from the
different gNB under its control. The Monitoring System (MS) collects information from the AMF, while the

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 22

Analytical Engine (AE) uses ML to predict attacks, and Decision Engine (DE) reacts to the alert sent by AE by
acting on AMF (block and blacklist UE). The control-control loop runs as software and can be co-located with
the orchestrator managing the life cycle of the shared sub-slice. It should be noted that AMF, via an Element
Manager (EM), exposes API for an orchestrator or a manager to extract and monitor information on the AMF’s
functioning or to change the configuration of the latter. In the proposed framework, MS monitors the Attach
Requests received by the AMF, while DE requests AMF to send Registration Reject to suspected devices. In
the considered scenario, the MTC devices (or UEs), when detecting an event or participating in an attack, first
send an Attach Request to AMF. The latter must first authenticate the devices and then give them access to
the network resources (register the device), mainly to the data plane, to send data to the remote application.
During the authentication process, the AMF checks with the Unified Data Management (UDM) if a device is
blacklisted or not. As a reminder, UDM is the 5G CN function, which stores subscribers’ information
(Subscriber Permanent Identifier / SUPI, Quality of Service / QoS, Policy, the key k, Operator key, etc.). A
device is blacklisted if it has participated in an attack. Meanwhile, MS, via the EM/AMF API, monitors the
Attach Requests received by AMF. MS filters the data to extract needed information, such as timestamps and
SUPI. This information is communicated to AE that processes the whole event (attach period that may
correspond to an attack) to classify if the event corresponds to an attack or not. When the event finishes, AE
communicates the list of involved UEs; for each UE, a probability of being part of the attack is included. DE
then mitigates the attack by requesting AMF to send a Registration Reject message to UEs having a high
probability of being in the attack while adding the concerned UEs to a blacklist maintained by the UDM.

Experimental Scenario 2.2: robustness of learning algorithms to attacks

Objectives: The Zero Touch Management (ZSM) concept in 5G and Beyond networks (B5G) aims to automate
the management and orchestration of running network slices. This requires heavy usage of advanced deep
learning techniques in a closed-loop way to auto-build the suitable decisions, enabling to meet network slices’
requirements. In this context, Federated Learning (FL) is playing a vital role in training deep learning models
in a collaborative way among thousands of network slice participants while ensuring their privacy and hence
network slice isolation. Specifically, running network slices may share only their model parameters with a
central entity, e.g., Inter Domain Slice Manager, to aggregate them and build a global model. Thus, the central
entity does not directly access the training data. However, FL is vulnerable to poisoning attacks, where an
inside participant may upload poisoning updates to the central entity so that it can cause a construction
failure of the global model and thus affect its global performance. Therefore, it is crucial to design security
means to detect and mitigate such threats. This scenario addresses the robustness of FL algorithms to attacks,
such as the poisoning attack.

Description: In this scenario, some malicious clients are injected to perturb the training of FL clients. The
MonB5G solution should detect and mitigate the attack.

MoB5G solutions: We consider that running network slices are interconnected to an Inter Domain Slice
Manager (IDSM), which is in charge of the management and orchestration of network slices. To enable Zero
Touch Management (ZSM), the IDSM side includes an Analytic Engine (AE) for building learning models and a
Decision Engine (DE) to make suitable decisions based on AE’s outputs. On the other side, each running
network slice is managed locally by a Domain Slice Manager (DSM), which also includes a Monitoring System
(MS) for monitoring data and an Analytic Engine (AE) for building learning models. For privacy, running
network slices may share only their model parameters with the central IDSM. The latter will aggregate them

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 23

and build a global model. Thus, the central entity does not directly access the training data. However, FL can
be exposed to poisoning attack. To mitigate this attack, we design a novel framework to automatically detect
malicious participants in the FL process. In particular, our framework first uses a deep reinforcement
algorithm to dynamically select a network slice as a trusted participant, based mainly on its reputation. The
selected participant will then be in charge of identifying poisoning model updates by leveraging unsupervised
machine learning.

Experimental Scenario 2.3: aLTEr Attack detection and mitigation

Objectives: In this scenario, we propose a Zero-touch Security Management solution, with a local security
orchestrator, that addresses the challenges of aLTEr attack detection and mitigation. The aLTEr attack is an
MITM attack type and is carried out between the user equipment (UE) and the gNodeB (gNB). It involves a
breaking layer two of the user radio bearer, exploiting the fact that the user data integrity protection can be
missing as a vulnerability to carry out the attack. To detect the attacks, AI/ML algorithms were explored to
detect the aLTEr attack, executed at AE. The mitigation step executed by DE consists of a security policy
update on the firewall to deny the private DNS address from the UE.

Description: In this scenario, attacker exploits the lack of mandatory integrity protection of the PDU session
and modifies DNS messages to redirect user traffics towards malicious servers. Scenario will show the
implementation of the MonB5G Autonomic Security Orchestrator architecture to handle cybersecurity
incidents and to deploy on demand counter-measures via the CNF Orchestrator.

MonB5G solutions: MonB5G system integrates autonomous security orchestrator architecture to automate
the processing of security incidents, enabling quicker and more effective reactions and minimizing impact of
security threats. Counter measures are deployed on demand via CNF Orchestrator, being able to reconfigure
and change functions. To achieve it, the environment that has been set up for the testing is based either on
simulation or virtualized infrastructure. When the virtualized infrastructure is used, the hosts are virtualized
machines (VM) managed by OpenStack, on which we deploy applications or worker nodes of Kubernetes
(K8S) cluster. The network service of the control plane of the 5G system and the MonB5G components MS,
AE, DE, and ACT are K8s services and pods, while the remaining parts of the 5GS such as the data plane and
the simulator of UE and RAN are applications running on the VMs. Moreover, we also keep all host clocks
synchronized by the Network Time Protocol (NTP) to have consistent timestamps in logs and to correlate
events.

The focus is on protecting the user and to avoid that traffic generated by this user is used with malicious
servers. The Monitoring system collects information from the N6 interface with a N6 tap which forward a
copy of the manipulated DNS request to the Monitoring System: this MS will create a log file with Zeek tool.
Then data is integrated by the Analytics Engine (AE). The AE leveraging various ML algorithms detects
anomalies in the manipulated DNS message and raises a cybersecurity incident. This incident is then analysed
by the Decision Engine for eradication: the DE infers to use DNS over TLS to enhance the integrity protection.
Eventually, the Actuator (ACT) component executes the remediation order received by the DE, which requests
the installation and setup of a DoT client on the UE (UERANSIM). The HTTP client (Chrome) can now safely
reach the web site and the attacker can no longer intercept DNS messages.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 24

Mapping of PoC #2 Experimental Scenarios to project objectives is presented in Table 2.

Table 2: Objective mapping to PoC #2 Experimental Scenarios

Objectives ES 2.1 ES 2.2 ES 2.3

Obj. #1: Distributed management plane to support massive deployment of
network slices

 X

Obj. #2: Definition of novel e2e slice KPIs and development of AI-based
mechanisms for their accurate prediction from multi-level metrics

X

Obj. #3: Data-driven management system based on federated learning X X

Obj. #4: Zero touch network configuration X X

Obj. #5: DE decisions tailored to the CN X X

3.1.3 MonB5G Architecture in PoC Testbed
The design philosophy of MonB5G, as it was defined in WP2 (specifically in [MonB5GD24]), is to provide
hierarchical, feedback-loop-based control for fault, configuration, accounting, performance, and security
(FCAPS) management, and slice orchestration, featuring different control loops with different scopes, goals,
and timescales. This control strategy with all of its aforementioned features is expected to work at the Global
OSS/BSS level, the Technological Domain level, Slice Level, and the Node (Virtual Network Function/Physical
Network/Cloud Native Network Function) level. Figure 3-1 shows the MonB5G architecture mapped to PoC
testbed components.

Figure 3-1: MonB5G architecture mapped to PoC.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 25

The MonB5G architecture is composed of static and dynamically deployed components. The former is
presented in Figure 3-1, namely the MonB5G Portal, the IDMO (Inter-Domain Manager Orchestrator), the
DMO (Domain Manager Orchestrator) and the Infrastructure Domain Manager (IDM). The dynamically
deployed components, on the other hand, are associated to the autonomic management capabilities within
the slice, referred to as Inter-Slice Management (or ISM).

Whether static or dynamically deployed, all of the components of the MonB5G architecture consist of the
following components:

1. Monitoring System (MS) Sublayer: responsible for collecting, aggregation and processing of the
monitored data

2. Analytics Engine (AE) Sublayer: responsible of performing different types of data analytics on the data
stored from the system being monitored

3. Decision Engine (DE) Sublayer: responsible of generating orchestration decisions of different types
4. Actuators (ACT) Sublayer: responsible for the execution of the DE orchestration directives by calling

onto more primitive actions related to the monitored system.

These components of the MonB5G architecture are previously presented in [MONB5GD24] where the
Functional Layer refers to the layer corresponding to the components that provide the server, while the
MonB5G layer holds the aforementioned MS, AE, DE and ACT sublayers. In the design philosophy of MonB5G,
the DMO (a static component of the MonB5G architecture) consists of the SFL consists of the components
associated to support 5G-related functionalities at the specific Domain in which a DMO is deployed, and it
also includes its own OSS/BSS Layer that communicates with the IDMO. As we shall we see, a lot of the
enablers that have been tested so far fit well into a DMO with the corresponding sub-layers. To realize DMO
and IDM in corresponding testbeds, we have utilized separate Kubernetes clusters for both MonB5G
components and infrastructure related components.

Starting from Section 4, we will detail how the different contributions developed by each partner satisfies
the architectural requirements specified in WP2 and reproduced in this section for convenience. The scope
of these sections in this document is to provide a detailed explanation, description and results (when
possible) of the functional integration of the MS, AE and DE in their respect sub-layer for the validation of
the MonB5G Architectural template.

Within this scope, it is also necessary to provide a very high-level description of the testing platforms in which
the contributions were functionally tested, and it is necessary to explain the relationship of this testing
platforms to the experimental scenarios of the MonB5G project to validate these contributions. These high-
level descriptions given for each experimental scenario are given in Sections 3.2 and Sections 3.3 for the First
and Second Proof-of-Concepts, respectively.

3.2 Infrastructure Details of the Testbed and Interconnection

3.2.1 Testbed for PoC-1
Details on providing access for remote users for deployment are as follows. The MonB5G project partners
are granted access to a CTTC Testbed Instance (TI), which serves as a virtual experimental environment that
comprises an independent and self-contained Network Functions Virtualization ecosystem. Prior to utilizing

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 26

the resources, the partners have requested their needs and the resources that CTTC can provide in terms of
time and effort. To facilitate this work, a Testbed Instance Requirements template has been provided to each
involved partner. Partners were required to fill out the template, which includes the description of the
solution or experiment for which the TI will be used, the technical and administrative personnel involved
from both sides, the type of Testbed Access needed (remote or physical), the estimated duration of the TI,
and most importantly, the resources required.

Hardware details: In this section, we describe hardware details for PoC#1 testbed. The typical resources
available in a Testbed Instance include:

 Computing: physical servers, virtual machines, and containers.
 Platform as a Service/Management and Orchestration: Kubernetes
 Monitoring Systems: MonB5G MS, Prometheus, and Kube-Prometheus.
 5G (see Figure 3-2):

o 5G Core: Amarisoft Callbox 5GC, Free5GC, OAI CN, and Open5GS.
o 5G RAN: Amarisoft Callbox gNBs and UERANSIM gNB.

Figure 3-2: 5G hardware components.

Regarding remote access to the Testbed Instance, CTTC provides partners with a VPN connection. Specifically,
a physical server located at CTTC's premises hosts a Linux Container (LXC) with an OpenVPN (OVPN) server
service running inside. The OVPN server has been configured to allow access to the specific virtual machines
(VMs) involved in the TI, using routing rules.

CTTC's infrastructure exposes a public IP address to the partners, which can be accessed using OVPN client
files created and given specifically to them. These client files enable partners to connect to the OVPN server
and access the restricted environment, a private network, through Secure Shell (SSH) protocol. Access is
granted only after the partner's public IP address or DNS domain has been whitelisted in CTTC's infrastructure
firewall. Finally, the traffic between the partner and the OVPN server is established and encrypted using the
OVPN client file.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 27

The objective of PoC1 infrastructure setup is to be able to show contributions by the partners and achieve
integration. PoC#1 setup is given in Figure 3-3. Both ES 1.1 solution 1 on Federated Learning and ES 1.1
solution 2 on Anomaly detection have three sites, each with a Kubernetes cluster running a monitoring
system instance. Site 1 (or A in this figure) and Site 2 (or B in this figure) run the main demo workloads and
sampling functions for the monitoring. In site-1 we have univariate and multivariate anomaly detection
modules. In Site-1, 2 and 0, we have federated learning modules. Site 0 (or C in this figure) is used for
federated learning aggregation server.

Figure 3-3: PoC1 Architecture components

Another testbed instance for PoC#1 has been deployed and consists of the 5G CORE (with Open5GS and
OpenAirInterface deployed, however Open5GS is used for the current functional validation), the 5G RAN
(consisting of an Amarisoft Callbox gNB) with an Edge Cloud Domain attached, and 5G UEs. Enhanced Context-
Aware Traffic Prediction (ECATP) was deployed in this testbed, and it was tailored also for the deployed of
Prediction-Based Admission Control, which relies on ECATP as part of its input variables.

Testbed for ES 1.1 and ES1.2 Infrastructure Components available: The testbed instance we will be using in
this scenario is designed to evaluate MonB5G solutions in a 5G network environment. It is comprised of a

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 28

variety of different components that work together to enable the testing and evaluation of different
federated learning approaches. The components can be categorized as follows:

 Cloud-native infrastructure: the cloud-native computing infrastructure of the testbed is built using
containers and virtual machines. In essence, VMs are used as (worker/master) nodes to deploy
Kubernetes clusters, while containers run different applications and microservices. This allows for
flexibility and scalability in the testbed, as well as the ability to easily replicate and test different
configurations. In particular, we consider three Kubernetes clusters: two for the edge/RAN domains
and one in the cloud for showcasing the hierarchical features of the monitoring system.

 Monitoring System: To monitor and troubleshoot the testbed, we deploy three instances of the
MonB5G MS. The FL-related MS instances running at the edge sites will run customized sampling
functions (for infrastructure monitoring and for RAN monitoring). These monitoring systems will be
able to monitor and collect metrics from the testbed infrastructure, as well as from the RAN. We also
use Prometheus to expose some metrics of interest, which can then be visually displayed in Grafana
for easing their analysis. The cloud MS will run a generic SF to showcase how aggregated/processed
metrics can be taken from the MS instances at the edge sites.

 Orchestration: The testbed uses a Python script based on the Kubernetes scheduler to act as the
intermediary between the federated learning agents and the Kubernetes scheduler. The script
triggers actions related to pod scale-up/scale-out, to ensure pre-emptive and efficient resource
allocation via the federated learning process.

 Federated learning (FL): The testbed includes a FL client that builds local models in phase I and makes
inferences in phase II. The FL client connects to the monitoring system to collect and analyse metrics
during the learning process. The FL aggregation server is responsible for exchanging weights between
FL clients to aggregate the learned models.

 5G network: The testbed includes a UE emulator realized with Amarisoft Simbox and 2x gNB realized
with Amarisoft Callbox. These components are plugged together to create a rich multi-domain setup
for testing federated learning algorithms. There are different alternatives for the 5G core, including
Amarisoft's proprietary core or open-source projects like Open5GS, Free5G, or OpenAirInterface Core
Network. Each of these open-source cores have been integrated with Amarisoft Callbox gNB, so we
have the flexibility to use any of them.

 Application: The testbed includes video on demand (VoD) and streaming servers/clients, both of
which are cloud native. High bandwidth video is used to stress the CPU of the server and trigger
actions, such as scaling out pods, to test the performance of the federated learning algorithms under
different conditions.

 UV and MV AD: The testbed includes univariate (UV) and multivariate (MV) anomaly detectors. These
systems connect to the MS to collect and analyse metrics for both learning and inference (to detect
anomalies). UV AD uses single input and MV AD uses multiple inputs.

In the case of the testbed instance deployed at IQU, similar components are also present:

 5G Network: two Amarisoft gNBs materialized with the Amarisoft Callbox models
 Orchestration capabilities: materialized through OpenStack and Opensource MANO (OSM) deployed in a

virtualized environment.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 29

 Monitoring System: deployment of multiple instances of the Monitoring System (MS) for data gathering
and for deployment of the different enablers.

 Cloud-native Support: this is necessary to allow the flexible deployment of the enablers, and to provide
federation of resources across the 5G Core Cloud and the 5G Edge Cloud Domain. A Kubernetes cluster is
deployed to provide for this functionality.

3.2.2 Testbed for PoC-2
Providing access for remote users for deployment

a. Site description

The site is located at EURECOM premises in Sophia-Antipolis (South East of France). The site offers a 5G
facility composed of Radio, Core Network, and an Edge platform. The 5G radio and Core Network are based
on OpenAirInterface (OAI), the edge platform is running a Kubernetes (K8) cluster. The facility supports full
5G StandAlone.

b. Radio infrastructure:

The radio infrastructure includes indoor and high-power outdoor radio-units operating in several 4G and 5G
bands in the immediate vicinity of the test site, specifically Band n38 (2.6 GHz TDD), Band n78 (3.5 GHz TDD)
and Band n258 (25 GHz TDD). The outdoor units are interconnected with the switching fabric using 300m
fiber (10/25 Gbit/s). The units are a combination of in-house designs and commercial remote radio-units. The
outdoor installation is shown below:

Figure 3-4: Outdoor and Indoor Radio Units

The RUs used at the site include: AW2S eCPRI split-8 2x2n38, 2x2 n78, 4x4 n78 (upgradeable to O-RAN 7.2 Q3
2022), Mavenir O-RAN 7.2 n78 (indoor), InterDigital MHU n258.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 30

The sites RAN elements are based on the OAI CU/DU deployed as a cloud-service using K8S. The RAN is fully
open and configurable to within the limitations of the OAI implementation. The implemented RAN interfaces
are: fronthaul (eCPRI, ORAN 7.2, UHD), split-6 NFAPI, F1-C, F1-U, E1, E2, N1, N2, N3.

c. 5G Core Network

The core network part of the testbed is a partial 3GPP 5GC service-based architecture including the following
elements: NRF, AMF, SMF, multiple UPF, UDN, UDR, AUSF, NWDAF and NSSF. All these elements are cloud
native and can be deployed using Kubernetes.

d. Edge computing

The site’s cluster computing resource makes use of RedHat’s OpenShift 4.9 Kubernetes container platform
and benefits from technical support from REDHAT. The main cluster is used for radio-access, core network
and mobile-edge functions. The main cluster is comprised of 3 2x18-core Xeon Gold 6154 and 3 2x18-core
Xeon Gold 6254 x86 servers (Dell R640). All nodes are connected 2x25Gbit/s to the switching fabric. One
computing node has extra fronthaul networking interfaces for direct interconnections with O-RAN radio
equipment. A second single-node OpenShift cluster built on a 2x64-core AMD Epyq server (Dell R7525) is
available for sandbox testing and as a dedicated 3GPP-DU cluster. It is equipped with 4x25Gbit/s Ethernet
connected to both the main switching fabric and for direct interconnection with O-RAN radio equipment.

e. Management and orchestration of vertical trials

EURECOM’s 5G facility has been designed specifically to provide a vertical a high-level system to run a trial
on top of a 5G infrastructure and collect KPI, without taking care about the complexity of the system, and
low-level information. Figure 3-5 shows a high-level architecture of the adopted facility architecture. Three
layers are distinguished: the vertical and users space, orchestration and management, and infrastructure.
The user layer is where the vertical and the trial owner interact with the facility to define, run and monitor a
trial. It is mainly composed by the Web Portal. The orchestration and management layer that is composed by
all the entities that configure, instantiate, run the trial as a network slice, and monitor the KPI. Finally, the
infrastructure layer, which is composed by the elements that runs the 5G components, such as RAN, CN, MEC
applications, VNFs, and MEP.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 31

Figure 3-5: Global architecture of the 5G Facility

The Web Portal is the key element of the facility, as it is the interface with the vertical and trial owner. The
Web Portal should abstract the 5G components specific by providing a high-level of abstraction to the vertical
to deploy and monitor a trial. All the components collaborate to ensure the life-cycle of a trial, which is
composed of: definition and preparation, configuration and instantiation, run-time management, and
deletion.

The orchestration and management layer sees the trial as a NS and is composed of the Slice Orchestrator
(SO), which is in charge of the LCM of NS, RAN Orchestrator that manages the LCM of the RAN part of a NS,
and the NFVO that manages the LCM of the MEC applications (MECapp) and VNF composing the service of
the vertical. According to the 3GPP management architecture, the SO corresponds to the NSMF, the NFVO
and RANO to NSSMF. The SO is the entry point of the 5G facility. It exposes a NBI to the Web Portal for the
NS LCM and monitoring. It uses the NBI exposed by the NFVO and RANO to deploy a Network Slice on each
domain and start the monitoring process. The SO of the EURECOM 5G facility implements the NS LCM as
specified by 3GPP. The NFVO role is to deploy the service part of a Network Slice over the virtualization
platform. The NFVO takes as inputs the NSD, including the list of AppD. At the slice creation it on-boards the
virtual images, and at the instantiation request it creates the instances of all the applications. The NFVO of
EURECOM facility is a home-made software, it can manage docker containers on top of VIM that run
Kubernetes on bar-metal. It also supports OpenShift. Per the SO requests, the NFVO also creates a monitoring
agent that collect data on the CPU, memory usages and networking information of the applications belonging
to a specified slice. The NFVO interacts with the MEC Edge Platform (MEP) to ensure traffic redirection to the
MEC applications. The RANO aim is to manage the RAN resources dedicated to a Network Slice. The RANO

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 32

checks the availability of the radio resources before deploying a network slice. RANO relies on the O-RAN
based on ONOS (ONF) to handle the radio resources and radio slice configuration using xApp.

3.3 Application for PoC-1 Setup

In this section, we discuss about video streaming application details and deployment.

3.3.1 Video Streaming Overview
In Figure 3-6 we show a scenario where UEs attach to a gNB that provides access to a streaming server, which
is stressed with high demanding transcoding workloads to emulate VR/AR processes. The UEs are realized
through the Remote UE mode enabled by Amarisoft Simbox emulator, and the gNodeB Amarisoft Callbox,
which also provides the user plane connectivity. The emulated VR video streaming server is deployed as a
Nginx pod in a Kubernetes cluster. We rely on MonB5G sampling functions to feed monitoring data to the
monitoring system, and the monitoring system exposes this data to Grafana for the sake of representation
and alarm triggering. The monitoring system also feeds the analytic engine, which is trained to forecast pod’s
CPU. Then, the decision engine and actuator deployed also as pods in the cluster, pre-emptively trigger
actions through the Kubernetes application programming interface to scale up/down the virtual reality
streaming server pod’s CPU.

Figure 3-6: VR Video Streaming infrastructure and PoC #1 setup.

