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1 Executive summary 

The work package 3 of the MonB5G project aims to develop distributed AI-based analytics engine (AE) and 
monitoring system (MS) that are designed and implemented as the essential management and orchestration 
components to support massive network slicing for 5G networks and beyond. This deliverable is an initial 
report to present the current achievements of the innovative MS and AE, and the final results with enhanced 
features, extra functions and detailed verification will be reported in the Deliverable 3.2. 

With new pervasive mobile services of a variety of vertical industries, the centralized network management 
system faces considerable challenges to address massive numbers of coexisting slices, which have different 
performance requirements, functionality, and timespans. To enable a highly intelligent, scala ble and energy 
efficient slice management, the MS and AE of the system need to shift their operations towards a distributed, 
data-driven framework with few human interventions, and be able to efficiently and proactively cope with 
novel vulnerabilities. MonB5G meets these new requirements and challenges on AE and MS for 5G networks 
and beyond, and develops the distributed AI-based network management entities, which are locally deployed 
in different technical domains but interoperate together to automatically  manage the slices with focuses on 
their service quality, energy effectiveness, as well as communication resource optimization.   

MonB5G implements a scalable MS architecture that is based on autonomic network management 
specifications and cloud-native design. MonB5G MS can be conceived as a cross-domain virtual layer hosted 
by a NFV IFA 029-compliant PaaS (i.e., Container Infrastructure System (CIS)). The deployment of the MS 
follows the concept of Slice Management Layer (SML) as a Service proposed in the MonB5G architecture in 
Deliverable 2.1. The distributed MonB5G MS collects the current operation status at multiple levels of the 
management hierarchy (node, slice, domain, and inter-domain) in a programmable manner. After triggered 
and configured by AEs, the programmable MS entities connects the corresponding infrastructure and network 
functions (VNFs and PNFs) to gather the requested telemetries with the specific granularity defined by the 
AEs. There are mainly three types of APIs associated with each MS entity, including Control API, Data 
Collection API, and Data Processing API, which connect with a MS-bus to handle real-time data feeds for a 
unified, high-throughput and low-latency communication. The MonB5G monitoring system achieves the 
following advantages: 

• The distributed MS agents are designed to manage the tightest metrics sampling loops  in its 
respective technological domain, such that the need for data transfer is largely reduced, and thus 
communication overhead introduced by the monitoring system itself is minimized.  

• Additionally, an extra MAPE-based embedded element manager (EEM) is deployed at VNF level to 
support fine granularity (1s) of telemetry collection. It also permits development of aggregators for 
specific (e.g., slice-level) AE and DE.  

• More importantly the configurations of MS entities distributed at different technical domains are 
automatically defined and triggered by the AE/DE components with AI-assisted policy-driven 
mechanisms, which take a crucial step towards highly automated slice-level monitoring system.  

The MonB5G analytics engine aims to analyse the status of massive numbers of coexisting slices with inter -
domain, cross-domain and network-aware KPI inspection. We have developed a variety of AE functions to 
fulfill diverse predictions and fault detection at the different levels of the orchestration hierarchy, including 
context-aware traffic prediction, feature extraction of native data, resource estimation with low SLA 
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violation, slice state recognition etc. In particular, the current version of the AE entities has implemented 
some essential features, such as:  

• Enhanced traffic prediction: traffic load forecasting is essential for many downstream tasks, such as 
resource allocation and admission control. We develop an innovative AE to predict traffic load in the 
RAN domain with augmented information. The input data not only includes the historical traffic 
measurements, but also augment with additional information, such as base station (BS) data, day of 
the week and time of the day. A mechanism of training centrally and predicting locally is explored to 
improve scalability and maintain high prediction accuracy in the meanwhile. 

• Network aware KPI prediction: in order to reduce the gap between demand prediction and resource 
orchestration, it is necessary to make the predictive AEs aware of the context information, i.e., 
exploiting knowledge from the resource orchestration problem domain in the demand-forecasting 
task. This AE entity integrates additional regularizations to model penalty for the settings of over - 
and under-allocation resources, as well as for resource re-allocation. By ensuring that the proper 
amount of resource is made available to a network slice when needed, it significantly reduces the 
probability of the SLA violations and thus guarantees the users’ perceived QoS.  

• Federated Resource estimation with low SLA violation: this AE function introduces a set of well-
designed statistical constraints towards distributed network management with enhanced federated 
learning. The novel function will facilitate network slicing decentralized resource allocation while 
guaranteeing very low service-level agreement (SLA) violations.  

• Slice state recognition: in order to manage a massive number of slices, it is critical to know status of 
any slice running on a network infrastructure. This AE function aims to classify the state of a slice for 
every time step conditioned on a set of measurements of the monitored slice. Importantly, we 
develop a distributed deep neural network method that is based on the estimated certainty of the 
status estimation. With a predefined certainty threshold, the AE function will predict locally to reduce 
communication overhead and potential latency, or offload the compressed local outputs to the higher 
level of the management hierarchy to estimate with more information for a more confident 
prediction.  

In the developed MonB5G AE entities, the novel distributed machine learning (ML) and representation 
learning algorithms are implemented and tailored to fulfil the requirements of 5G networks and beyond, such 
that the traditionally centralized AE can be decomposed into inter-connected entities deployed in a 
distribution manner in the RAN, edge and cloud domains. This allows highly intelligent, accurate, and scalable 
reactions to non-stationary network conditions, new traffic patterns and evolving slice characteristics. The 
distribution of the MonB5G AE includes multiple levels, such as learning concise representations of local data 
to reduce the amount of the information exchanged for management purposes, as well as boosting slice -level 
KPI prediction and the corresponding AI models with different native data. These properties and advantages 
significantly reduce communication overhead and processing operations needed to cope with the 
unprecedented amount of big data generated by 5G networks, in addition improve prediction and learning 
accuracy with considerably decreased reaction time for sensitive slice management under stringent time 
constraints. 

So far, the MonB5G MS and AE have introduced a distributed AI-driven management mechanism to meet a 
set of new challenges in massive network slicing, including scalability, automation, and efficiency of 
heterogeneous resources (e.g., communication, computation, storage and energy). The developed 
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framework reuses standards-based MANO and MEC frameworks and extends them with locally embedded 
intelligence capabilities. The work package 3 releases a comprehensive solution for autonomic slice -level 
network monitoring and analysis, which allows for accurately predicting network KPIs, proactively identifying 
potential vulnerabilities, faults and misconfigurations, as well as providing analysis results to the decision 
engine developed in WP4 for predictive resource management and optimization.  
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2 Introduction 

2.1 Scope  

This is a public deliverable of MonB5G project’s Work Package 3  (WP3) describing the current status of 
progress and achievements, as well as the developed innovative management entities that enable intelligent 
and scalable monitoring and analysis in a distributed AI-driven manner. This deliverable reviews state-of-the-
art monitoring systems and analytics tools, discusses new requirements and relevant specifications needed 
for zero-touch management of massive coexisting network slices, before conclusion introduces the initial 
version of the proposed cloud native MS and AE entities that are empowered by new advances in distributed 
AI technologies to improve intelligence and scalability of network management for fully leveraging diverse 
resource and promoting slice-level service quality. 

 

2.2 Target Audience  

The target audience of this deliverable are stakeholders related to zero-touch management and orchestration 
of 5G technologies and infrastructure, especially the ones with focuses on slice-level monitoring and analysis 
of miscellaneous network domains. The deliverable describes the distributed AI-driven management entities 
that are used to build and enhance intelligence, scalability and cost-effectiveness of 5G networks. 

 

2.3 Structure 

The main technical sections of the deliverable are organized as the following table. In the table, we also map 
the committed tasks of the grant agreement (GA) with the outputs reported in this deliverable in order to 
further clarify and position the innovative contributions under the framework of the MonB5G project.  