3.3.2 Example Video
To run the experiments, a streaming video server has been deployed with the help of a NGINX server. It
provides video-on-demand and video streaming, which can be accessed by any user (or UE) for real-time
reproduction. This VR video streaming emulation aids to assess the performance of the network and
therefore the benefits that each solution has brought. For testing reasons, we adopted the well-known “Big
Buck Bunny” video, using h.264 encoding protocol and a resolution of 1920x1080p. All the characteristics of
the streamed video are shown in Table 3

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 33

Table 3. Original video file information.

Video codec Advanced Video Codec (AVC)

Width 1920 pixels

Height 1080 pixels

Display aspect radio 16:9

Duration 10 min 34 s

Max Bitrate 16.7 Mb/s

Frame rate 30 FPS

Note that the video bitrate may not be challenging enough for 5G. On the other hand, it should be noted that
video transcoding can impose significant stress to the system, especially considering the absence of
acceleration hardware [Zhu2019]. This is the rationale behind selecting this video file.

3.3.3 The RTSP Protocol
At the server side, we use cvlc to invoke the VLC media player with streaming protocol set to Real-Time
Messaging Protocol (RTSP) with the server address and port left blank (rtsp://:8090/stream). The --sout-keep
option allows the output stream to be kept open after the file ends.

Notice that RTSP is a popular choice for testing video and virtual reality solutions for several reasons. Firstly,
RTSP is a streaming protocol that is specifically designed for delivering real-time multimedia content, making
it suitable for applications that require low-latency streaming, such as video and virtual reality. RTSP also
allows for the efficient delivery of audio and video data over the network, enabling smooth playback and
interactive experiences. Second, RTSP supports a client-server architecture, where the server hosts the
multimedia content and the client requests and receives the content. This makes it easy to test and simulate
realistic scenarios, such as multiple clients connecting to a server, in a controlled environment. RTSP also
provides features such as content synchronization and time-based seeking, which are beneficial for testing
video and virtual reality solutions that require precise timing and synchronization of multimedia content.
Furthermore, RTSP is a widely supported protocol, with many media players and streaming servers supporting
its use. This makes it a versatile choice for testing video and virtual reality solutions across different platforms
and devices.

3.3.4 Emulating High Demanding VR Video Streaming with Transcoding
Overall, applying transcoding to a regular video stream solution can be a good approach to emulate the high
CPU consumption that may be generated by VR/AR solutions, providing a realistic testing environment for
evaluating the performance and scalability of video streaming solutions in scenarios that resemble the
resource-intensive demands of VR/AR applications. For those experiments related with the FL use case, we
enable transcoding in VLC by generating MPEG-4 Video code (mp4v) in real time to highly impact the CPU
consumption pod so as to emulate VR/AR high computation and stress the server.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 34

Notice that applying transcoding to a regular video stream solution can be a good approach to emulate high
CPU consumption, similar to what may be experienced in virtual reality (VR) or augmented reality (AR)
solutions, for several reasons. Firstly, VR/AR applications often involve rendering and processing complex 3D
graphics and interactive content in real-time, which can put a significant load on the CPU. Transcoding, which
involves converting video from one format to another, can be computationally intensive and requires
significant CPU resources. By applying transcoding to a regular video stream, the CPU workload can be
artificially increased, simulating the high CPU consumption that may be generated by VR/AR applications.

Secondly, transcoding can introduce additional processing overhead due to the need for video compression
and decompression. This can mimic the resource-intensive nature of VR/AR solutions, which typically involve
encoding and decoding of multimedia content to achieve real-time streaming or rendering. Furthermore,
transcoding can also impact other system resources such as memory and network bandwidth, which can
affect the overall performance of the video stream solution. This can help emulate the holistic impact of
VR/AR applications on system resources, beyond just CPU usage.

In fact, with federated learning solution we were able to set up scenarios where CPU forecasting and
proactive management was critical to ensure good quality of service and comply with high demanding SLAs.

3.4 KPIs for the POCs and Summary of Integrated Solutions

The definition of the KPIs for MonB5G required an extensive and well-documented research effort by the
contributors during the initial stages of the project [MonB5GD22]. This effort on our part was required due
to the gap in the state-of-the-art regarding the definition and KPIs of 5G networks for the evaluation of
security and energy efficiency, and due to the general inadequacies with regards to the distributed zero-
touch management and orchestration objectives that MonB5G aimed for. The conclusion of these efforts
resulted in a series of KPIs.

3.4.1 KPI Mapping to Experimental Scenarios in PoC-1
Those experimental scenarios studied in PoC#1 have different KPIs according to project objectives, and four
of them are common with ES 1.1 and ES 1.2. Complete KPI relevant to PoC scenarios are as follows:

ES 1.1 for PoC#1:

 Reduce the reaction time (time from identification to resolution via appropriate reconfigurations) to
an NS malfunction.

 Improve NS performance prediction.
 x10 reduction in signalling/monitoring overhead with the use of federation techniques.
 OPEX reduction due to the automation of service management.
 Increase the ratio of service management and slice LCM tasks resolved by local AE/DE components.
 Improve the accuracy of the AE/DE mechanisms for detection of slice performance degradation.
 Improve network energy efficiency by a factor of 10.

ES 1.2 for PoC#1:

 Reduce the number of SLA performance violations by 20%.
 OPEX reduction due to the automation of service management.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 35

 Significantly reduce the amount of communicated data to the centralized management system.
 Support for orders of magnitude more Network Slice Instances (NSIs) with dynamic data-driven

reconfiguration.
 Optimize the convergence time for the distributed/federated AI algorithms so that it does not exceed

that of the centralized solutions.
 Generate accurate and reusable data on network slice performance.
 Reduce time to manage RAN resources dedicated to network slices, particularly for uRLLC (AE and DE

are located at the edge).
 Improve on slice performance isolation by ensuring the latency and reliability (uRLLC), as well as

bandwidth (eMBB) requirements of coexisting slices (measured in terms of related SLA violations and
other lower-level metrics).

 Reduce the management overhead of the RAN by reducing the monitoring overhead for RAN-level
slice resource (and other) reconfigurations.

3.4.1.1 INTEGRATING SOLUTIONS FOR DEPLOYMENT IN ES 1.1

Figure 3-7 below shows the ES 1.1 integration diagram with all the solutions in the CTTC testbed. It is based
on the MonB5G architecture above.

Figure 3-7: Integration of AEs and DEs with MS and ACTs for various solutions in PoC#1

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 36

Table 4 below summarizes how each solution has shown their experimental gains and how they are compared
to initial target KPIs were envisioned from the start of the project.

Table 4: Target KPIs versus experimental results for solutions in ES1.1

Target KPIs Experimental Results

x10 reduction in signaling /
monitoring overhead

For the computation of the overhead, we have
considered that both the datasets and update models
are coded in 32 bits. In the uplink between the clients
and the aggregation server, the approximate overhead
can be calculated as in [MONB5GD34]. Starting from the
convergence point of Federated Learning based resource
predictor and scaling at round 8, reduction of
communication overhead is achieved by more than x11
in the experimental setup considered in comparison with
the centralized SLA-constrained algorithm.

Improve network energy efficiency
by a factor of 10

Using the same approach as in [MONB5GD54] to calculate
the energy and using the modeling formulas, energy
reduction gain is calculated as proportional to the
transmitted communication overhead gain. In our
experimental case, convergence was reached after only 8
iterations. Consequently, energy reduction in the
management and orchestration plane was achieved by a
factor of more than 10 at the convergence point.

Increase the ratio of service
management and slice LCM tasks
resolved by local AE/DE components

By design of MonB5G architecture. distributed MS, AE, DE
and ACT elements are deployed in 2 sites. This has
increased the amount of local processing at each site. By
distributing MonB5G components across multiple sites,
the MonB5G architecture enables the local AE/DE
components to handle a greater portion of service
management and slice lifecycle management tasks. This
approach reduces the dependency on centralized systems
and minimizes the need for long-distance communication
between different components, leading to improved
performance, enabling quicker decision-making and
response times.

Improve NS performance prediction

To improve network slice performance prediction, an FL-
based approach has been implemented that focuses on
VR video streaming server CPU load prediction. VR video

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 37

streaming server CPU load prediction performance is
similar to centralized approach (Mean Squared Error
(MSE) of prediction below 0.1), while minimizing the need
for extensive communication between different
components or systems compared to a centralized
solution. The decentralized nature of FL-based approach
allows for faster and more accurate prediction results.
With the prediction model running directly on each VR
video streaming server, it can quickly respond to changes
in CPU load and make real-time adjustments accordingly.
This agility ensures that network slice can efficiently
allocate resources to meet the demands of VR video
streaming, leading to improved performance and user
satisfaction.

OPEX reduction due to the
automation of service management

The automation of network service management through
distributed AI contributes to OPEX reduction in addition
to the benefits brought by the FL approach, particularly in
terms of energy consumption. The decentralized nature
of FL allows the training and inference to be performed
locally on edge devices or nodes, reducing the need for
centralized processing in data centers. Since the FL
approach reduces overhead and consequently energy
consumption, OPEX is also improved.

Reduce the reaction time (time from
identification to resolution via
appropriate reconfigurations) to an
NS malfunction

The time taken for GRU based model is approximately
20.42% faster than LSTM due to faster convergence in
training [Graph2023]. The proactive detection of
anomalies across the multitude of NS metrics reduces the
overall reaction time. The numerical analysis shown in the
experiments varies, depending on the network slice
resource utilization metrics.

Proactive detection of anomalous behavior enables
reacting with reconfiguration before fault occurs.
Preliminary results of AD have been previously presented
in D3.2. Results of AD using testbed data are presented in
section 4.3. Numerical results would vary greatly
depending on system configuration (i.e., sampling rate on
different management levels), and the improvements in
reaction time have implicative character.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 38

Improve NS performance prediction

Improved quality of predictions are performed with
awareness of system model and objectives of
infrastructure provider oriented towards providing better
insight for orchestration tool.

Reduction of SLA Violations

The FL approach considered in ES1.1 reduces the SLA
violations as shown in [Chergui2021TWC] [Chergui2021].
Simulations results demonstrated in [MONB5GD31], CPU
load SLA violation rates of the different slices are
dramatically reduced in the constrained case and reach
the target threshold, i.e., 1%, which is an acceptable value
for operators and slices tenants.

3.4.1.2 INTEGRATING SOLUTIONS FOR DEPLOYMENT IN ES 1.2

Figure 3-8 below shows the ES 1.2 integration diagram of solutions integrated in CTTC testbed.

Figure 3-8: Integration of AEs and DEs with MS and ACTs for various solutions

Table 4 below shows experimental results versus target KPIs for solutions studied in ES1.2.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 39

Table 5: Experimental results versus target KPIs for solutions in ES1.2

Target KPIs Experimental Results

Reduce the number of SLA
performance violations by
20%.

We contributed to the achievement of this KPI in several ways. Firstly,
we perform a thorough analysis of the monitoring and reporting of
performance metrics according to traffic and usage patterns, collecting
such information from local DE deployed alongside the RAN nodes.
Then, by means of AI/ML models trained on such real-time data,
accurate decision schemes are derived reducing the likelihood of
violations while improving communication efficiency and overhead
towards the core of the network.

On average 3.5% improvement in SLA violation in terms of allocation
gap considering both under-provisioning and overprovisioning cases
with respect to non-federated approach. Note that the difference is
slight since this was done experimentally and the scenarios, we could
build were small. To achieve higher performance, we needed more
slices to generalize the model better and evaluate the federated
approach. Results with higher number of users is shown in simulations
in Figure 4-55.

The number of SLA violations for TASAC DE and DQN-based DE are
similar under the given resource conditions. However, decreasing the
number of deployed slices for TASAC will enable to significantly diminish
the number of SLA violations. (over 30% lower number of violations, cf.
Figure 4-41).

The User Service Request admission is increased by 3x in some instances
under resource pressure conditions.

OPEX reduction due to the
automation of service
management.

The TASAC DE enables much better utilization of network resources via
slice automated admission process (often considered as the initial step
in the slice LCM). The ability to deploy more slices over the same
infrastructural resources result in increased profit in comparison to
conventional techniques, which can be alternatively traded for the
deployment of similar amount of slices, i.e., consuming the same
amount of resources, over the diminished infrastructure (allowing
significant OPEX reduction).

Dynamic RAN resource allocation allows to meet instantaneous traffic
demand minimizing the usage of radio resources. At the same time,

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 40

smart processing of monitoring data directly at the RAN makes the
overall decision process more efficient and less cost demanding.

Optimize the convergence
time for the
distributed/federated AI
algorithms so that it does not
exceed that of the centralized
solutions.

While it is difficult to characterize and control a-priori the convergence
time of distributed AI/ML algorithms, we investigate such scalability
aspects in simulation environment. More details are available in related
publication [TVT2022].

Generate accurate and
reusable data on network slice
performance

The developed testbed easily allows to collect monitoring and
operational data from the different involved entities, which are stored
in time series database and can be retrieved by means of ad-hoc APIs.

Significantly reduce the
amount of communicated
data to the centralized
management system.

Up to 25% improvement has been measured in the testbed.

Reduce time to manage RAN
resources dedicated to
network slices, particularly for
uRLLC (AE and DE are located
at the edge).

RAN decisions are performed by local DE collecting and processing raw
monitoring information derived from the RAN nodes. This data is used
to train RL-Based algorithms which automatize the radio resource
management task in network slicing scenarios.

Reduce the management
overhead of the RAN by
reducing the monitoring
overhead for RAN-level slice
resource (and other)
reconfigurations.

The communication overhead is reduced by exchanging only updated
local models rather than raw and fine-grained monitoring information.
Up to 25% improvement has been measured in the testbed.

3.4.1.3 OTHER KPIS IN ES1.1 AND ES1.2

Due to limitations in the testbed setup and demonstration constraints, some KPIs were evaluated based on
emulation/simulation environments or by the definition of MonB5G architecture itself. Those KPIs are listed
below:

 Reducing Static Slicing overhead will result in 30% higher utilization (will be achieved with dynamic
reconfiguration techniques): The goal is achieved by distribution of the management operations and
local processing of management information. It especially concerns the reduction of the exchange of
the monitoring data and the ability to take fast, local actions during slice lifetime. The use of
management loops at the level of VNFs (i.e., EEMs) is the first mechanism that significantly
contributes to monitoring overhead reduction and faster reconfigurations, the embedded, in-slice
management platform is the second one. Due to such mechanisms the external, management-related
data exchange is significantly reduced. Please note that in the original ETSI NFV MANO approach there

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 41

is only a single OSS/BSS which has to interact with orchestrators and all network slices. The approach
is highly centralised. The MonB5G architecture allows for distributed AI what also contributes to
faster and better focused operations. The AI can be used for DEs of any level, as the architecture
allows for hierarchical, control-loops based management. The AI can be also used for monitoring and
analytic engines optimising behaviour of these entities by implementing their adaptive behaviour
(adaptive monitoring, etc.).

 Compared to Static Slicing, demonstrate the same or better SLA tolerances (or risk of missing SLAs)
when dynamic slicing techniques: This is achieved by using data-driven (proactive) orchestration that
is native in MonB5G, as the orchestration requests concerning resource scaling, functions placement
or migration can be driven by analysis of slice KPIs at the slice level not by the consumption of
resources that is common in other approaches. The use of the time-of-day curve for AI-driven,
proactive resource allocation also contributes to the reduction of SLA violations (the TASAC case).
The FL approach considered in ES1.1 reduces the SLA violations as shown in [Chergui2021TWC]
[Chergui2021]. Simulations results demonstrated in [MONB5GD31], CPU load SLA violation rates of
the different slices are dramatically reduced in the constrained case and reach the target threshold,
i.e., 1%, which is an acceptable value for operators and slices tenants.

 Support for orders of magnitude more Network Slice Instances (NSIs) with dynamic data-driven
reconfiguration: This feature is mainly related to the ability of the MonB5G approach for making fast
and accurate predictions related to resource consumption by running slices and on that basis taking
the decisions about new slice requests acceptance. Please note that data-driven slice admission
provides is more robust than the classical approach and therefore the admission reduces SLA
violations. The use of the time-of-day prediction curve (the TASAC case) enables more robust and
efficient allocation of available resources. The TASAC approach can be extended by slice calendaring
mechanism which allows the deployment of short-lived slices at night, i.e., during the time when the
consumption of resources by the ‘human activity related’ slices is very low.

 Improve the accuracy of the AE/DE mechanisms for detection of slice performance degradation:
The anomalies detected accurately were helpful for the DE to execute VNF placement in the slice. The
explainable framework provided more insight into root cause of anomalies and accordingly the action
taken by DE.

 Improve on slice performance isolation by ensuring the latency and reliability (uRLLC), as well as
bandwidth (eMBB) requirements of coexisting slices (measured in terms of related SLA violations
and other lower-level metrics): Multiple decision agents can be deployed and must co-exist on the
same base station platform, each one dealing with the resource allocation task of a specific slice,
according to its traffic demand and requirements. A safe coexistence of multiple agents can be
achieved in several ways: For example, by limiting the action space of each agent to a specific portion
of the radio spectrum by means of external control, or by providing the agent information about the
resource leftover from other deployed agents. In this last case, a prioritization scheme should be
adopted to ensure fair access to the available resources.

3.4.2 KPI Mapping to Experimental Scenarios in PoC-2
Those experimental scenarios studied in PoC#2 have different KPIs according to project objectives. Whole
KPI lists are as follows:

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 42

 10x faster attack/anomaly identification
 10x faster attack remediation and reconfiguration in the order of 10s.
 E2e(End-to-end) slice availability > 99%
 Per slice component availability (probability that the service is available) > 99%
 False positive rate in attack classification (false classification of events as attacks) below 1%.
 Learning robustness: Precision, recall (true positive rate), fall-out (false positive rate), Area Under

Curve values above/below specific thresholds vs. specific ratios of misreporting slice components.
 The accuracy loss should remain neglected. Adversarial training protects the model against

adversarial attacks however this additional training may negatively affect the original model accuracy
due to this a balance should be established between the adversarial training and the model accuracy.

3.4.2.1 INTEGRATING SOLUTIONS FOR DEPLOYMENT IN THE SCENARIO OF DDOS ATTACK

Figure 3-9 below shows the DDOS Attack integration diagram of solutions integrated in EUR testbed.

Figure 3-9: Integration Solutions for DDOS Attack

Table 6 illustrates the solutions in DDOS Attack and how they are targeting corresponding KPIs.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 43

Table 6: Experimental results versus target KPIs for solutions in ES2.1: DDoS attack

Target KPIs Experimental Results

10x faster attack/anomaly identification

No benchmark was available since DDoS attack
detection work is novel and no prior work has been
done on detecting mMTC DDoS attacks.

Time of anomaly detection for the first time (i.e., UEs
participating in the attack for the first time) = attack
duration + 10ms

Time of anomaly detection for repetitive attacks (i.e.,
UEs already participated in a previous attack) < 10 ms

Per slice component availability
(probability that the service is available)
> 99%

The slice is always available since the AMF will still
receive attach requests from non-malicious UEs

10x faster attack remediation and
reconfiguration in the order of 10s.

The DE blacklist UEs and send the list to AMF. The
latter will save the blacklisted UEs in a database. All
the procedure takes less than 10ms.

E2E slice availability > 99%

The slice is always available since the AMF will still
receive attach requests from non-malicious UEs.

False positive rate in attack classification
(false classification of events as attacks)
below 1%

The false positive rate < 4%

3.4.2.2 INTEGRATING SOLUTIONS FOR DEPLOYMENT IN THE SCENARIO OF POISONING ATTACKS

Figure 3-10 below shows the Poisoning attack integration diagram of solutions integrated in EUR testbed.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 44

Figure 3-10: Integrating solution for Poisoning attack

Table 7 illustrates the solutions in ES2.2 and how they are targeting corresponding KPIs.

Table 7: Experimental results versus target KPIs for solutions in ES2.2 Poisoning attack

Target KPIs Experimental Results

False positive rate in attack
classification (percentage of
false classification of events
as attacks) below 1%.

The secure federated learning AE detects all the malicious FL clients, so
the false positive rate is 0%

Learning robustness:
Precision, recall (true positive
rate), fall-out (false positive
rate), Area Under Curve
values above/below specific
thresholds vs. specific ratios
of misreporting slice
components.

We computed the MSE by varying the number of malicious FL clients
using Trust deep Q-learning Federated Learning (DE). The MSE is kept
less than 0.4 while increasing the number of malicious FL clients.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 45

The accuracy loss should
remain neglected. Adversarial
training protects the model
against adversarial attacks
however this additional
training may negatively affect
the original model accuracy
due to this a balance should
be established between the
adversarial training and the
model accuracy.

The untrusted FL clients are blocked, and the learning continues without
their participation.

3.4.2.3 INTEGRATING SOLUTIONS FOR DEPLOYMENT IN THE SCENARIO OF ALTER ATTACK

Figure 3-11 depicts the logical interaction between the MonB5G Security Orchestrator components involved
in the aLTEr attack scenario.

Figure 3-11: MonB5G security orchestrator integration for the aLTEr attack scenario

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 46

Table 8 below illustrates the solutions in aLTEr attack scenario and how they are targeting corresponding
KPIs.

Table 8; Experimental results versus target KPIs for solutions in aLTEr attack scenario.

Target KPIs Experimental Results

10x faster identification of security
attack/anomaly

Threat detection includes security monitoring and threat
identification. Together with Incident detection of the MonB5G
security orchestrator (MS, AE), the overall measured MTTD is
roughly 500 milliseconds (ms). The security monitoring time to
make data available for analysis may vary with the observed
sessions, as it requires a complete session before translating raw
data to meaningful logs. The anomaly prediction time is at the
order of 10 ms, therefore the main threat detection delay is
related to the monitoring data extraction and data
transformation.

The report [IBM2022] on the average time to identify a data
breach over several years shows that MTTD is still in order of
days in 2022, however, the detection procedure might be more
comprehensive and includes more procedures and various
threats. Therefore, their comparison is less relevant.

10x faster attack remediation and
reconfiguration in the order of 10s

Limiting the impact of the incident comprises several steps
starting by choosing a remediation strategy based on criteria
such as cost or effectiveness, then application of decided
countermeasures. The Incident Response of the MonB5G
Security Orchestrator (DE, ACT) derives the action plan to deploy
the countermeasures from its rules and facts. Then, the ACT
realizes the actions of the plan. Depending on the number of
inference rules and facts, the inference time may vary. In the
D5.3, the mean time to make decision is around 200 ms. The
measured MTTR is around 3s (<10s of reconfiguration).
Therefore, the ACT is the main consumer of the time budget. The
ACT time depends on the execution time of invoked API. For the
scenario aLTEr, there is the delay of Kubernetes to deploy a CNF
as a NodePort service and the delay of the UERANSIM to enable
the DoT client. However, it is difficult to compare with the
benchmark MTTR even though the report [IBM2022] indicates
days , as it depends on the complexity of the response activities
and the threats.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 47

4 Evaluation of KPIs of MonB5G Components in the Experimental
Framework for PoC-1

4.1 Recap on the Deployment of MonB5G Monitoring System in PoC-1

In our PoC deployment, we will be utilizing three instances of the MonB5G Monitoring System across three
distinct sites, designated as A, B, and C. Sites A and B are classified as edge sites, where in addition to the
Monitoring System, we will also be running the VR/VoD APP server, federated learning clients, anomaly
detectors, and an orchestrator. These edge sites are close to their respective 5G RAN infrastructure. Instead,
site C is deployed at the cloud and hosts the federated learning server, which facilitates the exchange of
weights between clients. Further, site C also runs a parent/root instance of the Monitoring System, which
uses the monitoring systems at sites A and B as sampling functions. The overall deployment layout is
illustrated in Figure 3-3.

In our implementation, we deploy and configure Kubernetes clusters using Linux Containers (LXC) to
instantiate VMs that then act as Kubernetes nodes. It is important to note that for the purpose of this PoC,
we have implemented a minimal setup for each Monitoring system, consisting of only two Kubernetes nodes
per cluster (one master and one worker). This is illustrated in Figure 4-1.

Figure 4-1: Deploying edge and cloud cluster in a multi-domain environment.

More details on the Monitoring System architecture and implementation can be found in [MONB5GD61].

4.1.1 Multi-gNodeB RAN setup
In order to enable FL, we need at least 2x FL clients, (at site A and site B), that share learning information
through an aggregation server (at site C). This entails deploying a 5G network with at least two gNBs. In our
case, we achieve that by relying on Amarisoft Callbox equipment. Notice that setting up an experimental
scenario with two gNBs is a valid approach for evaluating federated learning solutions because it allows for
realistic emulation of distributed elements. With two gNBs, altogether with a UE emulator (see Figure 4-2),
we can emulate real-world cellular network conditions and assess how federated learning algorithms perform
in different network environments.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 48

Figure 4-2: Setting up a 5G network with 2 gNBs in Amarisoft.

Setting up and configuring a 5G network with two gNBs and a UE emulator using Amarisoft equipment
involves several steps. These include hardware and software setup, network configuration, radio resource
management, protocol configuration, UE emulator configuration, testing and validation, and troubleshooting
and fine-tuning. Each step requires careful attention to detail. In particular, as shown Figure 4-2, our
approach for evaluating federated learning solutions involves connecting two gNBs, in this case, the Callbox
Ultimate and Callbox Mini, to the same 5GC (5G Core Network) and enabling three cells at the Ultimate and
one cell at the Mini. To ensure controlled experiments and minimize over-the-air radiation, we physically
wire the Simbox UE emulator to each Callbox. This setup allows us to have all the UEs at the Simbox emulator
within range of the four cells, and the system can then make decisions on which cell to attach each UE based
on different conditions, particularly for PoC1.2. This approach provides a controlled environment for testing
and evaluating federated learning solutions, enabling us to accurately assess their performance and
capabilities.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 49

Figure 4-3: Schematic for the integration Callbox Ultimate – Simbox – Callbox Mini.

The schematic of the components and interfaces is shown in Figure 4-3. Remarkably, with such a setup UEs
emulated at Simbox can attach and handover to both gNBs, including any of the 4 cells. As a minor remark,
Amarisoft Simbox requires that each UE is configured to search by default for a particular cell frequency at a
particular RF port. This means that UEs do not scan for possible cells at all frequencies, but simply try to find
the one they have been configured, so we first configure each UE with a particular cell and then perform the
handover at convenience.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 50

Figure 4-4: Components and interfaces for Callbox Ultimate – Simbox – Callbox Mini.

4.1.2 Amarisoft Remote UE
In order to run the video clients outside the Simbox UE emulator, we rely on Amarisoft’s Remote UE tool,
which forwards 5G NR traffic from/to Simbox to/from an external data network beyond the UPF. When
employing a tunnel interface with a program outside Simbox (e.g., the video client), there is a need to execute
that program on a separate computer with GUI (not in the Simbox itself). In such cases, the Remote UE tool
can be utilized to transfer IP traffic from each emulated UE to a remote entity. To achieve this, the "lterue"
program is executed on a different computer, which utilizes GTP (GPRS Tunnelling Protocol) over SCTP
(Stream Control Transmission Protocol) for communication with the LTEUE at Simbox. This allows for the
seamless transfer of IP traffic from the UE to a remote entity, enabling efficient testing and evaluation of the
network performance in a distributed setup. An illustration depicting how video traffic is forwarded from
Simbox to the remoteue VM running the UEs is shown in Figure 4-5. These UEs can communicate with the
external VoD server through Simbox.

Figure 4-5: Remote UE setup with N UEs emulated by Simbox but run at remoteue VM.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 51

A more detailed setup in the context of MonB5G PoC1.1 is shown in Figure 4-6. In there, we observe how UEs
emulated by the UE are actually run at the Remote VM remoteue, sending and receiving traffic from to
external services in the data network such as the VoD server.

Figure 4-6: Remote UE deployment for Poc1.1.

With such a setup, we can run video clients for each emulated UE. As shown in Figure 4-7, remoteue GUI can
display video clients for different UEs, where the video traffic of each client flows through the Simbox in a
specific 5G PDU session per UE. In Figure 4-7, video traffic of each client flows through the Simbox in a
particular PDU session provided by the Callbox RAN and core.

Figure 4-7: Displaying video clients for different UEs at remoteue.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 52

4.1.3 Monitoring Sampling Functions
Once the Monitoring System is deployed at the edge sites (A and B), we proceed to install sampling functions
that will feed the Kafka bus with metrics of interest coming from various endpoints and domains. In this PoC,
we will be considering two main sampling functions: amarisoft-gnb and pod-infra-metrics. Both sampling
functions are developed in Python and have been Dockerized, making them ready to be deployed as pods in
the Kubernetes clusters. An overview of the MS components at edge site A is shown in Figure 4-8.

Figure 4-8: Monitoring System Sampling Functions at edge sites.

The first sampling function, amarisoft-gnb, provides metrics from the 5G RAN, including information about
UE and gNBs. In particular, we are interested in RAN metrics such as aggregated downlink bit rate, number
of active UEs at RAN level, CQI, etc. These metrics can be used to, e.g., later estimate CPU usage at the APP
server. The metrics are provided by a custom API that runs in Amarisoft Callbox. Once the sampler functions
have been Dockerized, they can be realized as full sampling functions (with the corresponding Kafka producer
as a sidecar pod) and configured via the config loop. We use the config loop to register the sampling function
in the Monitoring System via the manager. Finally, the metrics of interest are grabbed and filtered by the
Kafka consumer (e.g., the FL client) and only the relevant data is considered for the training and inference
phases. A flowchart for instantiating the first sampling function is depicted in Figure 4-9.

Figure 4-9: Flowchart of the Amarisoft-gnb SF.

The second sampling function, pod-infra-metrics, follows a similar procedure, but this time we focus on the
infrastructure metrics (e.g., CPU and memory usage) of pods of interest. In our scenario, the pods of interest

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 53

are those related to VoD and video streaming servers. The sampling function will feed the Kafka bus with
metrics related to the CPU and memory of VoD servers. Then, the federated learning client will use this data
(together with the RAN data) to train and infer CPU usage. A flowchart for instantiating the second sampling
function is depicted in Figure 4-10.

Figure 4-10. Flowchart of the pod-infra-metrics SF.

Notice that this second sampling function uses the Kubernetes metrics server, so it must be enabled
beforehand in the cluster. This is a crucial step as it allows for the collection of resource usage metrics, such
as CPU and memory usage, for all pods in the cluster. Once the metrics server is enabled, we proceed to
create the necessary Kubernetes objects to allow the sampling function to access the Kubernetes API and
collect the desired metrics. Specifically, we create a ServiceAccount, ClusterRole, and ClusterRoleBinding. The
ServiceAccount is used by the sampler pod to authenticate with the Kubernetes API and access the metrics.
The ClusterRole and ClusterRoleBinding grant the ServiceAccount the necessary permissions to access all
Namespaces within the cluster. Remarkably, we have upgraded the MS manager to let all this configuration
be automized via specifying new parameters in the config loop.

4.1.4 Grafana Visualization
In order to facilitate the visualization of the monitored metrics and other cluster metrics, we use Helm to
install kube-prometheus. Helm is a package manager for Kubernetes that makes it easy to install, upgrade,
and manage Kubernetes applications. However, it is important to note that we will be using a custom values
file for the installation of kube-prometheus. This is because we want to instruct Prometheus to scrape
additional services that have an annotation ‘prometheus.io/scrape=true’ and have a named port that ends
with the word ‘metrics’. This will allow us to collect and monitor more metrics from the cluster.

Once kube-prometheus is installed, we proceed to configure Grafana, a popular and versatile open-source
data visualization tool that offers several advantages for displaying metrics of interest. One of its key
advantages is the ability to create a centralized dashboard that displays metrics from diverse sources (and
domains) in a unified manner. Grafana also offers customizable visualizations, allowing for the creation of
intuitive and meaningful visualizations tailored to specific metrics and requirements. We have created a
dashboard and charts with the queries to the metrics of interest exposed by the Kafka consumer(s). An
example of the running dashboard for PoC1.1 is shown in Figure 4-11.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 54

Figure 4-11: Grafana dashboard for PoC1.1.

It is important to emphasize that kube-prometheus runs in parallel to the MonB5G Monitoring System and it
acts only as an add-on to facilitate visualizing the monitored metrics by MonB5G Monitoring System and
other cluster metrics in Grafana dashboards. This allows us to have a more comprehensive view of the
system's performance and identify any potential issues more easily.

4.2 Datasets from Experimental Trials

4.2.1 Federated Learning Dataset
The dataset used for FL experiments in PoC1 scenario 1 can be found in [Sergio2023]. The dataset includes
index number, time of the experiment (Time), number of VR video streaming clients (N), observed radio
downlink bit rate (R), and VR video streaming server CPU (C) as shown below in Figure 4-12.

R (Bit rate): It is the number of bits that is transmitted per second on the radio network.

C (CPU utilization): It is the percentage of CPU time that is being used to process requests in the pod system.
In this system, the CPU utilization also appears to increase as the number of users increases. This is likely due
to the increased load on the system from more users.

O (Outbound Bit rate out of pod): It is the number of bits that can be transmitted per second out of a pod.

N (Number of VR video streaming users): It is the number of VR video streaming users in the system.

To create this dataset, a video streaming server based on NGINX was set up to provide video-on-demand and
streaming services, which were accessible by any user or UE in real-time. Moreover, the number of VR video
streaming clients are gradually increased from N=0 and N=8 and decreased again from N=8 to N=0. The time
patterns in Figure 4-12 time is created using this dataset where each site is assigned a unique traffic pattern.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 55

Figure 4-12: Sample dataset

4.2.2 5G RTSP Video Streaming Dataset for Anomaly Detection
This dataset1 collects data from a 5G video streaming use case. A video is streamed by a CVLC server (realized
as a Kubernetes pod) through RTSP to a variable number of 5G UE clients that activate according to a daily
traffic pattern. The values of the 4 dataset features (number of active UEs, gNB's downlink bit rate, pod's
outbound traffic, and pod's CPU usage) are collected by the MS.

The Kubernetes cluster, including the server pod, runs in COTS servers. The 5G core and gNB is realized
through Amarisoft Callbox Ultimate. The UEs are emulated through Amarisoft Simbox. In order to display the
video in ffplay clients, we use the Remote UE from Amarisoft, so traffic from Simbox is forwarded to an
external VM with GUI.

In this use case, UEs trigger video streams from a video server, and the number of UEs triggering the video
stream follow a typical daily network traffic pattern (see Figure 4-13) scaled and ranging from 0 to a maximum
of 8 UEs. The dataset includes four variables:

 Number of active UEs: the number of UEs that are actually downloading data traffic (N). They are
filtered by the condition of having corresponding downlink bit rate greater than 100 kbps.

 Aggregate downlink bit rate: the instant aggregate downlink bit rate at gNB (R).
 Outbound traffic at the server: average outbound traffic (O) flowing from the data interface of the

video server.
 CPU usage at the server: average CPU usage at the server (C).

The system collects data at a sample frequency of 1 sample every 10 seconds, and the hour of the daily
patterns have been scaled down to 2 min each for the sake of convenience, so we are able to generate 5
“days” of data in just some hours. Each iteration represents a whole day, composed of 24 "demand periods".
Each demand period takes 2 minutes and is given by the number of active UEs consuming the video stream

1 https://zenodo.org/record/7858064#.ZEY7kHbP3mg

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 56

(N). N is included for informative reasons. Sampling rate is 10 seconds, but some parameters are refreshed
at a lower frequency given monitoring limitations. This means that some parameters repeat the same value
in consecutive measurements.

Figure 4-13: Traffic pattern throughout a day in terms of number of users per eNB sector area.2

Figure 4-14 below shows metrics shown in Grafana for the dataset and Figure 4-15 shows the dataset sample.

Figure 4-14: Metrics shown in Grafana for the dataset

2 Mesodiakaki, A., Zola, E., Santos, R., & Kassler, A. (2018). Optimal user association, backhaul routing and switching off

in 5G heterogeneous networks with mesh millimeter wave backhaul links. Ad hoc networks, 78, 99-114.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 57

Figure 4-15: Features and sample of the dataset

4.3 Evaluating KPIs of MonB5G Solutions at the PoC-1 Scenario 1 Testbed

4.3.1 Traffic Prediction with Context Awareness

In 5G networks, the traffic through each network slice varies on a temporal basis, and the ability to make
predictions of its behaviour has proven useful to drive resource allocation and orchestration mechanisms
throughout the network fabric. In previous deliverables, the context-aware traffic predictor (CATP) has been
explained in detail, and intermediate deployments have been developed throughout the MonB5G project. For the
deployment of PoC-1, an extended version of this predictor, referred to as Extended CATP (ECATP) was developed
in order to exploit better statistical features of the time-series resource demand profile for context-aware
prediction.

4.3.1.1 USE CASE DESCRIPTION AND BASELINE

ECATP was deployed at the testbed instance in a cloud-native way, for which its interfaces were modified in order
to enable its containerization and communication with the instance of the Monitoring System (MS) deployed in
the 5G Edge Cloud Domain. It sends its prediction results back to the MS for further analysis and to one or multiple
instances of DEs to provide status information for orchestration and management decisions. ECATP can generate
predictors with different loss functions and resulting training procedures. For this experimental scenario, ECATP
was trained with two loss function of the following forms:

𝐿 𝑦 ,  𝑦 =
1

𝐵
⋅ 𝐶 𝑦 ,  𝑦

𝐿 𝑦 ,  𝑦 =
1

𝐵
⋅ 𝐶 𝑦 ,  𝑦

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 58

The cost functions 𝐶 and 𝐶 in the above equations are expressed as:

𝐶 =

(𝐶 + 𝐶) ∗ 𝑦 − 𝑦 𝑦 − 𝑦 < 0

 0 0 ≤ 𝑦 − 𝑦 ≤ 𝑦

(𝐶 + 𝐶 + 𝑃 ∗ 𝐶) ∗ 𝑦 − 𝑦 − 𝑦 𝑦 ≤ 𝑦 − 𝑦

and

𝐶 =

⎩
⎪
⎨

⎪
⎧(𝐶 + 𝐶) ∗ 𝑦 − 𝑦 +

𝑦

2
 𝑦 − 𝑦 < −

𝑦

2

 0 −
𝑦

2
 ≤ 𝑦 − 𝑦 ≤

𝑦

2

(𝐶 + 𝐶 + 𝑃 ∗ 𝐶) ∗ 𝑦 − 𝑦 −
𝑦

2

𝑦

2
 < 𝑦 − 𝑦

In these equations, the parameters have the following meaning:

 𝐶 , 𝐶 , 𝐶 : these are the costs associated to resource under-provisioning, resource reconfiguration
and resource overallocation for a given network slice, respectively.

 𝑃 : the probability of resource under-provisioning for the network slices as related to an increase of
over-provisioning for a given slice

 𝑦 , 𝑦 , : these are the current resource demand, the predicted resource demand, and the
provisioning deviation of a network slice for a given resource, respectively.

Two other variations of loss functions where also introduced, namely 𝐿 and 𝐿 , which are
constructed with cost functions denoted by 𝐶 and 𝐶 that use a second-degree polynomial and a square root
function for service degradation due to under-provisioning, respectively. Associating different cost profiles for the
under-provisioning case allows to make the predictor more aware on the impact of an SLA violation, and tune it
better to the needs of the human operator.

A parameter sweep was done on the parameters listed above to do a thorough comparison of different ECATP
instances when providing predictions for different experimental scenarios. This parameter exploration was
done using 𝐿 and 𝐿 , and compared with the following baseline loss functions: Median Average
Error (MAE), Minimum Square Error (MSE) and the loss function in [DEEPCOG] referred to as 𝐿 . For
the latter, a parameter space was also undertaken in order to provide a fair comparison.

The experiments consisted of having three types of services generating traffic for a Base Station/gNB. Enough
samples of traffic were stored, running for a period of almost a day, during which the predictors were trained
periodically with their respective loss functions. Once the initial training period was done, the frequency of training
was reduced, and the outcome of the different predictors were compared with each other.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 59

The outcomes of these predictions were then sent back to the MS and logged into its local storage component.
From here, Grafana was granted access to this store, from where the traffic associated to the User Service
Requests (USRs) was obtained together with the associated traffic prediction, all on real time.

4.3.1.2 EVALUATION OF KPIS OVER EXPERIMENTAL PLATFORM

The quality of the prediction was assessed using the following function:

𝑃 𝑦 , 𝑦 =
𝐶𝑅 ∗ 𝑦 − 𝑦 𝑖𝑓 𝑦 ≥ 𝑦

1.0 ∗ 𝑦 − 𝑦 𝑖𝑓 𝑦 > 𝑦

In which 𝐶𝑅 denotes the ratio of the impact of over-provisioning over under-provisioning. This ratio is

usually a value smaller than 1.0, since the impact of under-provisioning is larger throughout the network,
since it increases the probability of SLA violations, generating revenue losses for the Infrastructure Provider
and reduction of Quality of Service for the end users.

The following plots show how ECATP outperforms other baseline predictors significantly for the experiments
that were executed, with 𝐶𝑅 = 0.9. This value of 𝐶𝑅 means that the impact of over-provisioning is 10%

smaller than that of under-provisioning. Fig. 4-16 shows that training a Long-Short Term Memory (LSTM)
Deep Neural Network (DNN) architecture with 𝐿 results in a quality of prediction at least 20% better
when compared against a DeepCog loss function.

Figure 4-16: Quality of Prediction of ECATP compared with state-of-the-art predictors.

Figure 4-17 shows the probability of SLA violations, as understood as the probability of resource under-
provisioning for a given slice, associated to each of the DNN architectures and Loss functions observed in Figure
4-16. Here we see that the LSTM DNN with 𝐿 presents the smallest probability of SLA violation, except for

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 60

the case of the Spatio-Temporal Network (STN) with Deepcog loss function. Regardless of this, the STN DDN still
presents a lower quality of prediction, mostly because it yields a high probability of over-allocation as shown in
Figure 4-18. In conclusion, our approach for context-aware forecasting provided by ECATP successfully improves
network slice performance prediction, improving the KPIs for ES1.1 of PoC#1.

Figure 4-17: Probability of SLA violations in ECATP compared with state-of-the-art predictors.

Figure 4-18: Performance of ECATP compared with state-of-the-art predictors.

4.3.2 FL Predictor
4.3.2.1 USE-CASE DESCRIPTION AND BASELINE

Current resource prediction mechanisms in edge cloud networks primarily ignore cell radio conditions to
determine when to scale resources (such as CPU) in the application domain and provide very limited scaling
options, mostly relying on observed parameters in the cloud. This leads to problems on the server due to
congestion when there is high traffic demand as given in Figure 4-19. However, rather than taking reactive
actions when traffic demand is high, proactive measures such as predicting resource utilization in advance,

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 61

considering both radio and cloud parameters, can improve the global user experience and specifically for
virtual reality streaming applications. In this demonstration, we consider such proactive measures to improve
the performance of virtual reality streaming services by considering radio network conditions and traffic as
well.

Figure 4-19: Congestion in the VR video streaming server due to overload

The proposed intelligent VR video streaming approach described below is multi-domain, intelligent,
dynamic, distributed and ensures proactive resources allocation.

EXPERIMENTS DETAILS FOR POC ES 1.1

This section explains the experiments carried out to test the network, check its operation and provide
evaluation results. The VR video streaming experiments are divided into two parts and will be detailed in
in the following subsections.

ES 1.1 FL experiments:

Scaling of the VR video streaming: The first experiment carried out consisted of scaling of the VR video
streaming server, where FL technique is used to improve the quality of experience of VR video streaming
clients connected to BS at each site. To do this, the network below has been deployed with 5G Amarisoft
BS, the VR video streaming clients, VR video streaming server and the MonB5G MS, AE, DE and ACT at each
FL site. FL facilitates distributed collaborative learning without disclosing original training data where the
idea behind FL is to train the ML model collaboratively among distributed clients without sharing their data

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 62

and violating the privacy accord. Therefore, FL locates ML services and operations closer to the clients,
facilitating leveraging available resources on the network’s edge.

Figure 4-20: FL deployment sites, VR video streaming servers and clients

Figure 4-20 shows the experimental topology created with FL architecture at CTTC premises. All MonB5G
components of the FL are implemented as pods in K8s environment in separate K8s clusters. In our
demonstration setup, we have three sites to perform experiments. 5G BS and the VR-streaming servers are
located in FL site-1 and FL site-2. Finally, the aggregation server is located at site 0. All these sites are
connected to each other via service mesh deployment model in K8s. Each VR video streaming users are
connected to corresponding BSs at each site for VR video streaming traffic from VR-streaming servers. The
number of VR video streaming users are increased in different patterns.

Each site has a radio access network domain that includes a base station, core network and VR video
streaming server and corresponding VR-streaming users. The user equipment are realized through the
remoteue mode enabled by Amarisoft Simbox emulator, and the gNodeB is realized through the Amarisoft
Callbox, which also provides the user plane function. The Virtual reality streaming server is deployed as a
Nginx pod in a Kubernetes cluster.

Each radio access network domain is connected to the application domain through core network where
the VR video streaming server is running and the MonB5G components, monitoring system, analytics
engine, decision engine and Actuator are deployed near the VR Stream server. We rely on MonB5G
sampling functions that feed monitoring data to the monitoring system, and the monitoring system
exposes this data to Grafana for the sake of representation and alarm triggering. The sampling functions

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 63

for the application and radio access network are each performed at the location of the VR-streaming server
pod application and the base station respectively. So, sampling functions collect data to monitor radio
access network and application related data at site-1. The monitoring system also feeds the analytic engine,
which is trained to forecast pod’s CPU. Then, the decision engine and actuator deployed also as pods in the
cluster, preemptively trigger actions through the Kubernetes application programming interface in order
to scale up/down the virtual reality streaming server pod’s CPU. The same is true for site-2 where we have
separate radio access network and a connection to another VR-streaming and a separate monitoring
system, analytics engine, decision engine and actuator. The application sampling function and radio access
network sampling function also collect the corresponding metrics at radio access network and application
level. In addition, we have an aggregation server located in site-0 that is used for federated learning
purposes. As can be seen here, federated learning updates between site-1 and site-2 are performed
through this aggregation server, aggregating the models in AE-1 and AE-2 to learn different number of VR
video streaming user patterns for each site. Finally, after analytics engine and the decision engine generate
a decision over the online monitoring system data based on the common model built, the actuator
performs proactive CPU scaling on VR-streaming servers to improve the quality of experience of VR-
streaming clients.