Table 1 Deliverable Structure and Mapping with Project Tasks 

Section Description Task(s) Starting Month 

3 

Investigates state-of-the-art monitoring systems, new 
requirements and challenges introduced by management of a 
massive number of coexisting network slices, as well as the 
potential opportunities for the stakeholders. 

 T3.1 M4 

4 

Explores functionalities and techniques of leading analytics 
tools implemented in the current network management 
platforms, leading-edge AI algorithms utilized in diverse 
network management tasks, and a variety of specifications 
instructing intelligent monitoring and analysis of network 
functions/slices. 

T3.2 & T3.3 M7 
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5 

Selects slice-level KPIs and network measurements that need to 
be monitored with focuses on the MonB5G innovations, 
illustrates distributed MS entities deployed in RAN, edge and 
cloud domains, as well as the first version of the MS framework 
that follows a cloud-native approach, where different sampling 
loops can be configured and created for specific management 
goals. 

T3.1 M4 

6 

Introduces insight and vision of MonB5G about analytics 
engine. The AE functions, structure and interfaces between AE 
and DE/MS are explained to give a big picture of the design of 
MonB5G AE. The mechanisms and technologies utilized to fulfill 
AE cross-domain operations are also reported. 

T3.2 & T3.3 M7 

7 

Presents slice-level KPI prediction, including local KPI prediction 
in RAN, edge and cloud domains, cross-domain KPI prediction 
that involves status and measurements of multiple domains, 
and network aware KPI prediction with distributed AI 
techniques. 

T3.2 M7 

8 

Introduces AE for network fault management. It starts with 
diverse scenarios where fault management is essential, then 
proposes fault detection mechanisms with local data, after that, 
the distributed and cross-domain fault management is 
discussed to correctly identify complicated faults with 
comprehensive analysis. Finally, the interoperation between 
fault management engine and other entities of the MonB5G 
platform is presented. 

T3.3 M7 
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3 Monitoring System for 5G Networks 

3.1 Overview of Monitoring Systems  

Observability, consisting of monitoring, logging and tracing, are crucial requirements of any service 
deployment [1]. In general, observability involves gathering data about the operation of services, typically 
referred to as “telemetry”. Modern service platforms, infrastructures and frameworks have observability 
systems in place that gather four types of telemetries: 

• Metrics: Time-series data that typically measure the four “golden signals” of monitoring: latency, traffic, 
errors, and saturation. Based on the collected metrics, analysis can be done to provide aggregations, 
slicing & dicing, statistical analysis, outlier detection and alerting capabilities. DevOps depends on these 
metrics to understand the performance, throughput, reliability and scale of the services. They  also 
monitor Service Level Indicators (SLIs) to detect any deviations from Service Level Objectives (SLOs), 
ideally before they lead to SLA (Service Level Agreement) violations. 

• Events/Alerts: network operators and service providers often pre-define a set of threshold or rules w.r.t. 
the metrics at different technical domains and infrastructure, whenever a threshold/rule is crossed, then 
an event or alert will be triggered, a notification is generated and transferred to the corresponding 
functional components to resolve possible issues.  

• Logs: As traffic flows into a service, a full record of each request will be generated, including source and 
destination metadata. This information enables DevOps to audit service behaviour down to the individual 
service instance level. Analysis is typically done via search UIs that filter logs based on queries and 
patterns, indispensable for troubleshooting and root cause analysis of operational issues . 

• Traces: Timestamped records about the handling of the requests, or “calls”, by service instances. As a 
result of the decomposition of network services into many VNFs and of monoliths into numerous micro -
services, and the creation of service chains/meshes that route calls between them, modern service 
infrastructures offer distributed tracing capabilities. They generate trace spans for each service, providing 
DevOps with detailed visibility of call flows and service dependencies within a chain/mesh . 

On the surface, the approaches towards delivering the observability capabilities have been quite different 
between the NFV and Cloud Native Computing Foundation (CNCF) “ecosystems”. Before softwarization of 
network functions, each PNF had to offer its own monitoring, logging and tracing functions, ideally through 
(de facto) standard protocols (SNMP, syslog, IPFIX/NetFlow, etc.). Moreover, specialized network appliances, 
such as Probes, DPIs and Application Delivery Controllers (ADCs) offered more advanced network visibility 
capabilities, in terms of gathering deep network telemetry, both in-band (inline) or out-of-band (via port-
mirroring). 

When PNFs transformed into VNFs, deployed as VMs, they leveraged the telemetry capabilities of initially the 
VIM and subsequently of the NFVO/MANO stack of choice. This resulted into a proliferation of relevant 
projects, for example: 

• OpenStack: the set of projects under OpenStack Telemetry, with Ceilometer being the one most 
widely adopted [https://wiki.openstack.org/wiki/Telemetry]. 

• OPNFV: the Barometer project [https://wiki.opnfv.org/display/fastpath/Barometer+Home] and the 
VES project [https://wiki.opnfv.org/display/ves/VES+Home]. 

https://wiki.openstack.org/wiki/Telemetry
https://wiki.opnfv.org/display/fastpath/Barometer+Home
https://wiki.opnfv.org/display/ves/VES+Home
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• OSM: the OSM MON module and respective Performance Management capabilities 
[https://osm.etsi.org/wikipub/index.php/OSM_Performance_Management]. 

• ONAP: the Data Collection Analytics and Events (DCAE) project 
[https://wiki.onap.org/display/DW/Data+Collection+Analytics+and+Events+Project]. 

On the deep network visibility front, there have been efforts to enable network monitoring in a 
programmable fashion [https://p4.org/p4/inband-network-telemetry/] and ongoing standardization 
activities under IETF [https://datatracker.ietf.org/doc/draft-ietf-opsawg-ntf/]. 

On the CNCF side, there is a separate set of projects under the Observability & Analysis section of the 
landscape [https://landscape.cncf.io/category=observability-and-analysis], with Prometheus 
[https://prometheus.io], fluentd [https://www.fluentd.org] and Jaeger [https://www.jaegertracing.io] as the 
graduated monitoring, logging and tracing projects correspondingly, with OpenMetrics/OpenTelemetry 
aiming to establish open standards and protocols. The open APM ecosystem is even broader 
[https://openapm.io]. 

However, 5G service implementations are adopting cloud-native approaches. A promising expectation is that 
service infrastructures/frameworks will thus be enhanced with capabilities that offer observability as shared 
basic functions. In addition, the specialized appliances we mentioned (e.g., ADCs), which have since embraced 
or reinforced their softwarization, virtualization & cloudification, will be enhanced with capabilities that 
better position them in a hybrid multi-cloud world of cloud-native applications and services. 

The enhancements towards cloud native and PaaS are discussed in ETSI IFA029, where the concept of VNF 
common and dedicated services has been introduced. These VNFs are instantiated inside the PaaS and expose 
capabilities that are consumed by the network services (composed by consumer VNFs) that run over the PaaS:  

• VNF Common Service: common services or functions for multiple consumers, which are instantiated 
independently of consumers.  

• VNF Dedicated Service: required by a limited set of consumers with a specific scope. This is 
instantiated dependently of their consumers (when required by a consumer) and is destroyed when 
no relation exists with any consumer [2]. 

Worth highlighting is the fact that a “generic monitoring service” is viewed as a specific example of a VNF 
Common Service. We anticipate that this trend will expand to cover all observability & analysis capabilities 
we covered. And due to adoption of Kubernetes as the service orchestration framework, the implementation 
will be most probably based on the technologies/projects in the relevant area of the CNCF landscape.  For 
example, ONF Edge Cloud [https://www.opennetworking.org/onf-edge-cloud-platforms/] platforms, i.e., 
Aether, CORD & XOS, have already adopted the pattern of offering logging and monitoring as platform micro-
services, leveraging projects from the CNCF observability and open APM ecosystems (Kafka, 
Prometheus/Grafana and ELK/Kibana). 

This trend is strengthened further by the approach pursued by the Hyperscalers to expand their cloud services 
into the edge of the network. AWS Outposts, Azure Stack, Google Anthos, IBM Cloud Satellite (will) all offer 
Kubernetes on the edge. There is some fragmentation in how observability is implemented by each cloud 
provider, because of the different cloud services that support the monitoring aspects (AWS CloudWatch, 
Azure Monitor and Google Stackdriver). But Istio [https://istio.io] is acting as a unifying service mesh 
technology, since it implements the observability functions in a common way, without additional burden on 

https://osm.etsi.org/wikipub/index.php/OSM_Performance_Management
https://wiki.onap.org/display/DW/Data+Collection+Analytics+and+Events+Project
https://p4.org/p4/inband-network-telemetry/
https://datatracker.ietf.org/doc/draft-ietf-opsawg-ntf/
https://landscape.cncf.io/category=observability-and-analysis
https://prometheus.io/
https://www.fluentd.org/
https://www.jaegertracing.io/
https://openapm.io/landscape
https://www.opennetworking.org/onf-edge-cloud-platforms/
https://istio.io/
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the service developers. We will have to see if/how the service mesh expands to the edge offerings of the 
Hyperscalers. 

In terms of how these capabilities will be implemented on edge infrastructure of smaller footprint: In 
scenarios where edge resources are too limited to justify a full-blown K8s installation, K3s [https://k3s.io] 
and KubeEdge [https://kubeedge.io/] are emerging as alternative options.  

Similarly, early stage & fragmented are the monitoring features of serverless frameworks. Most of them 
provide or support eventing frameworks as standard that can be used for building metrics and telemetry 
capabilities. But the approaches and tools aren’t common.  

As cloud-native and edge-enabled service deployments and implementations become a reality, the next 
challenges to be addressed are analysing the huge volumes of telemetry generated by the monitoring systems 
and the need for human-in-the-loop operations that increases toil (and costs). The evolution of monitoring 
and APM to the direction of introducing more automation and intelligence through ML/AI techniques is 
commonly referred to as “AIOps”. The recent project Acumos AI [https://www.acumos.org] that is an 
integration of ONAP DCAE with Linux Foundation is exactly a development in that direction.  

 

3.2 New Requirements Driven by 5G Networks and Beyond  

MonB5G intends to deploy a novel autonomic management and orchestration mechanism framework to 
handle a critical challenge in 5G and beyond, i.e., managing a massive number of network slices with different 
requirements and functions. It will heavily leverage distribution of operations together with state-of-the-art 
AI-based mechanisms for scalability, efficiency and automation. The developed system is based on a 
hierarchical approach that allows the flexible and efficient management of network tasks, while at the same 
time, introducing a diverse set of decentralized levels through an optimal adaptive assignment of monitoring, 
analysis, and decision-making tasks. This approach introduces specific new requirements which need to be 
meticulously met.  

• REQ1 The centralized cloud management system architecture needs to evolve into a distributed, 
network state aware system, in order to cope with the envisioned massive number and high 
dynamicity of slices in 5G scenarios and beyond. This will improve both scalability and reaction time 
of self-management and self-configuration of network slices, towards reaching true zero-touch 
network management. Delivering such a platform dictates effective, detailed and sophisticated 
monitoring of KPIs and subsystem behaviour metrics, analysis of which will reveal potential or novel 
issues in the functionality of the framework. 

• REQ2 A distributed management plane will need to go hand-in-hand with the deployment of data-
driven mechanisms based on Artificial Intelligence (AI) algorithms for both distributed data analytics 
and automated decision making and optimization. In order for AI-driven implementations of these 
components to be able to automatically, rapidly, and scalably react to non-stationary network 
conditions, new traffic patterns, and evolving slice characteristics and intent policies, novel 
distributed Machine Learning (ML) algorithms are needed. Training these algorithms mandates 
collection of vast datasets of system-level information. Such information can only be obtained 

https://k3s.io/
https://kubeedge.io/
https://www.acumos.org/
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through a cutting-edge monitoring system, deployment of which is rendered a priority for MonB5G 
as a whole. 

• REQ3 The need to deal with security and privacy concerns affecting the robustness and accuracy of 
the actual collection of network-management data, especially in multi-domain and distributed 
infrastructures, that requires the introduction of novel trust-based mechanisms that not only deals 
with the reliable monitoring and collection of data, but also the trustworthy slice composition and 
deployment, and the robust distributed learning. Similar to REQ2, only a sophisticated monitoring 
system can provide the necessary amount of aggregated data for addressing security and privacy 
concerns. 

 

3.3 Data Availability and Collection  

MonB5G aims to propose a data-driven AI-based network management and orchestration platform. The 

development of its technical part heavily relies on the usage of the data. In the initial stage of the project, 

we develop and validate the proposed methods with the popular publicly available datasets, and will further 

verify them using the data generated with the project testbeds in the next period of the project. Some of the 

benchmark datasets exploited currently are listed as follows:  

Milan Dataset 

Source: https://www.kaggle.com/marcodena/mobile-phone-activity 

Description of the dataset: The cell phone activity from the city of Milan and the Province of Trentino (Italy) 

has been collected by Telecom Italia for the Telecom Italia Big Data Challenge 2014. It constitutes a rich multi-

source aggregation of telecommunications, social networks, weather and electricity data. The telecom data 

is composed by one week of call details records. The dataset contains the information concerning to user 

attachments to Base Stations (BS) in Milan. The following activities are present in the dataset: Inter net 

activity, incoming/outgoing calls, received/sent SMS. The dataset provides Cell ID, country code and all the 

aforementioned telecommunication activities aggregated every 60 minutes. The internet activity is generated 

each time a user starts and ends the internet connection, and the call data record is generated if the 

connection lasts for more than 15 minutes or the user transfers more than 5MB of data.  

Crawdad wireless data 

Source: https://crawdad.org/keyword-cellular-network.html 

Description: Different wireless resources of data aligned with the framework of the project. Some of them 

are presented in the following:  

- Eurecom/Elasticmon 5G dataset (2019). Raw datasets are recorded for one eNB and a single mobile 
User Equipment (UE) in five different mobility scenarios by following different motions and distance 
patterns relative to the eNB. All raw data have been recorded without including Tx power 
amplification on the RF frontend (0 dBm transmit power), which implies an approximately 10m 
maximum range of coverage. Link: https://crawdad.org/eurecom/elasticmon5G2019/20190828/  

https://www.kaggle.com/marcodena/mobile-phone-activity
https://crawdad.org/keyword-cellular-network.html
https://crawdad.org/eurecom/elasticmon5G2019/20190828/
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- 3G/LTE Mobile Data measurements of telco of Japanese telecom operators (2015). This dataset 
contains measurements conducted on 3 (anonymized) 3G/LTE providers in Japan in April and May of 
2013. The measurement design was very simple: a webapp running on 3 terminals (that were tweaked 
not to go to sleep and not used for anything else) would regularly send web requests to a web server 
placed within a university campus and measure the round-trip time of the request. Link: 
https://crawdad.org/kyutech/throughput/20150616/ 

- Multipath TPC traffic (2016). A detailed study of real Multipath TCP smartphone traffic that reveals 
several interesting points about its behavior in the wild. It confirms the heterogeneity of wireless and 
cellular networks which influences the scheduling of Multipath TCP. Link:  
https://crawdad.org/uclouvain/mptcp_smartphone/20160304/mptcp_smartphone/.  