Measurements of the BS and VR video streaming server have been done via MS to be able to feed data into
FL training process as well as for online inference.

Experiments with multiple VR video streaming users: In the first part, an increasing number of VR video
streaming users has been used as a video receiver. All experiments have been carried out with the 5G
network. VR-streaming users are connected to VR-streaming NGINX server in order to receive the video
using the 5G network. The VR video streaming users made the query to the VR video streaming server
simultaneously, so they received the video at the same time. This procedure has been performed in both
site-1 and site-2. During the video playback, the MS has been running on the edge to capture the
transmitted and received packets that go through the network. These experiments have been carried out
to demonstrate that the network created can support a greater number of VR video streaming users
connected at the same time. It has been also wanted to prove that the video can be played smoothly on
all connected VR video streaming users (until 8).

To make this experiment, first, the number of VR-streaming clients using VR-streaming server over the 5G
network is increased until VR-streaming clients observe streaming problems due to high CPU consumption
at VR-streaming server. Later, the tests have been carried out again with second FL site but this time the
number of connection VR-streaming users to the second VR-streaming server follows a different pattern.
Figure 4-21 shows the patterns followed in each FL sites, namely FL site-1 and site-2.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 64

Figure 4-21: Different patterns of number of VR-streaming users for each sites used for experiments

By doing these tests for training, it has been possible to know the CPU consumption that can be reached
using these two different patterns and training the FL model. Once the CPU consumptions that the VR-
streaming server can reach has been verified, video playback experiments have been possible to start in
order to test the network.

Metrics: The metrics that has been studied to analyse network and application behaviour are bit rate at BS
and CPU usage at application server pod. These metrics have been chosen because of the use case being
studied. When multiple VR video streaming users want to watch a video in real-time, the important
parameters usually are the amount of exchanged data rate and the response time of the server (related to
CPU availability). The VR video streaming users expect the video to be displayed smoothly. For this
experiment, not only application-level pod measurements are taken into account but also the radio level
parameters (bitrate observed at BS). This parameter is in direct proportion with the number of VR-
streaming users connecting to VR-streaming client using the mobile 5G communication. With the MS
software deployment, it is possible to take measurements of these values on the application pod and BS
where the RAN is hosted to know how the many bits are sent by the VR video streaming clients when they
arrive or leave sequentially.

4.3.2.2 EVALUATION OF KPIS OVER EXPERIMENTAL PLATFORM

As described in [MONB5GD33], this use case introduces a new method for ensuring efficient and scalable
operation of AEs that use policy-based stochastic FL scheme in a non-IID environment. The method uses a
cloud-native service-level agreement (SLA) to control resource provisioning at the edge of a radio access
network. The method is developed in cloud native environment and is shown also to be more effective than

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 65

other FL methods in terms of reducing SLA violations, shortening convergence time, and reducing
computation costs, resulting in greater scalability in previous deliverables (e.g., [MONB5GD33], and
[MONB5GD5.4]). The target KPIs of this solution are also described in Table 4.

Infrastructure and MonB5G Components

In our demonstration setup, we have three sites. Each site has a radio access network domain that includes
a base station, core network and VR video streaming server and corresponding VR video streaming users.
Each radio access network domain is connected to the application domain through core network where the
VR video streaming server is running and the MonB5G components, monitoring system, analytics engine,
decision engine and Actuator are deployed near the VR Stream server. The sampling functions for the
application and radio access network are each performed at the location of the VR-streaming server pod
application and the base station respectively. So, sampling functions collect data to monitor radio access
network and application related data at site-1.

The same is true for site-2 where we have separate radio access network and a connection to another VR-
streaming and a separate monitoring system, analytics engine, decision engine and actuator. The application
sampling function and radio access network sampling function also collect the corresponding metrics at radio
access network and application level.

In addition, we have an aggregation server located in site-0 that is used for federated learning purposes. As
can be seen here, federated learning updates between site-1 and site-2 are performed through this
aggregation server, aggregating the models in AE-1 and AE-2 to learn different number of VR video streaming
user patterns for each site.

Finally, after analytics engine and the decision engine generate a decision over the online monitoring system
data based on the common model built, the actuator performs proactive CPU scaling on VR-streaming servers
to improve the quality of experience of VR-streaming clients. All of these are implemented in separate
Kubernetes clusters and each MonB5G component runs as separate container orchestrated by Kubernetes.

All MonB5G and infrastructure related components are below and will be running in K8s environment in final
demo. In the infrastructure, a VR video streaming client-server application will be used where we can monitor
server and RAN related parameters via monitoring system for each FL AE client. Moreover, there are two
independent sites with their own applications in different locations so that the data generated can be closer
to independent and identically distributed (i.i.d) in distribution.

VR video streaming client is the application component that enables users to enjoy virtual reality
experiences. This component is designed to emulate the user environment (UE) in a simulated environment
known as Simbox. The VR video streaming client is implemented as a streaming client within Simbox, which
allows users to stream VR content seamlessly. It can also run on a regular laptop.

VR video streaming server is an infrastructure-related component that is designed to be deployed in a
Kubernetes (k8s) cluster. It supports scalability by being able to scale up or down based on commands
received from the FL AE client and the top orchestrator. Deploying the VR video streaming Server in a
Kubernetes cluster enables efficient scalability, fault tolerance, resource utilization, and integration with the
FL AE client and top orchestrator, facilitating the management and operation of the VR video streaming
infrastructure for federated learning applications.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 66

Monitoring System is an infrastructure-related component that is responsible for collecting RAN (Radio
Access Network) and server-related parameters in a distributed environment. The purpose of the MS is to
monitor the performance and health of the system by gathering data from different FL clients (two in our
case). It plays a critical role in collecting RAN and server-related parameters from multiple FL clients in a
distributed environment. By leveraging Kafka for data streaming and enabling real-time analysis, the MS
provides valuable insights into the performance and health of the infrastructure, aiding in the efficient
management of the FL system.

Core Network is an infrastructure-related component that represents the control elements in the system.
Specifically, it refers to the Amarisoft Core, which is used to manage the control plane of the network. The
Core Network component is responsible for controlling and coordinating the data plane elements,

FL aggregation server: This element is used to exchange weights between FL clients. This is implemented in
Docker container and runs in K8s. The deployment details are as follows: deployment is specified in the
corresponding yaml file with a "kind" of "Deployment". It has metadata that defines the name of the
Deployment as "fl-server-pod". The desired states of the Deployment are as follow: there should be one
replica of the pod, and it should use a container named "fl-server-pod" that is based on the container image
“server-demo-with-policy”. The container exposes port 8081 and mounts a volume named "log". The
container also defines a number of environment variables, including "NUMBER_ROUNDS" and
"NUMBER_SELECTED_CLIENTS" and a second container called "filebeat", which is based on the image
"elastic/filebeat:7.16.3" and mounts the same volume "log". Inside the same yaml file, the Service used is
specified with the "kind" of "Service" and metadata with the name of the Service as "fl-server-pod". The
"spec" section specifies that the Service should be of type "NodePort", which exposes the Service on a static
port on each node in the cluster. The Service exposes port 8081 and maps it to the target port 8081 of the
Deployment. The Service has a nodePort of 30000 and an external IP of 10.0.42.7. The Service also has a
selector that matches the labels of the Deployment, which include "run: fl-server-pod", "app: fl-client-1-pod",
and "app: fl-client-2-pod".

The ISTIO_META_POD_NAMESPACE environment variable is used in the context of the Istio service mesh,
which provides a way to manage traffic between services in a Kubernetes cluster and specifies the namespace
in which the pod is running, which can be useful for Istio to identify the location of the pod and route traffic
accordingly. When a pod is created in Kubernetes, it is assigned to a namespace, which is a logical partition
within a Kubernetes cluster. The namespace provides a way to organize and manage resources within the
cluster. The metadata.namespace field of the pod contains the name of the namespace that the pod is
assigned to.

Overall, the above configuration provides a way to run and expose an aggregation server application that can
be accessed by other applications in the cluster. The use of environment variables and the second container
for logging allow for additional configuration and monitoring capabilities.

FL AEs: This is used to build local models in training phase and make inferences in inference phase to predict
CPU. This is implemented in Docker container and runs in K8s It expects RAN related parameters and server
related parameters detailed in Monitored KPIs part. In the Kubernetes YAML files, a deployment and a service
for a client application named "fl-client-1-pod" and a separate file "fl-client-2-pod" are described. Here's a
breakdown of its functionalities:

Deployment Section:

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 67

 apiVersion: This field specifies the version of the Kubernetes API being used.
 kind: This field specifies the type of resource being defined, in this case, a deployment.
 metadata: This field contains metadata for the deployment, such as its name.
 spec: This field contains the deployment's specifications, including the number of replicas and the

template for the pods.

Selector Section:

 matchLabels: This field specifies a label selector for the pods, ensuring that only pods with a matching
label are managed by the deployment. The selector selects which pods are targeted by this
deployment.

Replicas Section:

 replicas: This field specifies the number of pod replicas to be created by this deployment.

Template Section:

 metadata: This field specifies the labels for the pod.
 labels: This field specifies the labels for the pod.
 spec: This field specifies the pod's specifications, including its containers and volumes.

Container Section:

 name: This field specifies the name of the container.
 image: This field specifies the image to use for the container.
 ports: This field specifies the ports to expose from the container.
 env: This field specifies environment variables for the container.
 volumeMounts: This field specifies the volumes to mount in the container.

Volume Section:

 name: This field specifies the name of the volume.
 configMap: This field specifies the configMap to use for the volume.

Service Section:

 apiVersion: This field specifies the version of the Kubernetes API being used.
 kind: This field specifies the kind of resource being defined, in this case, a service.
 metadata: This field contains metadata for the service, such as its name.
 spec: This field defines the desired state for the service, including:

o The type of the service (NodePort in this case).
o The ports that will be exposed by the service.
o The external IP address(es) that will be assigned to the service.
o The selector that selects which pods are targeted by this service.

Service Selector Section:

 selector: This field specifies the label selector for the service, ensuring that the service only targets
pods with the matching labels.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 68

In general, the common yaml files start with the definition of a Deployment, which is a Kubernetes resource
that defines a set of replicas for a pod. In this case, the Deployment is named fl-client-1-pod (or fl-client-2-
pod) and specifies that there should be one replica of the pod. The selector field in the Deployment specifies
the labels used to match the pod. In this case, the run label is set to fl-client-1-pod (or fl-client-2-pod), which
means that the pod's metadata.labels.run field will match this label. The template field in the Deployment
specifies the configuration for the pod. It includes metadata for the pod's labels, which are set to run: fl-
client-1-pod (or fl-client-2-pod) and app: fl-server-pod. The containers field in the pod specifies the
container that should be run in the pod. In this case, there is one container named fl-client-1-pod (or fl-
client-2-pod), which is defined using the "fl-client-1" (or "fl-client-2") image. This container is configured to
listen on port 2051 and has a number of environment variables that configure its behaviour, including the
URL for the server, the location of a CSV file, and the size of the batch of data to send to the server for each
round of training. The container also mounts a volume called data at the path /var/data, which is used to
store the CSV file. The volumes field in the pod specifies the volumes that should be mounted in the
container. In this case, there is one volume named data, which is a ConfigMap that contains the CSV file. The
file also defines a Service, which is a Kubernetes resource that exposes the pod to the network. The Service
is named fl-client-1-pod and is of type NodePort, which means that it exposes the pod on a port that is
accessible from any node in the cluster. The Service listens on port 2051 and forwards traffic to port 2051 on
the pod. The externalIPs field in the Service specifies the external IP address of the pod. In this case, it is set
to 10.0.42.2 (or 10.0.42.3). The selector field in the Service specifies the labels used to match the pod. In this
case, it is set to run: fl-client-1-pod (or fl-client-2-pod), which means that the Service will forward traffic to
pods with the metadata.labels.run field set to fl-client-1-pod (or fl-client-2-pod).

K8s is used as the main orchestrator to manage the cluster and its containerized applications, including
components related to MonB5G and Infrastructure. Kubernetes provides a robust and flexible platform for
managing containerized applications, and its features make it well-suited for orchestrating complex systems
like MonB5G and Infrastructure components.

Top Orchestrator (DE) interacts with the Kubernetes orchestrator to manage the scaling of the VR video
streaming server based on certain rules. It is responsible for making decisions regarding the scaling of the VR
video streaming server. It likely monitors specific metrics, such as CPU utilization, and applies simple rules to
determine when to scale the server. The DE communicates with the Kubernetes orchestrator to issue scaling
commands based on its decisions. FL AE clients are connected to the top orchestrator via Kafka to enable the
top orchestrator to receive data updates from the FL AE clients in real-time. The data published by the clients
include relevant metrics or information used by the DE to make scaling decisions for the VR video streaming
server. Overall, by allowing the FL AE clients to publish data into Kafka, the top orchestrator (DE) can make
scaling decisions based on predefined rules. The DE then communicates with the Kubernetes orchestrator to
scale the VR video streaming server as needed, ensuring optimal resource allocation and performance.

Dataset: Considered features from MS used in FL are as given in table below:

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 69

Table 9: Dataset features and output used in FL

 Feature Description

Features

Current Bitrate Includes the instantaneous bit rate observed at gNodeB

Previous CPU Load Previous Time Window CPU resource consumption

Current CPU Load Current Time Window CPU resource consumption

Output Next CPU Load Next Time Window CPU resource consumption

We use RAN and application related parameters as an input and CPU as output to build a ML model using
federated learning approach. Our training dataset consists of 2400 samples obtained from the virtual reality
streaming server and the gNodeB. The input features are the current bitrate, which is the instantaneous bit
rate observed at the gNodeB when VR video streaming is running, the previous CPU load, which is CPU
resource consumption of the previous time window for VR video streaming server and the current CPU load,
which is the CPU resource consumption of the current time window for VR video streaming server. Finally,
our training dataset output is the next CPU load, which is CPU resource consumption of the virtual reality
streaming server in the next time window.

Working principles of the overall system:

The experiments will run in two phases: (1) Offline training and (2) Online Inference. Offline training phase:
Figure 4-22 shows the offline training phase of the experiment setup for policy-based FL approach.

Figure 4-22: FL training steps

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 70

STEP 1: REGISTRATION: All clients register with their IP address in the server node as shown in Figure 4-22
below. When the clients start, they will try to register in the FL network, and from there it will be available
for the aggregation server to request for local trainings. There are many clients registered to participate in
the FL model training process. Therefore, clients need to know the IP address of the aggregation server. When
nodes are joined into the network, they send their IP address so that aggregation server registers clients in
the list of available clients for training the FL model.

STEP 2: START: After registration, server sends a request to all the registered clients to start the client
selection process. Each local MS collects the relevant measured KPIs from RAN average bitrate) and VR video
streaming server ((previous and current time window CPU). Each local FL client grasps those data.

STEPS 3: TRAINING: Server sends request to registered clients and start FL training. This request is made
asynchronously. Each local FL client builds local models to predict CPU based on local observations from each
local MS and server Each using a number of epochs of training predefined by the FL aggregation server. In
this request, the averaged model parameters, if any and the type of training to perform (because a FL AE can
perform several different trainings depending on availability of different datasets), and the hyperparameters
for the training (e.g., the number of epochs, batch size, etc.).

STEPS 7-8-9: COMPUTE & UPDATE WEIGHTS: Model weights of each FL client are sent to the server through
when each FL AE finishes the training, and then Server averages the weighs and update the weights of the
clients & repeat same procedure next FL rounds (GO TO STEP 3).

Finally, all those rounds are visualized via Kibana dashboard (which is detailed below) and final models are
stored in both local nodes inside docker containers.

During online inference phase, the process is initiated by the admin and inference is done periodically. Note
that in this phase, MS constantly streams relevant data (related to VR video streaming and RAN parameters)
into each FL client. Then, FL client (which already has the model inside the docker container) makes inferences
(e.g., VR video streaming pod CPU prediction using the observed real-time RAN KPIs as input parameters).
Later, the predicted CPU is transmitted into top orchestrator (DE) which makes the decision to scale-up/down
of the VR video streaming server based on the predicted CPU. K8s orchestrator as an actuator scales up/down
the VR video streaming server.

Data visualization: To visualize data during Federated Learning (FL) training, we utilized the Sidecar Container
pattern on Kubernetes to install Logstash for log aggregation. Log aggregation is crucial for monitoring system
failures. When running FL on Kubernetes, the logs belong to a single Pod, and if the Pod is deleted, the log is
lost. Hence, we require a log aggregation system to track system failures. We use the ELK stack (Elasticsearch,
Logstash, and Kibana), and to collect logs on each Pod, we use a Sidecar Container.

SideCar Container: The Sidecar Container is a separate container that performs the log collection process
instead of implementing it on the application containers. This approach avoids affecting the performance of
the application containers. Sidecar containers run alongside the main container in the Pod and extend and
enhance the application containers in many ways.

Logging with Logstash: Logstash's original task is to monitor logs and transform them into a meaningful set
of fields, and then stream the output to a defined destination. However, it can have performance issues.
Elastic has launched Filebeat, which monitors logs and streams the output to a defined destination. We are
using Filebeat (e.g., instead of FluentD or FluentBit) because it is an extremely lightweight utility and has a

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 71

support for Kubernetes and also more suitable for production level setups. Logstash acts as an aggregator
that ingests data from various sources, transforms it, and sends it to Elasticsearch.

To deploy our system, we first deploy a Pod with an fl-aggregation-server container that writes logs to the
file /var/log/access.log. Then, we deploy a Sidecar Container on the same Pod that runs Filebeat to collect
logs and output them to Logstash. This process is illustrated in Figure 4-23 below showcasing the components
where sidecar container on aggregation server collects log and sends to Logstash to be visualized via Kibana.
The steps of Figure 4-23 are given in Appendix B of the document.

Figure 4-23: Sidecar container on aggregation server to collect log and visualize

To sum up, it has been used the Sidecar Container pattern to set up log collection for Pod, using ELK log stack.
Finally, all yaml files described above can be found in Appendix A of this document.

Experimental Results Analysis

In our analysis, we use the dataset provided in Section 4.2. Figure 4-24 below shows the outbound bit rate of
container, O in Mbps as the number of VR video streaming users increases. As the number of users increases,
the bit rate out of pod also tends to increase, but not necessarily in a linear fashion. When N = 1, the median
value of bit rate out of the pod is 8.69 Mbps, when N = 8, the median value bit rate out of the pod is 58.03
Mbps. The largest increase in bit rate out of the pod occurs between N = 1 and N = 2, where it jumps from
8.69 to 16.42 Mbps. This represents an increase of approximately 90%. After N = 1, the bit rate out of the
pod still increases as N increases, but at a slower rate. For example, between N = 6 and N = 7, the bit rate out
of the pod increases by only about 8%, whereas between N = 1 and N = 2, it is approximately 90%. From these
observations, we can conclude that there is a positive correlation between bit rate out of the pod and the
number of users. As more users access the system, the bit rate out of the pod increases, likely due to the
increased traffic on the system. We can also see that the rate of increase in O appears to slow down as N
increases. However, there is no clear pattern or trend in the relationship between N and bit rate out of pod
after N=6. The dispersion of value for each number of VR video streaming users is not the same. There are
also some points where the outbound bit rate out of the pod (O) appears to decrease or stay the same even

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 72

as the number of users (N) increases, which could be due to a variety of factors such as RTSP protocol
behavior, system capacity limitations, or other device level factors.

Figure 4-24: VR video streaming server outbound traffic versus number of VR video streaming clients

To analyze the relationship between O and N, using the median values we can use regression analysis to find
a model that best fits the data. Here, we can use a simple linear regression model:

O = m*N + b

where m is the slope of the line (which represents the rate of change of O with respect to N), and b is the y-
intercept (which represents the starting value of O when N = 0).

To fit the model, we can use the least squares method to find the values of m and b that minimize the sum
of the squared differences between the actual values of O and the predicted values from the model. Here are
the results of the linear regression analysis for the data in Table 10.

Table 10: Parameters of regression analysis model

Slope (m): 4.2354

Y-intercept (b): 1.4221

R-squared: 0.9643

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 73

The slope of the line (m) is positive, indicating that as the number of users increases, the bit rate out of pod
also increases. Specifically, the model predicts that for every additional user, the bit rate out of pod increases
by approximately 4.24 Kbps. The y-intercept (b) is also positive, indicating that even with zero users, there is
still some bit rate out of the pod (about 1.42 Kbps in this case). The R-squared value of 0.9643 indicates that
the model explains 96.43% of the variation in the data, which suggests that the linear relationship between
O and N is a good fit for the data. However, it's worth noting that there may be other factors that influence
the bit rate out of pod that are not captured by this model. Overall, our experimental analysis suggests that
the bit rate out of pod increases as the number of users increases, and that this relationship can be
approximated by a linear model. However, it's important to keep in mind that the actual bit rate out of pod
may be influenced by other factors not captured by this model.

Figure 4-25 below shows the CPU load of container, C in percentage as the number of VR video streaming
users increases. As the number of users increases, the CPU utilization also tends to increase. When N = 1, the
median CPU utilization is 5.49% and when N = 8, the median CPU utilization is 48.01%. The largest increase
in CPU utilization occurs between N = 1 and N = 2, where it jumps from 5.49% to 5.49%. After N = 1, the CPU
utilization still increases as N increases, but at a slower rate. Moreover, we observe no clear pattern or trend
in the relationship between N and CPU utilization after N=6.

Figure 4-25: VR video streaming Server CPU load versus number of VR video streaming clients

Finally, Figure 4-26 shows pair plot between VR video streaming Server CPU load (C) and outbound bit rate
of pod (O) with respect to number of VR video streaming clients (N). There seems to be a positive relationship
between CPU utilization (C) and outbound bit rate out of pod (O). However, this relationship is not perfectly

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 74

linear, and there are several points that deviate from the general trend. At low levels of CPU utilization, the
bit rate out of pod appears to be relatively low and stable. As the CPU utilization increases, the bit rate out
of pod also tends to increase. However, at very high levels of CPU utilization, the bit rate out of pod seems
to plateau and not increase much further, despite the increase in CPU utilization. It is also worth noting that
there are some points where the CPU utilization is relatively high, but the outbound bit rate out of pod is
low. These points could be due to other factors that affect the outbound bit rate, such as network latency,
RTSP protocol or other external factors.

Figure 4-26: Pair Plot.

Energy consumption modelling in user plane

The authors in [Tadesse2017], have used RCE PM600 power meter to read real-time power statistics. The aim
is to measure the power consumption associated with Docker containers when they run several basic test
applications, from CPU-intensive computations to high-rate network transfers. The power consumption is
characterized as the load varies, to build a model that can be used to estimate the power footprint of more
complex applications.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 75

We use the linear fitting formula in [Tadesse2017], and the linear regression law is as follows:

P = 0.1065c + 12.4411,

where P is the power (in watt) and c is the percentage of used CPU (e.g., 200 for two cores).