VNFDataset: virtual IP Multimedia IP system 

Source: https://www.kaggle.com/imenbenyahia/clearwatervnf-virtual-ip-multimedia-ip-system/ 

Description: Raw data metrics obtained from the CogNet architectural framework (e.g., CPU, disk,network) 

from the monitored service of the running VMs, VNFs and virtual switches. The collected data is stored in a 

time series database and the SLA metrics in a SQL dataset. 

UCC 4G LTE Dataset with channel and context metrics 

Source: https://www.ucc.ie/en/misl/research/datasets/ivid_4g_lte_dataset/ 

Description: Two datasets are provided in the repository of the UCC (University College of Cork, Ireland):  

- A synthetic dataset generated by ns-3 simulation of a 7-cell cluster with 100 mobile users. All users 

have constant velocity of 80kph and use Gauss-Markov mobility pattern. 

- A real-time 4G trace dataset composed of client-side cellular key performance indicators (KPIs) 

collected from two major Irish mobile operators, across different mobility patterns (static, pedestrian, 

car, tram and train). 

MONROE Measurement Study of Mobile Cloud Services 

Source: https://www.zenodo.org/record/1136576#.Xmj_Vy2B3s0  

Description: Measurement campaign to assess the performance of domains hosted in Cloud Service Providers 

(CSP). DNS lookups + TCP/TLS session establishment time + UDP traceroutes to study CSP -MNO peering and 

topological relationships + pings towards the same IP address. 

In the next stage of the MonB5G project, we will further validate and improve the proposed methods and the 

developed management entities with the data collected from the well-designed project testbeds. Due to 

concerns of data privacy of end users and commercial confidentiality of network operators, it is difficult to 

acquire real network data. To solve the problem, the work package 3 will collect the simulated data with the 

MonB5G monitoring system deployed on the project testbeds. The data will also be utilized to validate the 

algorithms and the management entities developed in the other work packages, such as WP4. 

 

https://crawdad.org/kyutech/throughput/20150616/
https://crawdad.org/uclouvain/mptcp_smartphone/20160304/mptcp_smartphone/
https://www.kaggle.com/imenbenyahia/clearwatervnf-virtual-ip-multimedia-ip-system/
https://www.ucc.ie/en/misl/research/datasets/ivid_4g_lte_dataset/
https://www.zenodo.org/record/1136576#.Xmj_Vy2B3s0
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3.4 Domain-Specific MS 

Monitoring systems deployed in different technical domains often introduce distinguish properties due to 
e.g., services and architectures of the software and infrastructure platforms. Here we discuss state-of-the-
art projects and specifications related to MS for the domains of RAN, edge and cloud.  

 

3.4.1 MS FOR RAN 

Compared with MS of other domains, the RAN-specific monitoring system is more complicated and there are 
mainly two concerns in implementation and deployment: RAN functionality split and timescale of control 
loops.  

According to 3GPP specifications [3], RAN functionality is split into: radio unit (RU) responsible for the digital 
front end and the parts of the PHY layer, distributed unit (DU) for real time L1 and L2 scheduling functions, 
and centralized unit (CU) for non-real time higher L2 and L3 functions. RU is often proprietary hardware from 
different vendors but following specific standards and interfaces. The RU hardware provides northbound APIs 
for control and data planes. In the context of vRAN, the management platform, e.g., FlexRAN, is able to access 
the APIs of RAN components to probe a variety of measurements, such as channel quality indicators, 
SINR/RSSI measurements and UL/DL performance. In the latest O-RAN specification [4], the O1 interface is 
leveraged to monitor the selected components and collect the te lemetries. DU’s server and the 
corresponding VNFs are often hosted in an edge cloud (or on a site itself), while CU’s server and the 
corresponding VNFs are co-located with the DU or hosted in a regional cloud data center. The MS for DU and 
CU are similar as the MS for Edge and Cloud. In the context of OpenStack based platforms, the recent projects, 
such as Ceilometer (https://github.com/openstack/ceilometer) and Monasca (https://monasca.io/), provide 
scalable monitoring-as-a-service solutions. For the container-based platforms, the stats API provided by 
Docker probes live streams of a set of metrics related to e.g., CPU, memory, and network communications. 
The popular tools, such as cAdvisor (https://github.com/google/cadvisor) and Prometheus 
(https://prometheus.io/), are often employed to empower the monitoring systems for VNFs. More detailed 
analysis about state-of-the-art MS in the edge and cloud domains are reported in the following sections.  

In addition, the RAN-specific MS has to consider diverse timescales of the RAN components. O-RAN [4] 
defines hierarchical controller structure along with improved open interfaces so that what used to  be closed 
RAN data can be accessed by not only vendors but also operators and 3rd parties. The hierarchical intelligent 
controller consists of two layers: non-real-time RAN Intelligent Controller (non-RT RIC) and near-real-time 
RAN Intelligent Controller (near-RT RIC). According to the specification of O-RAN, RIC supports the entire 
AI/ML workflow that includes measurement data collection and data processing. Typical time scale in the 
non-RT RIC control loop is 1 second or more, while that in the Near-RT RIC control loop is 10 ms to 1 second. 
The MS for the RAN domain should integrate the stringent time constraints into the framework.  

 

3.4.2 MS FOR EDGE 

Implementing a distributed MS framework, specifically designed for deployment on the network edge, must 
take into consideration some of its unique characteristics, such as positioning in the overall networking 
architecture together with the actual nature of the services and applications it requires to support. Some 

https://github.com/openstack/ceilometer
https://monasca.io/
https://github.com/google/cadvisor
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essential application monitoring metrics on the edge include (i) latency, (ii) subscriber distribution, (iii) 
geographic coverage, (iv) traffic characteristics such as mobility together with relevant variations within the 
day, (v) connectivity as retrieved through network-based common functions, (vi) service/network availability, 
restoration and reliability, (vii) cross-site resilience and load-balancing, (viii) throughput and (ix) resource 
utilization. In addition, similar metrics should also be obtained for all interconnected network layers i.e., 
optical, data and/or IP network. Lastly, MS must seamlessly cooperate with supplementary entities for 
delivering an autonomous intelligent system capable of sensing its environment and context while in the 
same time having the ability to act based on contextual data in real-time. 

MonB5G considers MS as an entity of paramount importance which will (i) monitor (VP)NFs resource usage, 
(ii) monitor Network Slice tenant consumption of resources, (iii) facilitate optimised VNF placement and (iv) 
track domain level SLAs and verify compliant system behaviour. For effectively operating on the Edge, MS 
needs to determine the state of computational resources and provide information on availability, 
consumption and scheduling, accumulate traffic-related data which can be used for AI/ML-based training, 
collect the actual & predicted GPS coordinates of roaming users/entities and send them to the AE and have 
a dedicated interface to the infrastructure management orchestration tools (NFVO, MEO) to collect 
measurements and execute dynamic adjustments using dynamic rules.  There are only a few open-source 
projects that partially address the monitoring requirements of MonB5G. These projects, OSM and ONAP are 
briefly presented in the following paragraphs. 

OSM 

Open-Source MANO (OSM) [5] is a collaborative open-source project hosted by ETSI to develop an NFV 
Management and Orchestration (MANO) stack aligned with ETSI NFV Information Models and APIs. OSM has 
produced nine releases so far (each named after the respective number in capital letters). With regard s to 
the MS the most significant OSM releases were: 

• R5, which introduced support of network slices, as well as extended monitoring capabilities, including 
VNF metrics collection. 

• R8, which introduced “ultra-scalable” service assurance capabilities, including a new framework for 
the real-time gathering of metrics and alerts. It should be stated here that Kubernetes clusters are 
used for the execution of distributed monitoring, hence the “ultra-scalable” claim. 

• R9, which further evolved Kubernetes integration, making OSM installation on Kubernetes the 
default, deploying VCA (Juju) on the same Kubernetes cluster as the rest of OSM, adding support for 
the Helm 3 package format, as well as the capability to operate distributed applications in  multiple 
Edge locations through distributed proxy charms. 