Figure 4-27 shows the power consumption at container at the user plane (UP) versus number of VR video
streaming clients. From the above equation, as C increases, the power consumption (P) also increases. This
is expected, as the CPU utilization requires more power to process data. Additionally, we can see that there
are diminishing returns in terms of performance gains as the CPU utilization increases. This is indicated by
the fact that power consumption continues to increase, but at a decreasing rate as we move from N=1 to
N=8. It is also worth noting that the power consumption increases at a non-linear rate, as indicated by the
fact that the change in power consumption is not proportional to the change in CPU utilization.

Figure 4-27: Power Consumption at container at UP versus N

Federated Learning Training Results

Figure 4-28 shows FL Training phase, graph (a) presents the average NMSE versus number of FL rounds, while
graph (b) presents the average computation time versus number of FL rounds. According to NMSE and
average computation time versus rounds, the convergence occurs at round number 8. Since the dataset in
experimental setup was not big (only 2400 rows) and there were only two FL clients due to limitations of
testbed, the convergence is observed to be fast.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 76

Figure 4-28: FL Training phase (a) average NMSE (b) average computation time

Overhead Gain Calculation Management and Orchestration

Table 11 shows the overhead induced by the baseline fully centralized MANO deep learning (CCL)
[Chergui2020] and the Statistical Federated Learning based resource predictor and scaling. For the
computation of the overhead, we have considered that both the datasets and update models are coded in
32 bits. In the uplink between the clients and the aggregation server, the approximate monitoring overhead
can be calculated as in [MONB5GD3.3]. Starting from the convergence point of Federated Learning based
resource predictor and scaling at round 8, more than 10 times overhead reduction (approximately 11.11
times) is obtained in comparison with the centralized SLA-constrained algorithm.

Table 11: Monitoring overhead comparison between centralized solution and FL-based algorithms

Rounds 2 5 8 20 30

Monitoring overhead CCL (KB) 52

Monitoring overhead FL-based
resource predictor and scaling
(KB)

1.152 2.880 4.608 11.152 17.28

Monitoring Overhead Gain x45 x18.02 x11.2 x4.66 x3.0

Energy Consumption Computation in Management and Orchestration Plane

Using the same approach as in [MONB5GD54] to calculate the energy and using the modelling formulas and
considering that convergence has been achieved at 8 iterations in our experimental case, x11.2 energy gain
is achieved in comparison to CCL as shown in Table 12.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 77

Table 12: Energy consumption comparisons

Rounds 2 5 8 20 30

Energy CCL (mJ) 125.6

Energy FL-based resource
predictor and scaling (mJ) 2.7 6.9 11.1 26.9 41.75

Energy Gain x45 x18.02 x11.2 x4.66 x3.0

Note that observed energy consumption in AI/ML tasks is negligible compared to other operations such as
VR video streaming server (simultaneous transcoding and streaming). The reason is that VR video streaming
processes more data than the one to be transmitted in the network by CCL and FL based resource predictor
and scaling. Note that MonB5G MS samples features of the dataset (e.g., CPU consumption, bit rate at BS,
etc), whereas VR video streaming server processes user plane data containing real-time video with very high
data volume. Consider additionally that in case MS observes higher dataset, energy consumption of both CCL
and FL-based resource predictor and scaling will increase. But in our analysis, the dataset size collected to
achieve low NMSE was not big, so the consumption of energy was very low.

MonB5G solutions target management and orchestration energy and monitoring overhead reduction. On the
other hand, the energy consumption reduction in the user plane is not in the scope of MonB5G. Therefore,
any improvements on VR video streaming server to reduce its energy consumption is not considered in this
deliverable.

Discussions on experimental analysis

According to modelling approach performed in [MONB5GD54], the main consumption of energy was
originating from utilization of computational resources rather than the link energy transmission itself. As a
matter of fact, the main factor limiting the energy consumption becomes the computing process in the
container, and the impact of the link transmission energy and overhead is small or can be considered almost
negligible. In the results presented above, there is a linear relationship between the CPU load and energy
consumption. The results are in consistent with those presented in [MONB5GD54].

Note that during experiments, there may have been some anomalies or outliers in the data, possibly due to
synchronization problems or the presence of an additional link in the setup (UE emulator to remote VM).
These factors could introduce randomness or variations in the observed results. In addition, they can also be
caused by RTSP protocol. However, we can still observe clusters in the dataset which shows identifiable
patterns or groupings in the data, that could provide insights into the behaviour of the system.

4.3.3 Slice KPI Prediction with Interpretable Multivariate Anomaly Detection
4.3.3.1 USE-CASE DESCRIPTION AND BASELINE

We propose a Graph-based Interpretable Anomaly Detection (G5IAD) reference architecture as shown in
Figure 4-29 which comes with the following list of contributions. (1) The importance of slice level KPIs
predicted by graph-based representation learning method applied in conjunction with recurrent neural

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 78

networks (RNN). (2) This solution coupled with an interpretable Artificial Intelligence (XAI) - based solution
enables a wider adoption of automated management by telecom operators. The proposed framework G5IAD
provides explanations (e.g., what combination of KPI values impacted the slice latency KPI) that can be used
by the experts and/or by a flexible DE for maintaining slice SLAs, by using direct information from the
interpretable method, compared to methods that compute and compare outcomes for all possible actions.

Figure 4-29: Analytics Engine reference Architecture

Figure 4-30 represents the performance of the compared algorithms trained using multivariate KPIs to predict
slice latency KPI (normalized values) in a multivariate network data environment [D3.3], [Graph2023]. It was
observed that compared to different models, the model with Graph GCN generalizes well over the training
data as compared to the other models. The key idea behind GNNs is to aggregate feature information of
nodes’ local neighbors via neural networks.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 79

Figure 4-30: Prediction Comparison among Different Methods

Fault Management has been a fundamental part of network management, included in the FCAPS operations
(Fault, Configuration, Accounting, Performance and Security). It aims to detect and eliminate any
malfunctions that have occurred in the monitored systems to prevent the degradation of the provided
services. In 5G/B5G networks, because of the high degree of flexibility and change in the network, faults must
be carefully considered within the particular context in which they appear. Our results show that our AE
architecture (joint learning framework based on GCN combined with GRU based architecture trained using
network slice KPI data) helps to optimize the modelling of KPI data. The trained probabilistic model detects
anomalies in slice latency KPI. The time taken for GRU based model (best tuned model with regularization
technique, batch size = 32, Dropout 30% and callback mechanism technique) is approximately 20.42% faster
than LSTM due to faster convergence in training. When given an anomalous KPI sequence, the model detects
the anomalies with lower probability scores.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 80

4.3.3.2 EVALUATION OVER KPI EXPERIMENTAL PLATFORM

To get a representation of the relationships between features for these anomalous KPI sequences, we
obtained the most contributing feature(s) for slice Latency KPI (in our case, the top impacting feature was
bandwidth as shown in Figure 4-31). This information is taken as input by the operators and / or the DE.

Figure 4-31: Interpretable Anomaly Detection depicting contributing factors.

The Analytics Engine has been deployed in a container as a Python script. The Analytics Engine can be
deployed quickly as a stateless container at any node of the network, eliminating the single point of failure.
The Decision Engine is instantiated as a docker container in the cloud and it is responsible for the VNF
orchestration of the main slice. The two modules communicate through a Kafka bus as depicted in Figure
4-32. The Analytics Engine receives a row of dataset at the predefined time interval of 60 seconds. The
Analytics Engine responds to the Decision Engine with a slice KPI prediction at the next interval. This enabler
addresses the “Improve the accuracy of the AE/DE mechanisms for detection of slice performance
degradation” KPI.

Figure 4-32: Cloud Implementation of the AE deployment

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 81

Figure 4-33: AE deployed and running in the testbed (CTTC)

In PoC1 scenario 1, we showcase the implementation of multivariate anomaly detection using an intelligent
neural network-based algorithm powered by MonB5G distributed framework through Docker deployment as
shown in Figure 4-34. After training the model with the dataset as mentioned in Section 7.2, using normal
instances across multiple variables, Prometheus and Grafana are utilized to monitor and visualize the model's
performance. Finally, the trained model will be employed to detect anomalies in unseen test samples.

Figure 4-34: Docker deployed and running.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 82

When Grafana dashboard is investigated, the normalized unseen test sample is depicted, showing CPU usage
at the server, average CPU usage at the server, Aggregate downlink bit rate, the instant aggregate downlink
bit rate at gNB (R) and Outbound traffic at the server, average outbound traffic (O) flowing from the data
interface of the video server in Figure 4-35.

It can be observed that the first anomaly was detected at the same time step across all the variables, which
was caused by the activation of 8 UEs at a period when only 1 UE was expected in the normal pattern. This
resulted in the generation of anomalies in the three variables, with higher R, O, and CPU than expected
depicting multivariable anomalies. For the rest of the time, there is no anomaly detected as the data is very
similar to what has been trained. By proactively detecting the anomalies across the various NS measures, this
enabler addresses the overall reaction time in face of anomalous behavior, and therefore addresses the
“reduction of time between NS malfunction and anomaly detection” KPI. Multivariate-based Anomaly
Detection detecting anomalies among the multitude of network resources (CPU usage at the server,
Outbound traffic at the server, Aggregate downlink bit rate) at the same time.

Figure 4-35: Multivariate Anomalies been detected by the model (CPU, O, R at same time)

4.3.4 LSTM-Based Anomaly Detection
4.3.4.1 USE-CASE DESCRIPTION AND BASELINE

Anomaly detection mechanisms are used to identify abnormal states in the network. While the abnormal
state does not necessarily indicate the network fault, its early detection is essential to maintain the stable
network operation e.g., via taking suitable corrective action (e.g., slice/VNF reconfiguration, scaling, etc.). It
must be noted, that in the Anomaly Detection process, time of reaction is of prime concern as it allows to
mitigate the aggravation of potential network slice malfunctions and performance degradation. In a
centralized network architecture, management system can detect and solve anomalies only after the specific
metrics (PIs, KPIs) reach the central component, i.e., the time needed to repair the network is increased by

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 83

the RTT between the component and management system. Moreover, typically, due to large volume of
transferred data, the metric collection frequency is significantly reduced to conserve the bandwidth further
increasing the delay. On the other hand, the MonB5G approach, leverages decentralized architecture with
relevant management components (MS, AEs, DEs, ACTs) deployed at the slice-level, or at the domain level
(RAN, MEC, cloud) to enable more swift reactions to changes.

In this test, LSTM-based Anomaly Detection AE (further referred to as AD, originally described in
[MONB5GD32]) is deployed in RAN domain and used to detect anomalous changes in traffic originating from
a streaming server in the Cloud and consumed by several UEs. As previously described in [MONB5GD61], due
to containerization and standardised APIs, the same AD component can be easily configured to operate in
other domains e.g., in Cloud to analyse server-side metrics. In this test, it is assumed, that there is a typical
time-of-day dependent traffic pattern, which represents the variable user activity (cf. Figure 4-36). In next
generation networks, it is not unlikely to assume, that based on this time-of-day traffic pattern, adequate
number of resources will be allocated to the slice for the purpose of efficient resource management. In an
event of sudden traffic increase, it is possible that the allocated number of resources will not be enough, and
relevant scaling operations will be needed to provide the access to the service for the increased number of
users. Analysis of traffic can also help to identify other issues, such as incorrect load balancing, or a complete
service failure. Detected anomalous information can be further sent to relevant MonB5G layer components
(DEs, AEs) for further processing. One of the possible actions to tackle sudden, unexpected increase of user
traffic (i.e., caused by an online event) would be server upscaling, to temporarily increase the service
capacity.

4.3.4.2 EVALUATION OF KPIS OVER EXPERIMENTAL PLATFORM

Figure 4-36 depicts emulated time-of-day traffic pattern, by varying the amount of UEs between 1 and 8 (first
chart), as well as user traffic (second chart), total user traffic (third chart) and CPU usage (fourth chart).

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 84

Figure 4-36: The metrics collected during non-anomalous network operation.

The data was further aggregated and used to train the AD’s in-built LSTM model in the offline manner. Data
from RAN is collected by the MS via SF and transferred to AD via message bus. The output from AD working
on non-anomalous signal is depicted in Figure 4-37 Orange and yellow lines show real and predicted value
respectively. Blue line depicts the error between prediction and actual value. Anomalies are determined
based on the error value and a threshold algorithm. In this scenario, a static threshold (red line) has been
used. Sign of the error (positive or negative) can also signal what kind of anomaly (traffic increase/traffic
decrease) is detected.

Figure 4-38 depicts data with injected anomalous traffic changes:

 Sudden increase in traffic during night-time (1st, 3rd and 5th green peaks), matched with large, negative
error,

 Earlier than usual decrease in traffic (2nd green peak), matched with large positive error,
 Sudden traffic drop (4th green peak), matched with large, positive error.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 85

Figure 4-37: Non-anomalous signal traffic

Figure 4-38: Signal with anomalies

It can be observed that the proposed AD trained on a typical traffic pattern (Figure 4-37), enables quick
detection of traffic deviations (cf. Figure 4-38). As depicted in Figure 4-38, in all cases, the anomaly was
detected at the beginning of an abnormal traffic change and lasted until after traffic returned to normal.
Considering the local deployment, the detection delay is solely dependent on the traffic volume sampling
rate and reporting period. This gives the system an early warning and time to take a proper action (i.e. run
diagnostics, make a reconfiguration, etc.).

This enabler addresses the “Reduce the reaction time (time from identification to resolution via appropriate
reconfigurations) to an NS malfunction” KPI. LSTM-based Anomaly Detection detects anomalies at the
beginning of abnormal traffic change, giving management system extra time to react to change (as opposed
to detecting the change after it’s at maximum). MonB5G architecture being decentralized, allows for all
necessary reconfigurations to be taken without informing higher management instances, which additionally

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 86

reduces reaction time to a malfunction, since reporting period of higher architectural layers can be
considerably less frequent than local deployment.

4.4 Evaluating KPIs of MonB5G Solutions at the PoC-1 Scenario 2 Testbed

4.4.1 Slice Admission control (DE) Based on traffic Prediction
In this section, the description of Time-of-Day-Aware Slice Admission Control (TASAC) DE, which allows taking
Slice Admission Control (SAC) decisions leveraging the information on the predicted future network traffic
intensity to select the most profitable slices for the operator. First, the short description of TASAC principles
is described together with the experimental use case aiming to prove the TASAC benefits over conventional SAC
approaches (Section 4.3.1.1). The second part of this section is devoted to the evaluation of TASAC contribution
to the key MonB5G targets and relevant KPIs (Section 4.3.1.2).

4.4.1.1 USE-CASE DESCRIPTION AND BASELINE

One of the key targets for the MNOs is to efficiently use the available infrastructural resources in time in order to
maximize the profit. One of the key optimization mechanisms is the adoption of relevant SAC mechanisms which
enable the selection of the most profitable slices and maximizing the slice admission rate under specific
constraints. Conventional SAC algorithms treat the resources allocated to the slices as fixed, which can lead to
significant resource underutilization since the actual resource consumption is dependent not only on the slice
footprint but also the activity of slice users. To this end, the TASAC algorithm combines two approaches to
derive the slice admission policy that enables maximization of slice admission rate and maximization of
resources utilization. First, two slice types are distinguished according to the user traffic specifics: dependent on
the Time of Day (ToD), referred to eMBB (traffic generated by human-operated terminal) and ToD-independent,
referred to mMTC (traffic generated by machine-like terminals). For the ToD-dependent slices, the resource
consumption scales with the progressing ToD (behaviour well-known and exploited by the MNOs during network
design), while for the ToD-independent the consumption is relatively constant in the deployment period. TASAC
leverages this information to increase admission rate in the less busy periods. Second, the TASAC DE implements
the DRL model-free off-policy algorithm called Double Deep Q-Network (DDQN) [DDQN], which enables deriving
the policy in complex environments in long-term perspective. The use case implemented to evaluate TASAC
benefits is presented in Figure 4-39.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 87

Figure 4-39: The evaluation approach of TASAC enabler

In the analysed UC, slice tenants (behaviour emulated by the Slice Requester block) issue the Slice Admission
Requests (SAR) over the web-based Iid interface (REST-based queries) to deploy network slices. Each SAR
contains the following information: slice type (eMBB/mMTC), slice deployment and termination time and
maximum requested resources by the slice. The Slice Admission block sends a query to the active SAC DE to obtain
the admission decision. The SAC DE interacts with the relevant deployed components (to obtain the network state
(as described in [MonB5GD42] and [MonB5GD43]), make decision on its basis and calculate the reward for the
action (slice acceptance or rejection). In the case of slice acceptance, the role of OSS/BSS part of DMO is to
trigger relevant orchestration functions residing in the Functional Layer to orchestrate the slice instances
specified in SAR. As described in [MonB5GD43], the large-scale testing of SAC is problematic due to the general
limitations of the available resources, i.e., hundreds of slices require tremendous amounts of resources for their
deployment, which is problematic from the lab-scale tests perspective. Hence, to collect the KPIs over the
experimental platform, a hybrid approach has been taken which included using the fully functional SAC
components integrated with the CTTC MS and a simulation part that handles the infrastructural limitations and
simulates resource consumption of the individual slices. Therefore, when the SAR is accepted, the simulation
environment is updated to reflect the resource consumption originating from the newly deployed slice.
As the baseline for the comparison, the same scenario is conducted for the DQN-based approach commonly
used by the academia to optimize SAC process [SAC-DQN1] [SAC-DQN2].

4.4.1.2 EVALUATION OF KPIS OVER EXPERIMENTAL PLATFORM

To emulate the realistic conditions, first, the duration of a day is set to 1440 tu (time units) which correspond to
the acquisition of monitoring data every 1 min. The influx of SARs is modelled as Poisson process with the rate tu.
The requested slice types follow a discrete uniform distribution, the maximum resources requested by tenants
equal to 10 u (generic resource units) for mMTC and 100 u for the eMBB slices, and their duration follow the
discrete uniform distribution (equivalent to the 30 min to 24 hours deployment). The resources available for the

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 88

operator to orchestrate slices are u. The agent is trained over consecutive episodes which last 1440 tu
each. During the experiments, the decisions are made based on available bandwidth and ToD activity information
derived from the carrier-grade transport network. The comparison results of TASAC and the baseline DQN-based
SAC in terms of: (a) obtained reward and (b) resources, requested (R) or consumed (C) by the deployed slices
are presented in Figure 4-40 and in Table 14.

(a)

(b)

Figure 4-40: Comparison in terms of: (a) obtained reward (b) resources.

It can be observed that both the agent’s accumulated reward as well as the resource utilization are much
better for the TASAC DE than conventional DQN-based DE. In the late stages of operation i.e., when the near-
optimal stable policies are reached by the agents the reward gain exceeds over 30%, while the resource
utilization gain is around 60%.

Table 13: Comparison of cumulative gains of TASAC and DQN-based DE

Episode Reward Requested resources [u] Consumed Resources [u]

DQN TASAC Gain [%] DQN TASAC Gain [%] DQN TASAC Gain [%]

50 148.6 755.9 408.7 47662.3 107797.1 126.2 39718.2 90213.9 127.1

150 3793.5 5510.6 45.3 167948.6 350174.5 108.5 141231.4 292807.7 107.3

250 7642.3 10296.2 34.7 348340.5 609580.5 75.0 293353.0 509734.0 73.8

350 11927.0 15664.1 31.3 545034.3 877934.7 61.1 458988.8 734095.2 59.9

The obtained utilization gain can be traded for a reduced number of SLA violations. Hence the evaluation of
TASAC under more strict resource limits have been conducted to match the final resource utilization for both
approaches and enable the comparison of SLA violations ratio. Figure 4-41 shows comparison of TASAC and the
baseline DQN-based SAC in terms of: (a) resources, requested (R) or consumed (C) by the deployed slices,
and (b) violations ratio.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 89

(a)

(b)

Figure 4-41: Comparisons in terms of: (a) resources (b) violations ratio

It can be observed that once the policy is satisfactory (around episode 200), TASAC approach enables over 30%
reduction of number of SLA violations in comparison to conventional DQN-based approach.
Overall, the TASAC DE contributes to the MonB5G target KPIs as listed in Table 5 in the beginning of the
deliverable.

4.4.2 A multi-agent learning for distribution resource allocation in the RAN domain
4.4.2.1 USE-CASE DESCRIPTION AND BASELINE

We cast the RAN resource allocation problem as an optimization problem in a network slicing setup, focusing on
minimizing the traffic exceeding the service level agreement (SLA). The current approaches suffer from
scalability issues in real deployments, where the amount of monitoring information to be exchanged,
together with the large number of base stations (BSs), make it practically impossible to devise optimal
resource allocation schemes in a timely and resource-efficient manner. Due to the distributed nature of the
RANs domain, centralized approaches are doomed to provide sub-optimal performance and introduce
significant communication overhead towards holistic resource controllers. The benefit coming from our approach
are several: i) it enables resource allocation at the edge of the network, thus accounting for more timely and
accurate information, ii) the amount of control information that needs to cross the network to reach the
central controller dramatically decreases, thus reducing overhead towards the core network, iii) by allowing
information exchange among local decision agents (DAs), we enable the provisioning of federated learning
schemes to further enrich the capabilities of the DAs. In fact, DAs will not only learn from a local observation
space, but also leverage information coming from other (statistically different) RAN nodes, thus improving the
generalization of the learning procedure.

4.4.2.2 EVALUATION OF KPIS OVER EXPERIMENTAL PLATFORM

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 90

We propose a distributed architecture for RAN slice resource orchestration based on DRL, consisting of multiple
AI-enabled decision agents that independently take local radio allocation decisions without the need for a
centralized control entity. We design and implement the overall framework as shown in Figure 4-42 and Figure
4-43.

Figure 4-42: Federated RAN slicing architecture

.
Figure 4-43: Testbed architecture

The testbed includes the following components:

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 91

AMARI UE Simbox: It is capable of simulating tens of UEs sharing the same spectrum with different types of traffic
within multiple cells. Each UE can be independently configured as a 5G NR device. We generate synthetic traffic
traces with dynamic patterns by means of mgen traffic generation tool
(https://github.com/USNavalResearchLaboratory/mgen). An mgen command accounts for a destination IP,
destination port, and traffic characteristics like in the following example:
./mgen event \"0.0 ON 1 UDP DST 192.168.2.2/5000 BURST [REGULAR 10.0 PERIODIC [1000 1500] FIXED 5]
In this case, the tool is used to generate downlink traffic towards the UE with IP 192.168.2.2, over port 5000. More
in details, a traffic burst of 5 seconds duration is generated regularly every 10 seconds. During the traffic burst,
packets of 1500 bytes size are generated with a rate of 1000 packets/s, and directed to the Simbox.

AMARI Callbox: provides Enhanced Packet Core (EPC)/5G Core (5GC) functionalities, including authentication of
UEs. Moreover, it implements up to 3 gNodeBs cells enabling functional and performance testing. Thanks to its
multi-cell configuration, it is also suitable for handover and reselection tests. The technical specifications of the
gNB and the core can be found on the vendor’s website [Amarisoft].