As mentioned in [6], OSM community demonstrated how the MON and POL components of OSM could be 
integrated respectively with ML models and reward scoring functions for implementing intelligent closed-
loop automation, thus aligning the specific solution with the scope of ETSI ENI as well as the functional 
requirements of the MonB5G MS/AE/DE framework. 

ONAP 

The ONAP project [7] is often considered as one of the main open-source solutions capable of addressing 
most management and orchestration requirements in telecommunications.  Its architecture exploits SDN and 
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NFV technologies to improve service deployment and provisioning and provides a unified framework for 
monitoring solutions that is able to inspect and verify end-to-end service level agreements (SLAs) and KPIs. 

Monitoring in ONAP is carried out through the Data Collection, Analytics and Events (DCAE) module. DCAE is 
in charge of collecting and storing granular data in real-time streaming and batch mode from multiple 
underlying sources to monitor network services and level condition by means of performance surveillance 
and visualization tools. In large-scale deployment, geographical distribution of the components of DCAE is 
possible, however in this case the so-called edge DCAE sites must maintain physical proximity to the 
monitored network function and services to ensure low communication latency and reduce the amount of 
data traversing the medium. The only major drawback of this distributed deployment is that edge DCAE sites 
often lack the computational capacity and the communication resources compared to the centralized DCAE 
nodes. 

 

3.4.3 MS FOR CLOUD 

The MonB5G framework architecture is designed to enable management and orchestration in several 
administrative/technological domains, such as RAN, Edge and of course Cloud. In order to address issues and 
mitigate service degradation in the specific domain, it is of paramount importance to craft a sophisticated 
monitoring system, capable of (i) gathering infrastructure telemetry from the underlying VIM (NFVI Sub-
domain), (ii) collecting VNF Metrics, (iii) monitoring service level KPIs (such as E2E latency and throughput) 
for VNFs and VL, and (iv) monitoring fault alerts originating from VMs, VNFs and the physical infrastructure. 
For efficiently obtaining the much-needed information, dedicated interfaces with both the VNFM and In-Slice 
Manager should be available. 

This set of requirements enforce certain design considerations and mandate that MonB5G Monitoring system 
should be oriented towards push-based Whitebox monitoring models. This dictates that (i) Applications (or 
Functions) should be instrumented in a way that they return their overall state, the state of the internal 
components, or the performance of transactions or events they involve/generate (ii) infrastructure 
components should be configured with telemetry services that allow publishing (as well as polling) based 
operations and (iii) agents should be configured with access to an adapting monitoring system, having sample 
interval configurable by an external entity. 

There are many ways to design monitoring platforms, but the focus often falls within: reactive or pro -active 
(QoE-oriented) monitoring infrastructure. The former is rooted on query-response operations at each 
function (i.e., technological domain), while the latter is often designed to be event-based in order to “offer 
translation between business value and the metrics generated by the system and its applications” [8]. 
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Figure 1 Monitoring Agents from the Perspective of Functions and Cloud Infrastructure 

The above figure provides an overview of the last point. That is, from applications (i.e ., functions) point of 
view MonB5G may dictate design guidelines that would enable the “Publishes” section, but also open 
interfaces for on-demand collection of metrics (i.e., “Exposes” section). The Monitoring Agent of the 
corresponding Technological Domain will often work under a Publish/Subscribe paradigm leveraging 
protocols such as MQTT, or tools like Riemann (http://riemann.io). Data then can be saved as time series of 
events, logs and metrics properly indexed according to MonB5G design patterns. The Persistent store 
element may be a database engine. Ideally, all the Monitoring System would utilize the same database 
engine, nevertheless in the above figure, this is not assumed. Instead, the corresponding Monitoring Agent 
exposes APIs for collecting such data, as well as accessing the function directly for on -demand collection. 

From an infrastructure or PNF point of view the options are more limited. In this case, it is assumed that the 
VIM is able to provide telemetry information about its infrastructure components to different subscribers, or 
Ceilometer publishers (https://github.com/openstack/ceilometer), like Prometheus 
(https://prometheus.io/),  Gnocchi (https://wiki.openstack.org/wiki/Gnocchi), or Fluentd 
(https://github.com/fluent). PNFs must expose interfaces for manual extraction or (better) publishing of 
metrics, events and logs. 

This proposal can be aligned with that proposed in ETSI ENI Architecture  [9], specifically with the Input 
Processing functional block. The MonB5G Monitoring System and ETSI ENI Input Processing functional block 
share the following functionalities: 

• Data ingestion: provide some sort of data ingestion protocol to retrieve telemetry information from 
the managed system, e.g., publish monitoring, APIs, etc. 

• Normalization: perform data transformations and/or simple operations (e.g., aggregation, etc.) so 
data is made available in Manager System-format. 

 

http://riemann.io/
https://github.com/openstack/ceilometer
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https://wiki.openstack.org/wiki/Gnocchi
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4 Data Analytics Functions in 5G Networks  

4.1 Overview 

Data Analytics for networks and mainly for 5G networks has gained attention going from research to in 
standardisation, especially in the recent releases from 3GPP. Data Analytics functions have also been defined 
to cope with network slicing. We present here the data analytics functions for 5G networks and for 5G 
network slicing. 

 

4.1.1 3GPP NWDAF 

One of the new entities introduced by 3GPP in the 5G Core network is Network Data Analytics Function 
(NWDAF). The NWDAF function has been introduced in R15 (TS 23.501 [10]). The details of NWDAF are 
described in TS 23.288 [11] and TS 29.520 [12]. NWDAF defined in 3GPP TS 29.520 [12] incorporates standard 
interfaces from the service-based architecture to collect data by subscription or request model from other 
network functions or perform similar procedures. The NWDAF enables the network operators to either 
implement their own Machine Learning (ML) based data analytics methodologies or integrate third-party 
solutions to their networks.   

The NWDAF, as defined in TS 23.503 [13], is used for data collection and data analytics in a centralised 
manner. The services exposed by the NWDAF may be consumed by one or more Network Slices.  For instances 
where specific analytics can be performed by a 5G Core (5GC) Network Function (NF) independently, an 
NWDAF instance particular to that analytic can be collocated with the 5GC NF. In this case, the data utilised 
by the 5GC NF as input to analytics should also be made available to allow for the centralised NWDAF 
deployment option. 5GC Network Functions and OAM decide how to use the data analytics provided by 
NWDAF to improve network performance. The NWDAF utilises the existing service-based interfaces to 
communicate with other 5GC Network Functions and OAM.  A 5GC NF may expose the results of the data 
analytics to any consumer NF utilising a service-based interface. The interactions between NF(s) and the 
NWDAF take place in the local PLMN. 

3GPP Release 16 provides NWDAF support to 5GC NFs and O&M only. According to TS 23.288 [11], the 
NWDAF interacts with different entities of 5GC: 

• with AMF, SMF, PCF, UDM, AF and OAM for data collection based on event subscription;  

• with data repositories for retrieval of information from them (e.g., UDR via UDM for subscriber-
related information); 

• with NFs for retrieval of information about them (e.g., NRF for NF-related information, and NSSF for 
slice-related information); 

In PLMN, there may exist single or multiple instances of NWDAF. In the case of numerous NWDAF, the 
architecture supports deploying the NWDAF as a central NF, as a collection of distributed NFs, or as a 
combination of both. When multiple NWDAFs exist, some of them can be specialized in providing specific 
data analytics. The capabilities of an NWDAF instance are described in the NWDAF profile stored in the NRF. 
An Analytics ID information element is used to identify the type of supported analytics that NWDAF can 
provide. The 5GC allows NWDAF to retrieve the management data from OAM by invoking the existing OAM 
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services and enables any NF to request network analytics information from NWDAF. It may provide analytics 
to consumers on demand.  

Each NWDAF instance should provide the list of Analytics ID(s) that it supports when registering t o the NRF. 
It is up to NWDAF data consumers (NFs and OAM) to decide how to use data analytics. The analytics made 
by NWDAF is either statistical information of the past events or predictive information, but only the statistical 
information can be subscribed. There are two types of interfaces between NWDAF and NFs, shown as the 
figure below. The Nnf interface is defined for the NWDAF to request a subscription to data delivery, to cancel 
the subscription to data delivery and to request a specific report. The Nnwdaf interface is defined for the 
network functions to request or cancel the subscription to network analytics delivery and to request a specific 
report of network analytics. The 5GC allows NWDAF to be collocated with an NF (that corresponds well with 
MonB5G EEM concept). 

 

 

Figure 2 NWDAF Interactions with NFs  

The Data Collection feature permits NWDAF to retrieve data from various sources (e.g., NF such as AMF, SMF, 
PCF or other NFs) that include: OAM global NF data, behavior data related to individual UEs or UE groups, 
metrics covering UE populations per spatial and temporal dimensions (e.g., per region for a period of time) 
For that purpose the NWDAF can use the Generic Management Services (defined in TS 28.532) or the 
Exposure services offered by NFs/AFs to retrieve data not provided by OAM. In the case of networ k slices, 
NWDAF shall determine which NF instance(s) of the relevant NF of a slice are serving the UE or group of UEs 
(S-NSSAI(s) can help in such determination). 

Data collection procedures of NWDAF should allow data collection with the appropriate granularity. The Data 
Collection from NFs/AFs is based on the services of AMF, SMF, UDM, PCF, NRF and AF. This mechanism is 
used to obtain information about UEs. The information obtained from the OAM may include NG RAN or 5GC 
performance and fault measurements as well as 5G end-to-end KPIs. 

Categories of NWDAF analytics include: 

• Slice load level related network data analytics. The NWDAF provides load related information to an 
NF on a network slice instance level, and the information about slice UEs is optional. The NWDAF 
notifies slice specific network status analytics information to the NFs that are subscribed to it. The 
Load Level Threshold parameter crossing can be reported, or reports can be periodic.  

• Observed Service experience related network data analytics.  NWDAF subscribes the network data 
from NF(s) to train a Service MOS Model for a given application and provides the result to its 
consumer (NF or OAM). The service data include information needed for service identity and the 
observed bit rate, data delay and the number of transmitted packets in UL and DL. At the UE, the 
RSRP, RSRQ and SNIR information is provided. 

• NF load analytics. The NF load analytics is provided in the form of statistics or predictions, or both. 
The NF load analytics includes information about NF load, NF status (availability) and virtual resources 
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(CPU, memory, disk) consumption by an NF. In the case of UPF, the user plane traffic statistics are 
reported. The NF load prediction information is identified as the reported statistics – in both cases, 
the reported period is mentioned.  

• Network Performance Analytics. This analytics provides either statistics or predictions on the load in 
an area, and it may provide statistics or predictions on the number of UEs that are located in that 
area that is defined as a list of TA or cells. In this case, the statistics on RAN load and performance 
per Cell Id in the area of interest and attached to the cells UEs are collected. The performance 
predictions include load per TA or Cell ID within the requested area, usage of assigned resources 
(CPU, memory, disk) (average, peak), number of UEs located in the area, the ratio of the successful 
setup of PDU Sessions, the ratio of successful handover and the confidence of these predictions.  

• UE related analytics. These analytics include UE mobility analytics (SUPI, UE positions and position 
mobility statistics and predictions, TA or cells that the UE enters and related time stamps, the terminal 
model and vendor information of the UE, frequent mobility re-registration information), UE 
communication analytics (per-application communication description including traffic volume, 
predictions), expected UE behavioral parameters and abnormal behavior related network data 
analytics (unexpected UE location, unexpected long-live/large rate flows, unexpected wakeup, 
suspicion of DDoS attack, wrong destination address, ping-pong stationary UE, too frequent abnormal 
traffic volume). 

• User data congestion-related analytics. This analytics is in the form of statistics, predictions or both. 
User Data Congestion related analytics can relate to the congestion experienced while transferring 
user data over the control plane or user plane. A request for user data congestion analytics relates to 
a specific area or to a specific user. If the requestor provides a UE ID, the NWDAF determines the area 
where the UE is located at the time of the request. The NWDAF then collects measurements per cell 
and uses the measurements to determine user data congestion analytics.  

• Data congestion-related analytics indicates the location where congestion-related analytics is 
desired. The type of analytics is set to user data congestion analytics for transfer over the user or 
control planes. The Performance Measurements may include UE throughput, DRB setup 
management, RRC connection number, PDU session management, and Radio Resource utilization as 
defined in TS 28.55.  

• QoS Change analytics. The consumer may request the NWDAF analytics information regarding 
potential QoS change in a geographic area. The consumer can subscribe single or multiple 
notifications. The request includes 5QI, and additional QoS parameters.   The location information 
could be: (i) a path of interest, (ii) geographical coordinates, (iii) a polygon describing an area. The 
location information may reflect a list of waypoints. 

 

The following table illustrates the NWDAF Services related to NF and network slices. 
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Table 2 NF Services Provided by NWDAF  

Service Name Service Operations 
Operation 

Semantics 

Example 
Consumer(s) 

Nnwdaf_AnalyticsSubscription Subscribe Subscribe / Notify PCF, NSSF, AMF, 
SMF, NEF, AF 

 Unsubscribe  
PCF, NSSF, AMF, 

SMF, NEF, AF 

 Notify  
PCF, NSSF, AMF, 

SMF, NEF, AF 

Nnwdaf_AnalyticsInfo Request Request / 
Response 

PCF, NSSF, AMF, 
SMF, NEF, AF 

  

Table 3 Analytics Information Provided by NWDAF 

Analytics 
Information 

Request Description Response Description 
Operation 
semantics 

Slice Load level 
information 

Analytics ID: load level 
information 

Analytics Filter(s): network slice 
instance(s). 

Requested Analytics data, 
including load level information of 

Network Slice instance(s). 

Subscribe/Notify, 

Request/Response 

  

The NWDAF offers Nnwdaf services to provide network data analytics. These services provide NWDAF slice 
congestion events notification and NWDAF specific analytics. The Network Data notifications can be periodic 
and/or notification when a threshold is exceeded. The services provided by NWDAF are listed in Table 3. The 
Nnwdaf_EventsSubscription Service as defined in 3GPP TS 23.501 [10], 3GPP TS 23.502 [14] and 3GPP TS 
23.503 [13] provides the identifier of network slice instance and load level information for that network slice 
instance. The Nnwdaf_AnalyticsInfo Service known consumers are Policy Control Function (PCF) and Network 
Slice Selection Function (NSSF). The Policy Control Function (PCF), as NWDAF service consumer supports, can 
use the information provided by NWDAF into consideration for policies on the assignment of network 
resources and for traffic steering policies. The Network Slice Selection Function (NSSF) obtaining from NWDAF 
information about load level information from Network Data Analytics Function (NWDAF) may use it for slice 
selection. 

In 3GPP Release 17, the studies related to network automation Phase 2 are ongoing. This includes some 
leftover from Release 16, such as UE-driven analytics or slice SLA assurance as well as new potential 
functionalities like support for multiple NWDAF instances in one PLMN including hierarchies, enabling real-
time or near-real-time NWDAF communications, allowance for NWDAF to assist user plane optimisation. An 
interesting part, which is tightly connected to MonB5G area of interest, is also devoted to discussions 
regarding the interactions between NWDAF and AI model as well as the training service owned by the 
operator. In recent released (R16, R17), NWDAF is expected to have a distributed architecture providing 
analytics at the edge in real-time and a central function for analytics that need central aggregation, such as 
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e.g., service experience. Illustrated as Figure 3. The figure also shows the bi-directional interactions between 
local components and NWDAF.  