Monitoring System: Exploiting a dedicated API hosted by the gNB, it enables real-time monitoring of multiple
KPIs, including the number of connected devices, bandwidth utilization, channel quality, etc., which are stored
in a local database as shown in Figure 4-44.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 92

Figure 4-44: MonB5G MS and monitored dataset.

Local Decision Agents: they collect and consume local monitoring information from the monitoring system to
adjust radio resource allocation policies according to real-time traffic variations as shown in Figure 4-45. Decision-
making is supported by AI algorithms and DRL approaches.

Figure 4-45: Decision Agents

Figure 4-46 depicts a screenshot taken from the running multi-agent setup.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 93

Figure 4-46: Multi-agent setup

The radio resource allocation decisions performed by the agents are translated into API calls like the one in the
following example.

./amari_api.js 10.1.14.249:9001 '{"message":"config_set",
"cells": {"1":

{"pdsch_fixed_rb_alloc":true,
"pdsch_fixed_rb_start":10,
"pdsch_fixed_l_crb":30}
}

}'

The API call includes the IP address and port number as the target for the API call (corresponding to the gNB in
this case), the target cell id, an allocation flag defining if the resource block allocation is fixed or not, and the
boundaries of the desired radio resource block allocation. The latter is including the index of the starting PRB
in the PDSCH channel and the number of continuous resource blocks to be allocated. In this example, 30 PRBs
are allocated, starting from the PRB number 10 of the radio resource grid of cell 1.

Federated Learning Layer: It acts as an aggregation point for the local decision engines deployed at RAN. It collects
locally trained (and therefore heterogeneous) decision models and combines them to gain global knowledge
about the underlying infrastructure behaviour to improve the generalization of the decision process in the
agents.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 94

Figure 4-47: Evaluation Scenario

The preliminary integration of the software components developed started in the context of WP4 and has been
finalized in WP6. Figure 4-47 depicts the evaluation scenario considered in our PoC. We leverage a distributed
learning mechanism and multiple decision agents that collaboratively specialize their decision policies onto real-
time traffic demands, aided by a coordinated exchange of information to avoid the occurrence of conflicting
situations. In particular, we instantiate two gNBs and connect them through a local 5G core. Then, we deploy two
eMBB slices, namely Slice A and Slice B, over each gNB, and spawn the setup of a local decision agent for each
slice instance. As already detailed in D4.3 and D6.1, exploiting the monitoring system API, the RAN agents can
retrieve real-time monitoring information from the Amarisoft RAN platform, which in turn are used to perform
training activities pursuing RAN resource allocation. We generate different traffic for each running slice,
considering it as the aggregated volume for each UE connected to the specific slice. Moreover, we allow only the
agents belonging to Slice A to exchange their local models and perform federation.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 95

Figure 4-48: GUI: Graphical User Interface

For system monitoring and performance analysis reasons, we also design an online dashboard that provides
a real-time overview of the solution. Figure 4-48 illustrates the Grafana-based graphical user interface
developed for the testbed. It provides an overview of the key performance metrics of test scenario, as well
as the agents-specific metrics such as instantaneous reward, allocation gap, and allocated radio resources.
After an initial exploration and training phase, achieves the right trade-off between optimal allocated radio
resources and traffic demand accommodation, i.e., exploitation. To this aim, the agents receive partial
observations from the running services or slices (e.g., channel quality, consumed resources, etc.) by
interacting with each other and with the underlying physical environment. A reward is calculated as an
incentive mechanism based on the actions of all agents, indicating how the agents ought to behave. The
designed reward function guarantees adequate performances, impeding over-provisioning and leading to fair
resource allocation among the running slices deployed within the same cell.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 96

Figure 4-49: Communication Overhead

The communication overhead of a classical centralized radio resource management solution involves
collecting monitoring data from underlying cells to gather an overall view of the underlying system and
optimize resource allocation. In contrast, the proposed distributed approach consumes monitoring data locally
and involves overhead data exchange with a centralized entity only for model weight exchange for federation
purposes. Figure 4-49 compares the overhead of a centralized approach and our distributed one. Results
demonstrate that the distributed approach significantly reduces communication overhead, with a
performance gap that increases over time. At the end of our experiment, we saved ~20MB of data, which
represents 25% of the overall monitoring data. It is worth mentioning that our experimental setup only
considers a limited number of base stations, whereas in large RAN deployments, the monitoring and
communication overhead reduction would be even more remarkable.
In Figure 4-50 and Figure 4-51, we present the performance comparison of two network slices based on reward.
To conduct the comparison, both network slices in each gNB were trained using the same traffic and
hyperparameters in the exploration phase. In the exploitation phase, traffic slices A and B were exchanged
between the gNBs, and their performance was evaluated based on the number of iterations required for
convergence. We exchanged traffic patterns of slice slice A and Slice B in both gNB at the end of the exploration
phase. In this way, agents performing federation may benefit from the experience and knowledge of the others,
and better adapt their decisions during the exploitation phase.
The study results indicate that network slices A outperformed network slices B in both gNBs. Specifically, the
performance of slice A in gNB1 and slice A in gNB2, which were involved in the federation, was better than that
of Slice B in gNB1 and Slice B in gNB2, which were not part of the federation. Based on these findings, network
slices A engaged in the federation procedure are better suited for the given task and should be prioritized for
further development and implementation. This is also supported by the performance comparison in Figure 4-52
and Figure 4-53 regarding the allocation gap.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 97

Figure 4-50: The convergence performance of agents A and agent B in first gNB

Figure 4-51: The convergence performance of agents A and agent B in the second gNB.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 98

Figure 4-52: Allocation gap performance for agents A and agent B in gNB1.

Figure 4-53: Allocation gap performance for agents A and agent B in gNB2.

Figure 4-54 illustrates the cumulative distribution function (CDF) of the allocation gap that slices experience
within the network, resulting from the DRL agent's radio resource allocation policy. The term "allocation gap"
commonly refers to the disparity between the requested or intended allocation and the actual allocation of
a specific resource. In the realm of 5G network management, the allocation gap can signify the distinction
between the desired allocation of PRB and the allocation that takes place. Indeed, the allocation gap can be

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 99

defined as the distinction between the requested allocation of PRBs and the achieved allocation of PRBs.
PRBs are employed to allocate frequency and time resources in wireless networks, and the allocation gap in
our scenario emerges due to the wrong decision of AI agents. In this regard, we pursue an experimental approach
to deploy four eMBB slices with different traffic shapes, emulating the slice traffic generated by different gNB.
The curves measure the probability of incurred allocation gap within slices during the agent training. The
shape of the curves is based on the variability of allocation gap values, which is allocation gap distribution.
The results indicate that federated slices, i.e., Slice 1 and Slice 3, have superiority compared to non-federated
slices, i.e., Slice 1 and Slice 3, where 90% and 67% of the perceived allocation gap is between -2.5 and 2.5
Mbps, for Slice1 and Slice 3 respectively. In contrast, the values for Slice2 and Slice4 are 85% and 65%,
respectively. It turns out that the proposed federated approach leads to optimal and more adequate PRBs
allocation concerning dynamic traffic and resource contention among slices and then federated slices experience
a lower allocation gap. On the other hand, the non-federated strategy incorrectly balances resource allocation for
different network states (state-action pairs), leading to a higher allocation gap. In conclusion, 5% improvement in
slice 1 and 3 percent improvement in slice 2 have been achieved in comparison to non-federated slices (namely
slice 2 and slice 4). Therefore, on average 3.5% improvement in SLA violation in terms of allocation gap considering
both under-provisioning and overprovisioning cases with respect to non-federated approach. Note that the
difference is slight since we need more slices to generalize the model better and evaluate the federated approach
and due to testbed limitations, the number of slices were limited and created up to 4 slices (2 federated and 2
non-federated).

Figure 4-54: The CDF of experienced allocation gap (in Mbps) within network slices.

In Figure 4-55, we focus our analysis performance of 50 gNBs in simulation environment on the dropped
traffic, i.e., the volume of traffic that did not meet the latency requirements due to wrong PRB allocation
decisions (allocation gap due to under provisioning), measured in percentage of the offered traffic volume of
each federation episode with an increasing number of end-users in federation strategy. From this figure, we
can notice how during the initial exploration phase inexperienced PRB allocation decisions performed by the
decision agents heavily affect the latency requirements of all network slices, with peaks of dropped traffic

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 100

that increase with the growing number of end-users. Nevertheless, this trend improves over time as the
agents gain knowledge over the underlying scenario and get trained, finally converging after policy switch,
i.e. after episode 400, towards values in the order of 2% for the eMBB slice, and 0,32% for the URLLC slice.

Figure 4-55: Performance evaluation for different network loads.

4.4.3 RL-based slice admission control
The mechanism proposed her for admission control is based on a Reinforcement Learning (RL) algorithm called
Soft-Actor Critic, which was implemented in Python3.8 and Tensorflow 2.1.

4.4.3.1 USE-CASE DESCRIPTION AND BASELINE

The use-case consist of a series of UEs requesting service from end-to-end slices deployed in the 5G experimental
testbed. These UEs request different type of services on top of a teleoperation use case developed in the platform.
PreBAC leverages the information coming from CATP (Section 4.3.1) plus additional system state information
coming from the User Service Requests (USRs) generated by the UEs in the process of the experiments. PreBAC
is driven by a reward mechanism in which a human operator can establish the marginal utility associated to
the admission of a USR of a specific service type, since PreBAC has the objective of maximizing the overall utility
in an infinite horizon experiment while satisfying the following constraints:

1. The aggregated resource demand of admitted USRs cannot go beyond the BW capacity at the gNB
2. Minimize SLA violations for the deployed end-to-end network slices.
3. Establish a tolerance for excess resource overallocation with respect to the demand for each slices.

As the experiment progresses, and the UEs issue USRs for the slices, PreBAC will determine the admission of the
USRs based on the bandwidth availability of the slice, which it can modify, and seek to increase the overall
utility perceived by the operator. To assess the effectiveness of PreBAC, the same experiment is executed with
a static USR admission mechanism, that seeks to admit USRs into each slice in an equal manner, without regards
for minimization of SLA violations, or changes in the resource demand profiles.

4.4.3.2 EVALUATION OF KPIS OVER EXPERIMENTAL PLATFORM

The KPI evaluated in the case of RL-BAC consisted of “Reduction of SLA Violations”, and for the use-case
described for RL-BAC, this KPI translates into a Reduction of Reduction Rate of USRs as given in Figure 4-56 and
Figure 4-57.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 101

Figure 4-56: KPI evaluation of PreBAC for the current use case

Figure 4-57: KPI evaluation of the baseline solution for the current use case

Notice that the USR Rejection Rate achieved by PreBAC is consistently smaller than that achieved by the static
baseline. In some instances, PreBAC achieves a Rejection Rate that is 3 times smaller than the one of the static
allocators for certain values of R.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 102

5 Evaluating KPIs of the MonB5G Components over the Experimental
Framework for PoC-2

5.1 Recap on the deployment scenarios in PoC-2

5.1.1 MonB5G PoC-2 Scenario 1: mMTC attack
For this scenario, the 5G testbed that is deployed at EURECOM premises was used. The testbed has been
developed and used in many 5G European projects such as 5GEVE3 and 5G!Drones4. We have implemented
the closed-control loop components (i.e. MS, AE, and DE) and an Element Manager (EM) on top of the AMF.
The latter exposes API to (1) MS to monitor the Attach Request message; (2) DE to detach and blacklist UEs
involved in an attack.

MS collects data from AMF on every Attach Request received from the MTC devices. This data is accessible
through the API exposed by EM of AMF. For each Attach Request, MS extracts the device identifier SUPI and
a precise timestamp. Indeed, in the 5G protocol, each UE is identified with a unique identifier called SUPI.
The latter is encrypted to provide better privacy and prevent the IMSI catcher attacks that were popular on
previous-generation telecommunication protocols. The SUPI should not be transferred in clear text over the
RAN except routing information, e.g., Mobile Country Code (MCC) and Mobile Network Code (MNC). For this
reason, it is challenging to identify devices from the traffic received on the radio layer; hence our solution
has to intervene at the 5G CN (i.e., AMF), which can decrypt the SUPI information. The extracted information
is then forwarded to AE via a communication bus based on the Publish/Subscribe concept.

5.1.2 MonB5G PoC-2 Scenario 2: Federated Learning attacks
As depicted in Figure 5-1, we consider n running network slices that may be initiated by different vertical
industries, such as intelligent transportation, Industrial IoT, and eHealth verticals. The running network slices
are interconnected to an Inter-Domain Slice Manager (IDSM), which is in charge for the management and
orchestration of network slices. To enable ZSM, the IDSM side includes an AE for building learning models
and a DE, to make suitable decisions based on AE’s outputs. On the other side, each running network slice is
managed locally by a Domain Slice Manager (DSM), which also includes a MS for monitoring data and in-slice
traffic, and an AE for building learning models.

The proposed framework enables to secure federated learning in B5G networks, against poisoning attacks,
named TQFL for “Trust deep Q-learning Federated Learning”. The design of our framework comprises four
main steps, starting from generating a realistic dataset to designing a detection scheme of poisoning attacks:
(i) The generation of a realistic dataset about the AMF function’s latency of running network slices and its
(latency) related parameters. (ii) Building a deep learning model to predict
 the AMF function’s latency of each running network slice in a federated way in order to prevent any latency-
related SLA violation. (iii) Building an online Deep Reinforcement Learning (DRL) model that dynamically
selects a network slice as a trusted participant (see step 1). (iv) After the first FL rounds (see steps 2, 3), the

3 Online: https://www.5g-eve.eu/, Available: May-2023.
4 Online: https://5gdrones.eu/, Available: May-2023.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 103

trusted participant applies a dimensionality reduction scheme and unsupervised machine/deep learning to
detect the malicious participant (s) (see steps 4, 5, 6,7).

Figure 5-1: Overview of TQFL Framework.

5.1.3 MonB5G PoC-2 Scenario 3: aLTEr attack
As part of the PoC-2 “AI-assisted policy driven security monitoring & enforcement”, we built a platform
integrating MonB5G components and security tools to show the performance of such a system to detect and
contain cyber security incidents. The support attack scenario is the aLTEr attack, and the asset targeted by
the attacker is the web site being visited by the user on his equipment via the 5G network. The
implementation of this scenario requires the integration of multiple components, starting with the context:

 The 5G core network in Stand-Alone mode with the control plane and user plane functions which
provide data communication between the web client (Google Chrome) and the web server
(monb5g.eu)

 The UE and the base station gNb devices are emulated by the “UERANSIM” tool.
 The manipulation of the DNS message by the attacker in the “UERANSIM” tool
 The malicious DNS server and the malicious HTTP server are implemented by CoreDNS and Apache

HTTP Server respectively.

Reactive defence of 5G communications is ensured by the realisation of the MonN5G security orchestrator
and security enforcement functions. As there is a single scenario and there is no need of coordination of

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 104

security activities between the local autonomic security orchestrator (L-ASO) and domain autonomic security
orchestrator (D-ASO), the architecture defined in the [MONB5GD24] is simplified to ease the implementation.
The implemented security orchestrator is an instance of L-ASO inheriting the interface Sc-Or of the D-ASO to
manage the lifecycle of VNF/CNF. The DMO NFV-MANO is instantiated by the Kubernetes orchestrator and
the Sc-Or interface is the Master API. Figure 5-2 below depicts the matching between the implementation
and the architecture design of MonB5G Security Orchestrator.

Figure 5-2: Mapping between the implementation and the architecture.

The security orchestrator automates the processing of security incidents by integrating the MonB5G
components such as:

 The MonB5G MS consists of two components, the first one which is the port mirror of N6 interface,
it extracts the selected raw data packets in the UPF at the N6 interface then sends via a VXLAN tunnel
to the second component. The latter transforms the received raw data to meaningful logs and loads
them onto the communication bus for analysis. These two MS components are implemented using
the virtual switch VPP and the network security monitoring tool Zeek, and the communication bus
uses Kafka topic.

 Threat detection leverage MonB5G AE components which implements several ML/AI algorithms as
described in [MONB5GD5.4] to detect anomalies in meaningful logs prepared by the MS. This function
raises an incident on detection of an anomaly.

 The security expert prepares the action plans and describes the inference rules in an expert system
to decide on the conditions to execute them. The expert system is the Monb5G DE and it is
implemented by the Business Rules Management System Drools. An action plan is inferred from the
incident information and sent on the communication bus to be enforced.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 105

 The ACT triggers the python script to configure of a security function or to trigger the network
function orchestrator to manage the lifecycle of a function. For the scenario aLTEr, the action plan
contains:

o The deployment of the enforcement security function Coredns as a DNS over TLS (DoT) service
on the Kubernetes cluster

o The chaining of the DoT server with Kubernetes default DNS,
o The deployment of the security function DoT client Stubby on the UE (UERANSIM) and the

setting of DNS parameters

Figure 54 shows the mapping of the network functions involved the attack scenario (UE, commercial network,
malicious relay, DNS servers and HTTP servers) on the actual components:

 5G core network control plane Containerized Network Function (CNF) are deployed in the K8s
cluster

 The user plane function (UPF) is running on a separate Virtual Machine (VM)
 The K8s cluster includes three VMs, one master node and two worker nodes
 UE, gNb, and the malicious relay are simulated by UERANSIM running in a VM
 The malicious DNS server and the malicious HTTP server are implemented on two VMs
 The playbook server is to automate the deployment of some components, Helm charts are used

to deployed CNFs
 The development server for the implementation.
 The IP subnets are assigned to each interface

The security orchestrator components are simply CNF deployed in the K8s cluster, the port mirror N6 is in
the UPF.

Figure 5-3: The actual platform implementation for the scenario aLTEr

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 106

From the simulator UERANSIM, a manipulated DNS packet is issued with the malicious DNS server IP as the
bad destination to simulate the attack of MITM and it is sent over the GTP-U tunnel interface. From this
moment, the attack is carried out and we will access the performance of the security orchestrator to detect
and contain the attack.

Figure 5-4: The security of data plane is continuously monitored and the aLTEr attack is ongoing.

Figure 5-4 shows the security orchestrator continuously monitoring the data plane by collecting selected data
at the N6 interface of the UPF, and the scenario aLTEr is being played out when the user is trying to reach the
web site “monb5g.eu”. In the next section, we will measure the time to detect and the time to respond of
the security orchestrator and see the impact of the attack from the perspective of the user.

The attack is being played out, and the port mirror of the N6 interface is configured to copy and forward data
selected protocols such as DNS. The copied data is encapsulated in a VXLAN tunnel to reach the security
monitoring MS as shown Figure 5-5.

Figure 5-5: Raw data at the N6 interface are collected and sent the MS via a VXLAN tunnel.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 107

The security monitoring MS reassemble packets of DNS transaction and translates them into meaningful logs
for analysis. Figure 5-6 shows an example of DNS logs sent by the MS.

Figure 5-6: Meaningful logs of DNS transactions at the N6 interface received by the AE

Meaningful monitoring logs are sent to the Kafka topic where detection function is consuming data to extracts
the features for the model to predict anomalies. Several algorithms have been implemented and their
accuracy are described in the [MONB5GD5.4]. If an anomaly in the meaning logs is detected, the detection
function creates an incident containing the contextual information and the attack identification and sends it
as an event to the topic assigned to the incident response function as shown in Figure 5-7.

Figure 5-7: The AE raises an event indicating the aLTEr attack is occurring for the UE.

The security expert beforehand prepared the plan to eradicate the aLTEr attack and made up the conditions
to trigger them by ingesting rules in the inference engine of the DE. Upon receipt of an incident, the DE will

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 108

derive the plan and instruct the ACT to execute the actions of the plan. To eradicate the aLTEr attack, the
mitigation could be either:

 activating UP integrity protection in the UP security policy for the PDU session for protection of radio
path between the UE and the base station,

 enabling the overlay protection TLS for DNS transactions

In this demo, we choose the second mitigation option to save the cost of protecting the integrity of the PDU
session. The second option illustrates the capability of the security orchestrator:

 To deploy on demand security CNF which is the DoT service: the tool Coredns is set up to provide DoT
server function, it is deployed as a K8s NodePort service pre-set with the TLS Certificate Authority
(CA) information and the port exposed to the UE via the external network,

 To create a new chain of functions by associating the DoT server with the default DNS server, as the
DoT server does not resolve domain names itself but forwards requests to the default DNS server,

 And to configure the network function on the UE to switch to DoT transparently for applications: the
tool Stubby is installed and configured as the local name server listening the loopback interface and
uses the CA certificate and port provided by the ACT to communicate with the DoT server.

To enforce security of the data plane, Figure 59 depicts the ACT that is executing three actions of the
eradication plan: deploy the DoT server, chain it with the default DNS server and deploy the DoT client as the
“nameserver” on the UE.

Figure 5-8: The ACT is executing the action plan provided by the DE.

From the user perspective, Google Chrome (GC) is used to view the content of the web site (monb5g.eu), as
its DNS request has been manipulated, GC warns it receives insecure contents, as the contents come from
the malicious HTTP server. After the first bad DNS transaction, the security orchestrator detects the attack
and it applies in order of second DoT as the countermeasure, on the web page refresh, GC will get the secure

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 109

contents from the legitimate website monb5g. In Figure 5-9, the data capture at the N6 interface shows that
plaintext DNS is replaced by TLS which prevents the attacker from redirecting user traffic.

Figure 5-9: Effective protection of DNS transactions using TLS to eradicate the attack aLTEr

5.2 Datasets from experimental trials

5.2.1 MonB5G PoC-2 Scenario 2: FL attack
Cloud-native and containerization have changed the way to develop and deploy applications. Cloud-native
rethinks the application architecture by embracing a microservice approach, where each microservice is
packaged into containers to run in a centralized or an edge cloud. When deploying the container running the
micro-service, the tenant must specify the needed computing resources to run their workload in terms of the
amount of CPU and memory limit. However, it is not straightforward for a tenant to know in advance the
computing amount that allows running the microservice optimally. This will have an impact not only on the
service performances but also on the infrastructure provider, particularly if the resource overprovisioning
approach is used. To overcome this issue, we conduct an experimental study aiming to detect if a tenant's
configuration allows running its service optimally. We run several experiments on a cloud-native platform,
using different types of applications under different resource configurations.

The datasets are collected for 3 types of applications: Web servers written in python and Golang, RabbitMQ
data broker and the OpenAirInterface 5G Core network function AMF (Access and Mobility Management
Function).

Web Servers:

We used Golang and Python-based web servers for the test. Each request to the web server returns a video
of a size 43 MB. For testing we used ApacheBench, a command-line program used for benchmarking HTTP

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 110

web servers. ApacheBench allows parallel requests from multiple clients. For each web server instance we
send a number of requests ranging from 100 to 1000 and a concurrency level between 1 and 100,
representing the number of parallel clients performing the requests.