 

 

Figure 3 Distributed Architecture of NWDAF in R16 and R17 

The other major component in the 5GC that supports data analytics is Management Data Analytics Function 
(MDAF), which provides Management Data Analytics Service (MDAS), defined in the specification TS 28.533 
[15] for one or more NFs, network slice subnets or network slices. The MDAS provides data analytics of 
different network-related parameters such as load level and/or resource utilization. For example, the MDAS 
can collect the NF's load related performance data, e.g., resource usage status of the NF, and on that basis, 
it may provide a forecast of resource usage information in a predefined future time. This analysis may also 
result in recommendations concerning taking profitable actions, e.g., scaling of resources, admission control, 
load balancing of traffic, etc. The architecture of MDAF/MDAS is hierarchical, as presented in  Figure 4. 

 

Figure 4 MDAS at Different Levels   

MDAF/MDAS can be deployed both at the domain (e.g., RAN, CN, network slice subnet) and centralized level 
(e.g., PLMN level). A domain-level MDAS provides domain-specific analytics such as resource usage prediction 
in a CN or faults prediction in a network slice subnet. A centralized MDAS, based on the data exposed by 
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domain MDAF entities, can provide end-to-end or cross-domain analytics service covering resource usage or 
failure prediction in a network slice or optimal CN node placement, ensuring lowest latency in the connected 
RAN nodes. 

 

4.1.2 ETSI ZSM  

ETSI defines in its zero-touch service management (ZSM) framework a closed loop (CL)-based automation 
wherein the analytical function (AF) plays a pivotal role and is interfaced with several internal entities, 
including the data Collection Function (i.e., monitoring), the Decision Function as well as diverse external 
entities (authorized by ZSM). While the Collection Function is responsible for gathering and pre-processing 
data from managed entities (e.g., VNFs) or from external sources (e.g., context aware ness positional data). 
In this respect, data might have different formats and be transferred from one or more sources (databases 
or streams) to a destination where it can be stored and further analysed. Since data has different origins, 
there is need for each source to be transformed in a way that allows it to be analysed in conjunction with 
data from other sources. The ‘Analysis’ Function is then responsible for deriving insights from available data 
from the collection stage as well as historical data. An insight is jointly extracted from data and the 
corresponding context. An example of insight may be the conclusion that congestion has taken place in a set 
of resources, and the context could be the location, time and date, the service impacted, users invol ved and 
the underlying set of slice resource. Insights can determine the root cause and locate it in the network. The 
insight derivation is therefore a continuous process that can be enhanced by new data. Analysis should be 
able to continuously improve its results and, consequently, provide better decision options to the decision 
function as depicted in Figure 5. 

 

 

Figure 5 Functional View of a Closed Loop and its Functions within the ZSM Framework [16] 

There are a series of interfaces defined in the ZSM framework. Specifically, the interfaces are introduced as:  
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• C2A interface between the Collection Function and the Analysis Function provides information based 
on historical and/or streaming real-time data coming from various data sources. Information is a set 
of data processed in a meaningful way following the goals assigned to the closed loop. The 
information derived from raw data is highly dependent on the context. Collection Function also 
supports features for (i) providing historical information, (ii) providing real-time information, (iii) 
tuning data sources, (iv) tuning data ingestion. 

• A2D interface between the Analysis Function and the Decision Function provides insights on historical 
and/or streaming real-time information that is provided by the collection stage. Analysis also provides 
capabilities for tuning the analytics models and starting/terminating the analytics processes.  

• E2 external interface represents data and control inputs and outputs from/to other closed loops and 
external entities and is used to (i) start/stop process of e.g., training an AI model, (ii) change the 
settings of the function such as the attributes of CL models, configurations that define how each CL 
works, (iii) retrieve the current status of the stage, (iv) retrieve the historical data and/or real-time 
data of the function such as logs, (v) provide the resulting data of the stage to other closed loops and 
(vi) provide data to authorized entities outside of the ZSM framework, e.g., external management 
system. 

 

4.2 ML/AI Techniques for Data Analytics  

Machine Learning techniques have proven very successful as function approximators [17] [18] to find 
solutions in different problem domains. A variety of Machine Learning methods have been employed to 
address data collected from different resources for diverse analysis tasks. Depending on the information 
available in the data itself and the problem to be solved, some approaches would be more feasible/efficient 
than others.  

Supervised Learning, for example, is one type of ML methods in which the problems of classification and 
prediction are very important. The methodology to apply this type of learning requires data that is somehow 
labelled and the expected result is known from the data, in order to train a function approximator (which can 
be a Deep Neural Network) that can be used to label/classify/predict the outcome of never -before seen data 
inputs. Unsupervised Learning goes along similar lines, but in this type of ML the labels of the data and the 
expected output are not known, and the function approximator is left to determine this labelling on its own. 
A typical example of UL method could be the Principal Component Analysis (PCA).  

Another family of ML methods is Reinforcement Learning (RL), in which an agent learns to perform an optimal 
action based on its inputs and a reward function that offers the agent a metric of performance. Even though 
RL has been mostly used for interactive settings between the agent and its environment, there have been 
state-of-the-art works that have formulated data analytics problems as Markov Decision Processes (MDPs) 
[19] [20] [21] [22], such that the advantages of the RL methods can be exploited to solve these problems.   

 

4.2.1 TIME SERIES FORECASTING 

The 5G architecture standard specifies the functionalities at each technological domain, their scope of 
programmability and the way they are managed [10] [23] [24]. Virtualization is key for deployment of network 
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slices. This technology allows to decouple the infrastructure providers (InPs) from the service providers 
(tenants), which deploy and own the network slices.  

The tenants get virtual resources depending on the needs of their slices, the VNFs and virtual links that 
compose it, and performance constraints usually defined in the form of SLAs. When a tenant deploys a 
network slice, the InP has to ensure there are enough resources available in the infrastructure for it [25]. 
Admitting a network slice into the infrastructure involves a process of assigning VNFs and their virtual links 
into their respective physical counterparts [25] [26].  

 

4.2.1.1  RESOURCE ALLOCATION IN THE CONTEXT OF 5G  

Upon slice admission, the tenant specifies the resources it needs for its slice(s), which may differ from its real 
usage. In the event a network slice needs more resources than those initially assigned, then it is under-
provisioned. This causes the network slice to perform poorly, incurring in penalties for the InP and poor QoS 
for the end users [27]. In the opposite case, where the network slice uses less resources, then it is over-
provisioned. In this case, resources remain idle but active incurring costs for the InP, and losing revenue. 
Over-provisioning also reduces the number of slices that can be simultaneously deployed, increasing the time 
for slices to be admitted, and also reduces the resource utilization efficiency of the infrastructure. Since both 
of these cases (over- and under- provisioning) imply costs for the InP and/or quality of service degradation 
for the end user, it is necessary to dynamically re-adjust the resources assigned to network slices [25]. 

In order to assess the amount resources to assign to a network slice, it is necessary to analyze its load [24]. 
Depending on the 5G technological domain, the type and management of resources will vary. In the base 
station at the RAN domain, the network slices need bandwidth for communication with user equipment, 
which is a limited resource. The InP maps and/or multiplexes the available bandwidth among the slices, in 
order to support a larger number of them [25]. Understanding the traffic profiles of each slice provides 
important information to achieve this target. Trying to predict the traffic becomes an attractive approach to 
drive bandwidth allocation mechanisms (and/or other resources) at the base station level  [24] [28] [29].  