The information available in the dataset are as follows:

time: timestamp of collection of metrics.

ram_limit: the memory allocated to the container in megabytes.

cpu_limit: the CPU allocated to the container.

ram_usage: the amount of memory used by the container at the time of the metrics collection in byte.

cpu_usage: the amount of CPU used by the container at the time of the metrics collection.

n: the number of requests sent to the container.

c: the concurrency level in the requests.

lat50: the least response time for the best 50% requests in microseconds.

lat66: the least response time for the best 66% requests in microseconds.

lat75: the least response time for the best 75% requests in microseconds.

lat80: the least response time for the best 80% requests in microseconds.

lat90: the least response time for the best 90% requests in microseconds.

lat95: the least response time for the best 95% requests in microseconds.

lat98: the least response time for the best 98% requests in microseconds.

lat99: the least response time for the best 99% requests in microseconds.

lat100: the least response time in microseconds.

5G Core network’s AMF:

For testing we use my5G-RANTester, a tool for emulating control and data planes of the UE and gNB (5G base
station). The number of simultaneous registration requests that are sent to each instance of the AMF varies
between 10 and 400.

The information available in the dataset are as follows:

time: timestamp of collection of metrics.

ram_limit: the memory allocated to the container in megabytes.

cpu_limit: the CPU allocated to the container.

ram_usage: the amount of memory used by the container at the time of the metrics collection in byte.

cpu_usage: the amount of CPU used by the container at the time of the metrics collection.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 111

n: the number of parallel registration requests sent to the AMF.

mean: the mean registration time for all the registration requests in microseconds.

lat50: the median registration time for registration requests in microseconds.

lat75: the least registration time for the best 75% registration requests in microseconds.

lat80: the least registration time for the best 80% registration requests in microseconds.

lat90: the least registration time for the best 90% registration requests in microseconds.

lat95: the least registration time for the best 95% registration requests in microseconds.

lat98: the least registration time for the best 98% registration requests in microseconds.

lat99: the least registration time for the best 99% registration requests in microseconds.

lat100: the least registration time in microseconds.

RabbitMQ data broker:

For testing we used RabbitMQ PerfTest which is a throughput testing tool that simulates basic workloads and
provides the throughput and the time that a message takes to be consumed by a consumer. For each
deployed RabbitMQ server we used a number of producers and consumers that ranges from 50 to 500. Each
producer sends messages to the broker with a rate of 100 messages per second for a period of time of 90
seconds.

The information available in the dataset are as follows:

time: timestamp of collection of metrics.

ram_limit: the memory allocated to the container in megabytes.

cpu_limit: the CPU allocated to the container.

ram_usage: the amount of memory used by the container at the time of the metrics collection in byte.

cpu_usage: the amount of CPU used by the container at the time of the metrics collection.

n: the number of producers sending messages to the RabbitMQ server.

Min: the minimum consumption time for the producer messages.

lat50: the median consumption time for the producer messages.

lat75: the least consumption time for the best 75% messages in microseconds.

lat95: the least consumption time for the best 95% messages in microseconds.

lat99: the least consumption time for the best 99% messages in microseconds.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 112

5.2.2 MonB5G PoC-2 Scenario 3: aLTEr attack
Although the attacker intercepts and modifies the user's packets on the radio interface, the effect produced
is in the application domain between the client and the application server. The attacker first seeks to gain
control of domain name resolution so that he can then redirect application services to his server. To detect
such attack, DNS packets coming from UE are inspected to search for anomalies. AI/ML techniques are used
to learn normal behaviour, therefore, we capture data from the IT network, which is then anonymized before
being used to train machine learning models.

The Zeek monitoring tool is used to translate the raw IP packets into meaningful records in the form of
protocol transactions. Here below is an example of DNS transaction recorded in the dataset.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 113

5.3 Evaluating KPIs of MonB5G Solutions at the PoC-2 Scenario 1 Testbed: mMTC
ATTACK

Figure 5-10: Test platform and technological components.

We have implemented the closed-loop control components (i.e. MS, AE, and DE) and an Element Manager
(EM) on top of the AMF. The latter exposes API to 1/ MS to monitor the Attach Request message; 2/ DE to
detach and blacklist UEs involved in an attack. Figure 5-10 illustrates the different technologies used to
implement the above-mentioned components. The roles of the different components are:

1. MS and sampler: MS is the first component to receive traffic from the 5G CN. It performs basic filtering
on it. While the sampler applies sampling of the input data, it receives information on Attach Requests
as they are received (with no guaranteed periodicity) and emits periodic data, with the number of
Attach Requests received in time intervals of a given length.

2. Activity and Event Detectors: These components receive the sampled data and should detect an
event. For each event, these components only emit data at its end, with the number of requests on
each time-slice and all the UEs that emitted traffic during the event.

3. Analysis Component: This component runs the ML algorithm on the given data, calculating a detection
rate for each time-slice (for all devices in the time-slice).

4. DE: This component receives data from the Analysis Component and decides which devices should be
disconnected from the network and then blacklisted.

5. MQTT Broker is used to implement the communication bus between the different components of the
closed-loop control system, and between the closed-loop control system and the AMF.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 114

 Attack detection and mitigation AE:

Figure 5-11 illustrates a detailed vision of the AE components, which are: Sampler, Activity Detector,
DataBase (DB), Event Detector, and Analysis components. They interact together to: (1) detect when an event
starts and ends. It can correspond to MTC devices report (normal traffic) or attacks; (2) analyse the event to
detect if it is normal or abnormal traffic; (3) compute the detection rate for each device (probability that a
device has participated in the attack) and send a report to DE. We decided to separate the event detection
from event analysis to improve performances and consider all the relevant data when running the overall
attack detection algorithm. Indeed, we decided to detect activity periods (i.e., events) in the network traffic
and only feed data to the ML algorithm at the end of an event, which provides the advantage that the
resource-intensive component (detection analysis) runs once every event. We also consider two corner cases:
(1) after a duration clearly greater than the maximum length of an event; (2) when peak traffic exceeds a
limit indicating that it is definitely an attack. For both cases, we tag the devices as malicious.

The only downside of separating event detection from the analysis is that UEs participating in an attack will
not get banned right away when the attack starts. However, since the damage in DDoS attacks stems from
their duration in time, the devices will get disconnected and blacklisted a few seconds or minutes after the
event starts by DE. The detection algorithm does not need to run in real-time, and it can look at data of the
whole event.

Figure 5-11: AE’s components.

We measure the accuracy of the Gradient Boosting algorithm under both normal and abnormal traffic. On
normal traffic, the accuracy denotes how often the system yields a detection rate of UEs that is greater than
zero. This does not mean that these devices will get banned, but ideally, a value of 0 should be returned for
all devices emitting normal traffic. To evaluate our model on normal traffic (True Positive (FP) = False Negative
(FN) = 0), we generate data for 500 normal events and run our detection algorithm on each of them. We then
counted the number of UEs for which we obtained a greater-than-zero detection rate versus the total number
of UEs in all the events. We generate the event duration randomly (between 30 and 250 seconds). Regarding
malicious traffic (True Negative (TN) = False Positive (FP) = 0), we also ran 500 tests, but this time, between
7 and 15 Attach Requests are received every 6 seconds, for a total duration that is random between 30 and
250 seconds.

Figure 5-12 allows visualizing the results for normal traffic. The points correspond to the event data, while
the green line is the anomaly interval. If a point is outside the limit (in green), it will be assumed as an attack.
For normal traffic, the accuracy is computed as 1 − FP/(TN+FP). Hence, the results show an Accuracy on
normal traffic of 96.76%. We expected this result as the interval used in our training data includes around
95% of the data in the training dataset, as depicted in Figure 5-12.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 115

Figure 5-12: Results of the detection algorithm over normal traffic.

Figure 5-13 illustrates the results for malicious attacks. For this FN case, the accuracy is computed as 1−
FN/(FN+TP). Hence, the results show an accuracy of 83.63%. This represents an excellent result as banning
a relevant part of the devices taking part in a DDoS attack is enough to mitigate it. We recall that this is just
the detection rate calculated by the AE component, the final decision regarding the devices that should be
banned is taken by the DE component.

Figure 5-13: Results of the detection algorithm over abnormal traffic.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 116

Figure 5-14: The result of the statics method over abnormal traffic

Figure 5-15: The result of the statics method over normal traffic

For the sake of comparison, we used the same scenarios as for Gradient Boosting to generate normal and
abnormal traffic. Then, we applied the statistical method and verified its accuracy in detecting attacks. Figure
5-14 illustrates the usage of the statistical method in case of an abnormal event. The discontinue green line
shows the β(3, 4) curve obtained according to the event duration. The β(3, 4) curve allows us to have a limited
path from which all the outside points are considered anomalies, hence potential attacks. The statistical
method’s results show that 36.0% of the Attach requests are not following the β(3,4) distribution (they are
out of the limit path). Therefore, they can be considered potential attacks. On the other hand, Figure 5-15
presents a test of a normal event. The results show that 90.0% of the Attach Requests follow the β(3,4)
distribution. The accuracy of the statistical method to detect anomaly are : ((1 − FP/(TN+FP) = 84.21 % (normal
traffic), 1 – FN/(FN+TP) = 57.14 % (abnormal traffic))). We remark that these values are weaker than the ones
obtained with the Gradient Boosting algorithm. We argue these differences by the fact that the duration

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 117

estimation has a strong impact on the statistical solution. The shape of the β(3, 4) curve changes drastically
according to the duration (noted D), which seriously impacts the accuracy. For instance, we change the
duration by +/- ϵ = 2sec, and the obtained results are summarized in Table 14. We see clearly from this table
the impact of the duration on the accuracy as a small error on the duration drastically yields a drop in the
accuracy. Particularly, if the duration is less than the real one, many points will be out of the curve. In the
gradient Boosting algorithm, we do not have this concern, as the latter normalizes the sample period duration
and uses the trained model to detect the interval.

Table 14: The accuracy of the statistical model considering different Duration values

Table 15 shows the performance of the Gradient Boosting-based solution when modifying the
AE_DETECTION_THRESHOLD value. It is worth recalling that this value is used to derive the detection rate
and corresponds to a protecting gap to reduce the impact of the ML prediction error and hence reduce the
FP value. We remark that the value allowing to reduce both FP and FN is 2.0. Also, when the
AE_DETECTION_THRESHOLD value increases, FP is reduced as the FN increases, whereas when it is reduced,
both FP and FN increase.

Table 15: Impact of the AE Detection threshold.

Attack detection and mitigation DE:

DE component is the decision-maker of the closed-loop control system. It receives data from AE and decides
the actions to take for UEs that emit abnormal traffic. DE gets as input a list including the suspected UEs
(SUPI) and their corresponding detection rate values belonging to the attacks. We devise two versions of DE.
The first solution blacklists devices if their calculated prediction is higher than "DE DETECTION THRESHOLD"
(i.e, a configurable parameter). The lower the threshold value, the higher the probability that devices are
blacklisted. Therefore, the network operator would use lower values in order to be stricter, but in turn, it
may increase the false positive.

To avoid having high false-positive results, we introduce a second solution that relies on three thresholds. To
avoid having high false-positive results, we introduce a second solution that relies on three thresholds. This
solution considers the whole event and classifies the received list of UEs into three categories: F_1, F_2 and
F_3 (Figure 5-16). DE calculates how many UEs have obtained a detection rate (detection_i) higher than 0.8
and assigns it to the first category, namely F_1. The second category includes UE having a detection rate
between 0.3 and 0.8. This category corresponds to F_2. The remaining UEs are included in F_3. Then, DE
checks if, in the event, a significant part of the devices had higher than usual detection rates. As a result,
different decisions are to be taken:

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 118

1. First, if F_1 > F_2 and F_1 > F_3, DE blacklists all the devices by adding their SUPI values to a table of
blacklisted values, and disconnect them from the network.

2. Second, if F_2 > F_1 and F_2 > F_3, DE adds the SUPI values to a table named ``non-trusted devices".
Each UE belonging to this table has a counter named T_imsi. The counter is increased by 1 each time
the UE is involved in abnormal traffic that is not blatantly an attack. The counter is incremented until
it reaches a value that yields to blacklist the device.

3. Third, DE ignores the alert sent by AE, and it will do nothing.

Figure 5-16: Flowchart of the DE’s components.

During the detection step, the event detected by the Sampler is stored in the DB. The event is organized in
sample periods equal to n with a duration Delta (the same value used for the training phase). This will allow
us to normalize the number of samples of an event since each event has a different duration period, and the
β(3,4) intensity depends on the duration. Thus, we do not need to train the model using different durations,
as the normalization step will allow training on a single duration corresponding to β(3,4) distribution. Since
the event has been organized by sample periods with the total number of Attach received during the sample
period as well as the SUPI of the UE, we use the ML model (mainly the file obtained in the precedent step) to
extract the Predict_i values for each sample period. Then, we derive another bound for each sample period
as follows: Predict_i × (AE_DETECTION_THRESHOLD - 1); a limit above which any traffic gets a 100% detection
rate and gets classified as malicious.

Regarding DE performances, we evaluated the first version that relies on a single threshold DE DETECTION
THRESHOLD. Accordingly, in this section, we evaluate the DE DETECTION THRESHOLD impact on the number
of blocked devices. Table 16 shows the number of banned UEs for three values of the DE DETECTION

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 119

THRESHOLD. As expected, we remark that lower threshold values (ex. 0.1) are very conservative, which allows
blocking more UE. While a higher threshold value (ex. 0.8) may be less strict and reduces the number of
banned UE. We advise two solutions to fix the DE DETECTION THRESHOLD value. The first one considers the
performance limit of the element to protect against DDoS attacks. In our case, we computed the response
time of the AMF to Attach Requests while increasing their number. After a certain number of Attach Requests,
we noticed that the AMF started to be very slow, which can be caused by a DDoS attack. Therefore, after
some tests, we found that the value of DE DETECTION THRESHOLD equal to 0.35, which avoids reaching the
number of Attach Request that yields bad AMF performances. Another solution is to use a dynamic threshold
value that decreases or increases over time according to the number of consecutive events classified as an
attack.

Table 16: Impact of the DE Detection threshold

5.4 Evaluating KPIs of MonB5G Solutions at the PoC-2 Scenario 2 Testbed: FL Attack
As depicted in Figure 5-17, we consider n running network slices that may be initiated by different vertical
industries, such as intelligent transportation, Industrial IoT, and eHealth verticals. The running network slices
are interconnected to an Inter-Domain Slice Manager (IDSM), which is in charge for the management and
orchestration of network slices. To enable ZSM, the IDSM side includes an AE for building learning models
and a DE, to make suitable decisions based on AE’s outputs. On the other side, each running network slice is
managed locally by a Domain Slice Manager (DSM), which also includes a MS for monitoring data and in-slice
traffic, and an AE for building learning models.

The proposed framework enables to secure federated learning in B5G networks, against poisoning attacks,
named TQFL for “Trust deep Q-learning Federated Learning”. The design of our framework comprises four
main steps, starting from generating a realistic dataset to designing a detection scheme of poisoning attacks:
(i) The generation of a realistic dataset about the AMF function’s latency of running network slices and its
(latency) related parameters. (ii) Building a deep learning model to predict
the AMF function’s latency of each running network slice in a federated way to prevent any latency-related
SLA violation. (iii) Building an online Deep Reinforcement Learning (DRL) model that dynamically selects a
network slice as a trusted participant (see step 1). (iv) After the first FL rounds (see steps 2, 3), the trusted
participant applies a dimensionality reduction scheme and unsupervised machine/deep learning to detect
the malicious participant (s) (see steps 4, 5, 6,7).

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 120

Figure 5-17: Overview of TQDL framework

Because of the lack of real dataset, a real testbed using Eurecom OAI platform is setup to collect and generate
a realistic dataset, called EARCD for Eurecom AMF Resource Consumption Dataset. OAI implements 5G radio
access and core networks, as open-source software. Ten instances of AMF are emulated, running as VNFs
inside ten isolated network slices. The network slices differ from each other, in terms of their AMFs’
configurations, for instance: the AMF of network slice 1 has 1GB of memory and 1 CPU, the AMF of network
slice 2 has 2GB of memory and 2 CPUs, etc.

In addition, my5G-RANTester tool is used to emulate UEs, one gNB and to generate attach requests, that will
be then handled by the different network slices’ AMFs. By increasing the number of UEs, up to 560 attach
request per second could be generated, covering different traffic density.

Therefore, ten local datasets (ten network slices) were generated, by varying the number of handled attach
request/s, while each dataset contains 2813 samples (rows). In addition, each local dataset contains five
features as input data, including RAM capacity, CPU capacity, RAM used, CPU used, and number of attach
requests, and latency in terms of average duration of UEs attachment, as output data. The latter corresponds
to the response time (latency in second), to handle UE attach requests by the network slices’ AMFs.

This section presents the poisoning attack detection scheme, which consists first to elect a network slice
participant as a trusted entity. The latter will then be in charge of detecting malicious clients, by leveraging
unsupervised learning (Dimensionality Reduction algorithms).

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 121

Once applying dimensionality reduction techniques and depicting network slices’ updates in a 2D plan, the
last step consists of grouping the received updates into several clusters, in order to determine malicious
updates/models.

To ensure an effective detection of malicious updates, two different clustering algorithms (unsupervised and
supervised) are selected: 1/ k-means which is an unsupervised learning algorithm, that considers no labelled
update models’ data, and 2/ k-nearest neighbours (KNN), as supervised learning algorithm which considers
labelled data about model updates. Both algorithms aim to divide the received update models, at each FL
round, into k clusters that share similarities and are dissimilar to the model updates belonging to another
cluster. We note that we leverage the model update of the trust participant as a reference that supports to
make the difference between malicious and trust models.

Figure 5-18 and Figure 5-20 depict the detection results when combining LDA and K-means on top of ADAM
and SGD optimizers, respectively. We also vary the percentage of malicious network slices’ DSM and show
the trusted nodes that are selected at each FL round (nodes in green color). As we see, our scheme can clearly
detect the malicious nodes, even with only one malicious node. Specifically, the trusted node applies both
LDA and Kmeans, and then all nodes that are in the same cluster with it are considered correct models, while
the nodes (models) that are in the other (s) cluster (s) will be considered as malicious. Therefore, our trust
participant selection algorithm helps us not only to select a trusted node but also to determine malicious
nodes when performing dimensionality reduction and unsupervised clustering. Moreover, determining the
trusted cluster of nodes will also help the FL server (IDSM) to select a trusted participant for the next FL
round.

 (a) Nb of malicious nodes = 3 (b) Nb of malicious nodes = 1 (c) Nb of malicious nodes = 0

Figure 5-18: LDA + K-means for different number of malicious nodes (ADAM optimizer).

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 122

 (a) Nb of malicious nodes = 3 (b) Nb of malicious nodes = 1 (c) Nb of malicious nodes = 0

Figure 5-19: LDA + KNN for different number of malicious nodes (ADAM optimizer)

Figure 5-18 and Figure 5-20 also show the clustering of local models when applying both LDA and KNN on top
of ADAM and SGD optimizers, respectively. Whatever the number of malicious nodes, we also observe that
there are always some isolated points that represent the infected models sent by the malicious DSMs.
However, for the LDA technique, we see that the isolated models (infected) are identified better with the
ADAM optimizer (Figure 5-18 and Figure 5-19) than with the SGD optimizer (Figure 5-20 and Figure 5-21).
Hence, the LDA (with KNN or k-means) technique gives better detection on top of the ADAM optimizer. In
fact, these last combinations show the clearest clustering (two separate groups) compared to other
algorithms.

(a) Nb of malicious nodes = 3 (b) Nb of malicious nodes = 1 (c) Nb of malicious nodes = 0

Figure 5-20: LDA + K-means for different number of malicious nodes (SGD optimizer)

(a) Nb of malicious nodes = 3 (b) Nb of malicious nodes = 1 (c) Nb of malicious nodes = 0

Figure 5-21: LDA + KNN for different number of malicious nodes (SGD optimizer).

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 123

As we did for LDA, we also evaluate the performance of PCA technique when combined with clustering
unsupervised algorithms. Figure 5-22 and Figure 5-24 shows the clustering detection when combining PCA
with K-means, on top of the ADAM and SGD optimizers, respectively. We remark that both optimizers succeed
in separating and identifying infected models by incorrect data. However, infected models are better
identified on top of the SGD optimizer as compared to the ADAM optimizer. Thus, PCA with K-means gives
better performance in detecting infected models on top of the SGD optimizer. Indeed, this last combination
exhibits the clearest clustering (two distinct groups) compared to other algorithms.

(a) Nb of malicious nodes = 3 (b) Nb of malicious nodes = 1 (c) Nb of malicious nodes = 0

Figure 5-22: PCA + K-means for different number of malicious nodes (ADAM optimizer)

(a) Nb of malicious nodes = 3 (b) Nb of malicious nodes = 1 (c) Nb of malicious nodes = 0

Figure 5-23: PCA + KNN for different number of malicious nodes (ADAM optimizer)

(a) Nb of malicious nodes = 3 (b) Nb of malicious nodes = 1 (c) Nb of malicious nodes = 0

Figure 5-24: PCA + K-means for different number of malicious nodes (SGD optimizer).

Similarly, Figure 5-23 and Figure 5-25 depict the detection when combining PCA with KNN on top of the ADAM
and SGD optimizers, respectively. As in Figs. A1 and A3, PCA with KNN on top of both optimizers clearly
separates correct local models from infected ones and thus enables detection/identification of malicious

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 124

DSMs. We also see that infected models are better identified when leveraging the SGD optimizer than the
ADAM optimizer. Therefore, the PCA technique with either K-means or KNN gives better detection of
malicious models on top of the SGD optimizer, which is confirmed in Figure 5-22, Figure 5-23, Figure 5-24 and
Figure 5-25. In fact, when compared to other techniques, these last combinations show the clearest clustering
(two separate groups).

(a) Nb of malicious nodes = 3 (b) Nb of malicious nodes = 1 (c) Nb of malicious nodes = 0

Figure 5-25: PCA + KNN for different number of malicious nodes (SGD optimizer)

5.5 Evaluating KPIs of MonB5G Solutions at the PoC-2 Scenario 3 Testbed: aLTEr
attack

In order to measure the time to detect and the time to resolution, several scripts has been implemented and
synchronized to:

 Initialize the test procedure by clearing all previous data and starting the consumers to listen events
of Kafka topics

 Simulate the attack and generate manipulated DNS requests and replies
 Capture raw data at the GTP-U tunnel interface and translate them to logs with timestamps
 Remove all the deployed countermeasures for the next iteration of the test
 Repeat the previous N times
 Gather the collected logs, extract timestamps and calculate elapsed times
 Visualize the results via bow-plots or graphs

Using these scripts, we can measure the time to detect and the time to respond and calculate their mean
values. The time to detect is the elapsed time from the input of the manipulated DNS request to the output
of the event indicating a security incident. This duration covers the following operations:

 The raw data collection which includes the copy of DNS packets and their transmission to the MS via
a VXLAN tunnel.

 The translation of the raw data to meaningful log, which delay depends on the network protocol
specifications and the performance of end points. In fact, Zeek needs all packets of a transaction for
the generation of logs, so if the end point is slow to reply or the session times out, the output log will
be delayed by as much.

 The extraction of features from the meaning logs and the prediction of anomalies
 The production of the incident event and its posting in Kafka topic

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 125

Figure 5-26 below shows the path along which the transit time is measured.

Figure 5-26: The information path defined to measure the attack detection time

As for the time to respond, the duration of following operations must be aggregated:

 The DE derives the action plan from the received event
 The produced action plan is posted in the dedicated topic
 The ACT execute the actions of the eradication plan, which includes:

o the deployment of the NodePort service of Coredns as the DoT server, and its chaining
with the default DNS server

o The installation of Stubby on the UERANSIM and its configuration as the name server to
communicate with the DoT server

The Figure 5-27 depicts the path to measure the time to respond.

Figure 5-27: The information path defined to measure the attack response time

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 126

The attack scenario and the response of the security orchestrator are run automatically and repeatedly 100
times, and times and logs are collected at the end to calculate the Mean Time To Detect (MTTD) and the
Mean Time to Respond (MTTR).

Figure 5-28: MTTD and MTTR measured over 100 attacks and mitigations.

The results in Figure 5-28 show the performance of the security orchestrator to detect and remediate aLTEr
threat in order of seconds. Although the incident handling playbook suggested by the cybersecurity standards
is partly implemented here, this use case demonstrates deploying automation with AI and security tools helps
reduce the time to identify and eradicate threats. Moreover, the availability of exposed API to configure
security and network functions, and to manage their lifecycle via the domain orchestrator such as Kubernetes
master API widens the scope of possibilities to react to a threat, as a result, it enhances the dynamics of
defense. All these time-saving advantages in responding to an attack come at a cost. Actually, automation
involves the preparation of procedures and their integration into the protected systems and impact
assessment on the services. All these steps require a significant investment in time, resources, and expertise.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 127

6 Lessons Learnt from Experiments
Some lessons learnt from experimental evaluations are as follows:

VR streaming over 5G is not only related to 5G conditions. Our experiment results show that the resulting
end-to-end performance of VR streaming application does depend on several factors which are not part of
the 5G network performance. During delivering a real-time video feed, the processing delay introduced in
video processing can create bottlenecks even in the case of high speed 5G communications.

RTSP versus HTTP: In our experiments focused on video streaming use cases, we compared the performance
of two popular protocols, namely HTTP and RTSP. One notable observation was the contrasting behavior
exhibited by these protocols. Firstly, RTSP enables real-time negotiation between the client and server,
allowing dynamic adjustments to streaming parameters based on network conditions and client capabilities.
This feature ensures better delivery of real-time content by adapting to varying bandwidth and latency.
Additionally, RTSP provides fine-grained control over the streaming process, enabling clients to specify media
tracks, set playback options, and perform interactive operations. While HTTP suffices for video streaming,
RTSP has shown itself to be richer in terms of performance and complex dynamics (e.g., varying data rates).

Transcoding schemes: The sensitivity of VR streaming server to transcoding schemes is high. Application
server may not use high CPU if only streaming traffic is controlled inside the container (e.g., on the order of
4 milicores for a 4k video traffic). However, after transcoding scheme on files are applied and they are
streamed5 simultaneously (which is called “transcode on the fly”, to define transcoding and streaming
simultaneously.), the CPU consumption increases dramatically. Trade-off analysis between extra
computation for transcoding versus larger data volume need to be evaluated carefully as well.

Learning different time patterns of number of streaming users: In our experiments, each site had different
number of VR streaming clients appearing and exiting the cell site. Therefore, many different time patterns
can emerge in case FL process needs to be trained. This creates a huge amount of training scenarios which
should be handled to satisfy real-world deployments.

Logging with toolset: When tracking the logs of the aggregation server for example, relying only on one set
of toolsets to create pipeline (e.g., logstash to collect logs) can create bottlenecks. For this reason, we have
also used filebeat to improve the scalability of log collection process.

Remote UE: during the process of setting up Amarisoft's remote User Equipment (UE) for Simbox, we
encountered several valuable lessons. Firstly, it is crucial to ensure compatibility and proper configuration
between the remote UE (realized as a VM with GUI) and the Simbox platform. While this is a very convenient
way of emulating UEs, not only at the radio level but also at the performance and user experience level,
careful attention should be given to version compatibility and firmware updates to avoid any issues or
conflicts. Secondly, network connectivity plays a significant role in establishing a reliable connection between
the remote UE and the Simbox. To that aim, we ensured minimum link capacity between Simbox and the VM,
so to avoid such a link becoming a bottleneck, rather than the 5G NR links. With that, we ensured almost

5 Online: https://bit.ly/3GuLCen , Available: April 2023.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 128

negligible overheads in the link between Simbox and Remote UE, enabling a transparent RAN such as if the
Remote UE was directly connected to the gNB through the 5G NR.

Cybersecurity handling: The cybersecurity incident handling guideline defined by the security standards
provide a template for the procedure to be followed to detect and resolve an incident. The incident handling
template contains a number of functions and sub-procedures that can be executed using a closed-loop
automation system. The aLTEr attack demo partially implements the main security incident handling loop,
which is made possible by an in-depth analysis of the attack's modus operandi and appropriate
countermeasures. The architecture of the MonB5G security orchestrator then enables such a model to be
implemented to automate procedures using AI tools (ML, inference engine) and security tools. The advantage
of such an approach is obviously a faster identification and removal of the threat compared with a process
involving human intervention. Nonetheless, some steps should be left to the human expert control in the
closed-loop system to validate the analysis results and decide on the actions to carry out if the attack is
uncertain or complex.

Using the domain orchestrator to manage the lifecycle of security functions and modify network services
opens up defense possibilities. The security expert then has more resources available to define his defense
strategies, making them dynamic and adapted to the re-evaluated risks and therefore more difficult for the
attacker to circumvent.

To use open interfaces to apply actions, it is necessary to configure their access control by creating a client
identity and giving it the necessary authorizations. Lifecycle management APIs have a major impact on the
proper operation of services, and the impact of their applications must be carefully studied and measured.

The benefits of automating and orchestrating security come at a cost. The preparation of procedures includes
the activities such as:

 acquiring tools that make incident handling more efficient,
 understand the normal behavior of networks and services so that abnormal cases can be easily

discovered,
 choosing the most effective remediation strategy,
 and integrating into the protected system.

All these steps require a significant investment in time, resources and expertise.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 129

7 Conclusions
This deliverable presented the outcomes of the MonB5G project, which aims to achieve zero-touch
management and orchestration for network slicing in 5G LTE and beyond. The performance validation of
MonB5G components, including architecture, algorithms, and AI techniques, was conducted in the testbeds
to assess their capabilities. The KPIs defined in previous work packages are used for comparison and
evaluation. The deliverable showcased the achievements of two PoCs. In PoC-1 scenario 1, the data-driven
management systems demonstrated their ability to guarantee stringent end-to-end service level agreements
for the considered B5G application, in particular VR video streaming application. The automated zero-touch
service management and redundancy mechanisms significantly reduced downtime and improved high
availability. In PoC-1 scenario 2, the MonB5G mechanisms effectively responded to local performance issues
and changes in traffic patterns. Special emphasis is placed on optimizing the RAN sub-slice through data-
driven radio resource management mechanisms that rely on distribute AI techniques.

PoC-2 scenario 1 focused on addressing in-slice DDoS attacks in mMTC network slices. The proposed zero-
touch security management solution successfully detected and mitigated DDoS attacks initiated by
compromised MTC devices within a network slice. In PoC-2 scenario 2, the ZSM concept in B5G networks is
explored. The use of FL techniques enabled the automated management and orchestration of running
network slices while preserving privacy and isolation. The scenario specifically addressed the robustness of
FL algorithms against attacks, including poisoning attacks. PoC-2 scenario 3 presented a zero-touch security
management solution for detecting and mitigating aLTEr attacks, which exploited vulnerabilities between
user equipment and gNodeBs. AI/ML algorithms were employed for attack detection, and the security
orchestrator updates security policies to mitigate the attacks.

The performance validations of MonB5G enablers demonstrated their compliance with KPIs and the
superiority of MonB5G architecture, components, and algorithms over baseline mechanisms. The
achievements included enhanced network performance, reduced reaction time to malfunctions, improved
resource allocation, energy efficiency, cost-effectiveness, and faster convergence on training. The solutions
effectively addressed security challenges, such as DDoS attacks and poisoning attacks, with reduced detection
time, low false positive rates, and robust learning processes. The lessons learned from the experimental
demonstrations contributed to further refining and improving the MonB5G framework.

Overall, the validity of the MonB5G architecture is quantified through the experimental performance analysis
of MonB5G enablers and their compliance with defined KPIs in WP2 are validated by experimental KPIs. The
tangible results obtained from the experimental testbed platforms in this deliverable successfully
demonstrated the realization of the intelligent, decentralized, and secure zero-touch management and
orchestration vision in B5G networks.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 130

8 Appendixes
Appendix A
Below are the yaml files that are used to instantiate FL training and inference process.

Site-C server yaml file:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: fl-server-pod

spec:

 selector:

 matchLabels:

 run: fl-server-pod

 replicas: 1

 template:

 metadata:

 labels:

 run: fl-server-pod

 app: fl-client-1-pod

 app: fl-client-2-pod

 spec:

 containers:

 - name: fl-server-pod

 image: ezeydan/myrepo:server-demo-with-policy-with-updates-v14

 ports:

 - name: fl-server-pod

 containerPort: 8081

 imagePullPolicy: IfNotPresent

 stdin: true

 tty: true

 volumeMounts:

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 131

 - name: log

 mountPath: /var/log/

 env:

 - name: ISTIO_META_POD_NAME

 valueFrom:

 fieldRef:

 fieldPath: metadata.name

 - name: ISTIO_META_POD_NAMESPACE

 valueFrom:

 fieldRef:

 fieldPath: metadata.namespace

 - name: NUMBER_ROUNDS

 value: "30"

 - name: NUMBER_SELECTED_CLIENTS

 value: "2"

 - name: FL_SERVER_POD_SERVICE_PORT

 value: "8081"

 - name: PYTHONUNBUFFERED

 value: "1"

 - name: CSV_FILE_LOCATION

 value: "br_cpu_dataset_even.csv"

 - name: SERVER_BATCH_SIZE

 value: "240"

 - name: filebeat

 image: elastic/filebeat:7.16.3

 args:

 - -c

 - /etc/filebeat/conf.yaml

 - -e

 volumeMounts:

 - name: filebeat-config

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 132

 mountPath: /etc/filebeat

 - name: log

 mountPath: /var/log/

 volumes:

 - name: log

 emptyDir: {}

 - name: filebeat-config

 configMap:

 name: filebeat-config

apiVersion: v1

kind: Service

metadata:

 name: fl-server-pod

 labels:

 run: fl-server-pod

 app: fl-client-1-pod

 app: fl-client-2-pod

spec:

 type: NodePort

 ports:

 - port: 8081

 targetPort: 8081

 nodePort: 30000

 externalIPs:

 - 10.0.42.7

 selector:

 run: fl-server-pod

 app: fl-client-1-pod

 app: fl-client-2-pod

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 133

Site-B client yaml file:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: fl-client-2-pod

spec:

 selector:

 matchLabels:

 run: fl-client-2-pod

 replicas: 1

 template:

 metadata:

 labels:

 run: fl-client-2-pod

 app: fl-server-pod

 spec:

 containers:

 - name: fl-client-2-pod

 image: ezeydan/myrepo:client-1-with-policy-v11

 ports:

 - name: fl-client-2-pod

 containerPort: 2052

 imagePullPolicy: IfNotPresent

 env:

 - name: ISTIO_META_POD_NAME

 valueFrom:

 fieldRef:

 fieldPath: metadata.name

 - name: ISTIO_META_POD_NAMESPACE

 valueFrom:

 fieldRef:

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 134

 fieldPath: metadata.namespace

 - name: SERVER_URL

 value: "http://10.0.42.7:8081"

 - name: CLIENT_URL

 value: "http://10.0.42.3:2052"

 - name: PORT_CLIENT

 value: "2052"

 - name: CSV_FILE_LOCATION

 value: "/var/data/br_cpu_dataset_odd.csv"

 - name: BATCH_SIZE

 value: "2400"

 - name: N_EPOCHS

 value: "60"

 - name: BOOTSTRAP_KAFKA_IP_PORT

 value: "10.109.107.159:9094"

 - name: TOPIC

 value: "ms.*"

 volumeMounts:

 - name: data

 mountPath: /var/data

 volumes:

 - name: data

 configMap:

 name: my-csv-configmap

apiVersion: v1

kind: Service

metadata:

 name: fl-client-2-pod

 labels:

 run: fl-client-2-pod

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 135

spec:

 type: NodePort

 ports:

 - port: 2052

 targetPort: 2052

 nodePort: 31516

 externalIPs:

 - 10.0.42.3

 selector:

 run: fl-client-2-pod

Site-A-client yaml file:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: fl-client-1-pod

spec:

 selector:

 matchLabels:

 run: fl-client-1-pod

 replicas: 1

 template:

 metadata:

 labels:

 run: fl-client-1-pod

 app: fl-server-pod

 spec:

 containers:

 - name: fl-client-1-pod

 image: ezeydan/myrepo:client-1-with-policy-v11

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 136

 ports:

 - name: fl-client-1-pod

 containerPort: 2051

 imagePullPolicy: IfNotPresent

 env:

 - name: ISTIO_META_POD_NAME

 valueFrom:

 fieldRef:

 fieldPath: metadata.name

 - name: ISTIO_META_POD_NAMESPACE

 valueFrom:

 fieldRef:

 fieldPath: metadata.namespace

 - name: SERVER_URL

 value: "http://10.0.42.7:8081"

 - name: CLIENT_URL

 value: "http://10.0.42.2:2051"

 - name: PORT_CLIENT

 value: "2051"

 - name: CSV_FILE_LOCATION

 value: "/var/data/br_cpu_dataset_even.csv"

 - name: BATCH_SIZE

 value: "2400"

 - name: N_EPOCHS

 value: "60"

 - name: BOOTSTRAP_KAFKA_IP_PORT

 value: "10.109.107.159:9094"

 - name: TOPIC

 value: "ms.*"

 volumeMounts:

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 137

 - name: data

 mountPath: /var/data

 volumes:

 - name: data

 configMap:

 name: my-csv-configmap

apiVersion: v1

kind: Service

metadata:

 name: fl-client-1-pod

 labels:

 run: fl-client-1-pod

spec:

 type: NodePort

 ports:

 - port: 2051

 targetPort: 2051

 nodePort: 31515

 externalIPs:

 - 10.0.42.2

 selector:

 run: fl-client-1-pod

Logstash.cm

apiVersion: v1

kind: ConfigMap

metadata:

 name: logstash

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 138

 labels:

 component: logstash

data:

 access-log.conf: |

 input {

 beats {

 port => "5044"

 }

 }

 filter {

 json {

 source => "message"

 }

 }

 output {

 elasticsearch {

 hosts => ["elasticsearch:9200"]

 index => "fl-server-pod"

 }

 }

Logstash.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: logstash

 labels:

 component: logstash

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 139

spec:

 strategy:

 type: Recreate

 selector:

 matchLabels:

 component: logstash

 template:

 metadata:

 labels:

 component: logstash

 spec:

 containers:

 - name: logstash

 image: logstash:7.16.3

 ports:

 - containerPort: 5601

 ports:

 - containerPort: 5044

 volumeMounts:

 - name: logstash-config

 mountPath: /usr/share/logstash/pipeline

 volumes:

 - name: logstash-config

 configMap:

 name: logstash

apiVersion: v1

kind: Service

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 140

metadata:

 name: logstash

 labels:

 component: logstash

spec:

 ports:

 - port: 5044

 selector:

 component: logstash

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 141

Elasticsearch.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: elasticsearch

 labels:

 component: elasticsearch

spec:

 strategy:

 type: Recreate

 selector:

 matchLabels:

 component: elasticsearch

 template:

 metadata:

 labels:

 component: elasticsearch

 spec:

 containers:

 - name: elasticsearch

 image: elasticsearch:7.17.8

 resources:

 requests:

 cpu: "1"

 memory: "2Gi"

 limits:

 cpu: "2"

 memory: "4Gi"

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 142

 ports:

 - containerPort: 9200

 name: client

 - containerPort: 9300

 name: nodes

 env:

 - name: JAVA_TOOL_OPTIONS

 value: -Xmx256m -Xms256m

 - name: discovery.type

 value: single-node

apiVersion: v1

kind: Service

metadata:

 name: elasticsearch

 labels:

 component: elasticsearch

spec:

 ports:

 - port: 9200

 name: client

 - port: 9300

 name: nodes

 selector:

 component: elasticsearch

Filebeat.cm

apiVersion: v1

kind: ConfigMap

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 143

metadata:

 name: filebeat-config

 labels:

 component: filebeat

data:

 conf.yaml: |

 filebeat.inputs:

 - type: log

 paths:

 - '/var/log/*.log'

 output:

 logstash:

 hosts: ["logstash:5044"]

 bulk_max_size: 1024

 index: "fl-server-logs"

 pipeline: "fl-server-logs-pipeline"

Kibana.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: kibana

 labels:

 component: kibana

spec:

 strategy:

 type: Recreate

 selector:

 matchLabels:

 component: kibana

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 144

 template:

 metadata:

 labels:

 component: kibana

 spec:

 containers:

 - name: kibana

 image: kibana:7.4.1

 resources:

 requests:

 cpu: "1"

 memory: "2Gi"

 limits:

 cpu: "2"

 memory: "4Gi"

 ports:

 - containerPort: 5601

apiVersion: v1

kind: Service

metadata:

 name: kibana

 labels:

 component: kibana

spec:

 ports:

 - port: 5601

 selector:

 component: kibana

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 145

Appendix B
The detailed steps of visualization platform are given below.

1. A file named filebeat.cm.yaml is used to store the Filebeat configuration file. The input of Filebeat is
what is read from files /var/log/*.log, then these logs are output to Logstash.

1. In the fl-aggregation-server file, we mount the Filebeat configuration file into the
/etc/filebeat/conf.yaml file and use the args to specify that configuration file for Filebeat. The fl-
aggregation-server application container writes a log to the file /var/log/access.log. We use emptyDir
volumes to share storage between two containers.

2. A file named logstash.cm.yaml is used to store the Logstash configuration file. A Logstash Deployment
file named logstash.yaml is created. We mount the configuration file to the folder
/usr/share/logstash/pipeline, Logstash will load the configuration files from this folder.

3. Elasticsearch and Kibana deployment files named elasticsearch.yaml and kibana.yaml are later
created.

4. Run apply command to create resources.
5. Use port-forward to access Kibana Dashboard.
6. Now, in Kibana go to menu Stack Management > Index patterns and create an index pattern, then go

to menu Discover and the logs collected from the fl-aggregation-server can be observed.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 146

9 References
[Amarisoft] “AMARI Callbox Ultimate,” https://www.amarisoft.com/app/uploads/ 2022/10/AMARI-Callbox-
Ultimate.pdf, 2023, [Online; accessed 2023-01-05].

[Chergui2020] H. Chergui and C. Verikoukis, “Offline SLA-Constrained Deep Learning for 5G Networks Reliable and
Dynamic End-to-End Slicing,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 2, pp. 350-360, Feb
2020.

[Chergui2021] H. Chergui, L. Blanco and C. Verikoukis, “CDF-Aware Federated Learning for Low SLA Violations in
Beyond 5G Network Slicing,” in IEEE ICC, 2021.

[Chergui2021TWC] Chergui, Hatim, Luis Blanco, and Christos Verikoukis. “Statistical federated learning for beyond
5G SLA-constrained RAN slicing.” IEEE Transactions on Wireless Communications 21.3 (2021): 2066-2076.

[DDQN] H. van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning with Double Q-learning,” 2015, doi:
10.48550/ARXIV.1509.06461. [Online]. Available: https://arxiv.org/abs/1509.06461

[DEEPCOG] D. Bega, M. Gramaglia, M. Fiore, A. Banchs and X. Costa-Perez, "DeepCog: Cognitive Network
Management in Sliced 5G Networks with Deep Learning," IEEE INFOCOM 2019 - IEEE Conference on Computer
Communications, Paris, France, 2019, pp. 280-288, doi: 10.1109/INFOCOM.2019.8737488.

[Graph2023] A. Chawla, A. Bosneag, A. Dalgkitsis, “Graph-based Interpretable Anomaly Detection Framework
for Network Slice Management in Beyond 5G Networks”, IEEE NOMS 2023, Miami, USA, 8-12 May 2023.

[IBM2022] IBM. (2022). Cost of a Data Breach - Report 2022. IBM .

[MONB5GD22] Deliverable D2.2 - Techno-economic analysis of the beyond 5G environment use case
requirements and KPIs, 2022.

[MONB5GD24] Deliverable D2.4 - Final release of the MonB5G architecture (including security), 2022.

[MONB5GD31] Deliverable D3.1 - Initial report on AI driven techniques for the MonB5G AE/MS, 2022.

[MONB5GD32] Deliverable D3.2 - Final Report on AI-driven Techniques for the MonB5G AE/MS, 2022.

[MONB5GD33] Deliverable D3.3 - Report on Integration and testing of the MonB5G AE and MS, 2023.

[MonB5GD42] MonB5G Deliverable D4.2 “Final Report on AI-driven Techniques for the MonB5G Decision Engine”,
2022.

[MonB5GD43] MonB5G Deliverable D4.3 “Report on Integration and testing of the MonB5G DE”, 2023.

871780 — MonB5G — ICT-20-2019-2020
Deliverable D6.2 – Technical Report on the Integration of MonB5G
Technologies in the Network Architecture

©MonB5G, 2023 Page | 147

[MonB5GD52] MonB5G Deliverable D5.2 “Final report on AI driven MonB5G security techniques”, 2023.

[MONB5GD61] MonB5G Deliverable D6.1 - Technical Report on System Integration and Operation, 2023.

[SAC-DQN1] W. F. Villota Jácome, O. M. Caicedo Rendon, and N. L. S. da Fonseca, “Admission control for 5G
network slicing based on deep reinforcement learning,” Apr. 2021, doi: 10.36227/techrxiv.14498190

[SAC-DQN2] S. Bakri, B. Brik, and A. Ksentini, “On using reinforcement learning for network slice admission control
in 5G: Offline vs. online,” International Journal of Communication Systems, vol. 34, no. 7, pp. 1–12, May 2021, doi:
10.1002/dac.475

[Sergio2023] Sergio Barrachina, Engin Zeydan, & Luis Blanco. (2023). Dataset from VR Streaming Server (Emulated)
and Radio Access Network for Streaming Traffic [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7944285

[Tadesse2017] Tadesse, Senay Semu, Francesco Malandrino, and Carla-Fabiana Chiasserini. "Energy consumption
measurements in docker." 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC).
Vol. 2. IEEE, 2017.

[TVT2022] F. Rezazadeh, L. Zanzi, F. Devoti, H. Chergui, X. Costa-Pérez and C. Verikoukis, "On the Specialization of
FDRL Agents for Scalable and Distributed 6G RAN Slicing Orchestration," in IEEE Transactions on Vehicular
Technology, vol. 72, no. 3, pp. 3473-3487, March 2023, doi: 10.1109/TVT.2022.3218158.

[Zhu2019] Zhu, Haishan, et al. "Kelp: Qos for accelerated machine learning systems." 2019 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 2019.