 

4.2.1.2  TRAFFIC PREDICTION 

There are many approaches for traffic prediction within the context of mobile communications  [27] [30] [31] 
[32] [33] [34] [35]. ML techniques have been used as well, such as Linear Regression, Polynomial Regression, 
Gaussian Processes, Feed-Forward Neural Networks (FFNNs) communications [31] and more complex DNN 
architectures such as LSTMs and CNNs [27] [33] [34]. FFNNs and Autoregressive Integrated Moving Average 
(ARIMA) methods have similar performance for time-based prediction [36] [37], while LSTM-based predictors 
have shown better performance than ARIMA and FFNNs [38], and these have been proven very successful for 
traffic prediction [28] [33] [39] [40].  

Most state-of-the-art ML predictors are trained with loss functions that minimize accuracy errors. However, 
there is a gap between the prediction and resource orchestration, and by focusing only on accuracy, the InPs 
use predictions that are agnostic to resource under- or over-provisioning. Thus, it is necessary to enhance 
the capability of predictors to reliably drive resource allocation and slice scheduling mechanisms.   
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The Context-Aware Traffic Predictor (CATP), proposed as part of the data analytics engines developed within 
the MonB5G project, seeks to reduce the gap between traffic prediction and resource orchestration. Some 
aspects of CATP are similar to DeepCog [27], but CATP differs and extends from the latter by offering a 
formulation that injects problem domain as regularization terms of the loss function, and can be used to train 
different DNN architectures, leveraging supervised learning techniques for problem domain knowledge 
embedding when training DNNs [41] [42] [43].  

 

4.2.2 CLASSIFICATION AND ANOMALY DETECTION  

There are many types of anomalies that can be identified in a mobile communication network. These 
anomalies range from the simplest faults, such as links broken at the physical layer (broken wires or 
antennas), to application layer malfunctioning and system overload. This means that the scope of anomalies 
is very broad, and the patterns behind the anomalies are diverse. Thus, designing ML methods for anomaly 
detection requires to narrow down the context in which certain type of anomalies are expected.  

In most cases, specific anomalies can be indirectly detected by observing the traffic load across the networks. 
When the traffic patterns change, or when there are spikes of traffic generating network congestion 
(considered an anomaly as well), then packet delivery drops, which is translated as a QoS degradation for the 
users.  

Within this context, one of the main applications of traffic forecasting is to anticipate network congestion in 
order to implement automated mechanisms that help relieve the network of the congestion condition. A 
large part of these forecasting applications is done using time series forecasting [31] [44] [45] [46] [47] [48] 
[49] [50], but there are others that use other forms of Machine Learning [51]. Le et al. [31] argue that 
forecasting traffic load with a margin overload is effective in making congestion control more reliable when 
it is used with some form of resource provisioning to the network. On the other hand, Najm et al. [51] use a 
Decision Tree (DT)-based algorithm to determine whether congestion will occur or not depending on the 
conditions of the transport layer. Xie et al. [50] adopted a Deep RL approach to solve the congestion problem 
by determining the initial congestion window (IW), for which they use A3C (Asynchronous A dvantage actor-
critic) algorithm [52] [53] trained on flow completion time data. In the aspects of congestion control, we are 
in the process of developing a slice admission control strategy that considers traffic forecasting and resource 
allocation to determine the best slices to admit in order to reduce the probability of congestion. The predictor 
used are obtained using the CATP framework for traffic prediction design, also develop as part of the MonB5G 
project. Once the admission control strategy for congestion avoidance is developed, the next step will be to 
deploy a RL agent, similar to [50], to do fine-grain resource allocation to optimize the resource usage and 
prevent congestion even further.  

 

4.2.3 GRAPH REPRESENTATION LEARNING  

Graph data is pervasive in 5G networks. For example, the VNFs and virtualized links of a network slice 
construct a graph. To address such type of data, diverse ML methods have been explored. One of state-of-
the-art methods is Graph Convolutional Networks (GCN), which generalize Convolutional Neural Networks 
(CNN) that only work on Euclidian objects, to arbitrarily structured graphs. Based on spectral graph theory, 
GCNs define the convolution operation of graphs using Chebyshev polynomials with trainable parameters 
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that are learned in a neural network model. GCNs are used to automatically extract advanced features from 
graphs allowing to represent their semantics in a very effective way, as they encode and accumulate features 
of local neighbours.  

The representation of graph features extracted by a GCN has been successful ly used in recent works with 
different types of learning models such as semi-supervised classification [54] and Deep Reinforcement 
Learning [55]. However, GCNs can only be applied for representing homogeneous graphs, that is, graphs in 
which all nodes and all links are of the same type.  

To deal with this limitation authors of [56] have developed a new technique called Relational Graph 
Convolutional Network (RGCN). The goal of RGCN is to extract features in heterogeneous graphs, where we 
have more than one type of node and link. This propriety is essential to learn appropriate representations of 
large-scale relational data graphs [56]. As GCNs, RGCNs accumulate transformed feature vectors of 
neighbouring nodes. However, RGCNs perform relation-specific transformations i.e., depending on type and 
direction of an edge.  

 

4.2.4 FEDERATED LEARNING 

Federated Learning is a recent Machine Learning paradigm that allows multiple agents to train a shared model 
in a decentralized manner without exchanging their local data. That means, with these techniques individual 
computing devices (potentially spread geographically) can come up with the same model that a single 
centralized server could find by gathering all their data, but without requiring as much storage capabilities or 
disclosing the data that each device holds.  

Federated Learning emerged as a new way of exploiting the ever-increasing computing power at the edge of 
the network [57]. In particular, Federated Learning contrasts with "traditional" centralized Machine Learning 
model training in that it puts together elements from large-scale Machine Learning, privacy preservation and 
decentralized optimization, thus gathering and coupling the challenges of all these areas together  [58].   

The main attractive features of Federated Learning are: (i) the distribution of the computing load into many 
individual devices instead of a unique server; (ii) the resilience of the decentralized approach versus mere 
parallelization, thanks to which even if any node suffers a failure the training can continue, as opposed to the 
case where a central node coordinates many parallel workers and if this node fails the training is interrupted ; 
and (iii) the exchange of model parameters instead of raw data, which allows for keeping the agent's local 
information private.    

Current research on Federated Learning is dedicated to address many challenges caused by the standard 
centralized learning mode, namely:  

1) Training a potentially huge model (neural networks can have millions of parameters) in a 
decentralized manner requires a large amount of communication. Current approaches to alleviate 
this drawback are trying to reduce the number of communication rounds [58] or the size of the 
messages transmitted [59]. 

2) Coping with the large heterogeneity of the devices and communication channels in the network. The 
very different storage capacity, computing power and communication reliability of the devices 
connected to the network require Federated Learning methods that are robust against lack or 



871780 — MonB5G — ICT-20-2019-2020 

Deliverable D3.1 – Initial Report on AI-Driven Techniques for the MonB5G 
AE/MS [Public]  

 

 

©MonB5G, 2019                                                                                                                                               Page | 35 

 

intermittent participation of certain agents. Current approaches to address this challenge are 
asynchronous communication, and accounting for the limited power of some components of the 
network instead of just ignoring them, which can have a negative impact on convergence [60]. 

3) The data collected at each device may differ significantly in their distribution, which on the one hand 
violates the assumption of independent and identically distributed (i.i.d.) data frequently used in 
distributed optimization, and on the other hand allows for the incorporation of other frameworks as 
multi-task learning [61]. 

4) A considerable challenge of Federated Learning lies in achieving a good trade-off between model 
performance and quality of the exchanged information, since even just exchanging the model 
parameters rather than the data itself can still reveal sensitive information [62]. Therefore, a great 
amount of effort is being dedicated to balance this trade-off to realize private federated learning 
systems.  

Given the strengths of the Federating Learning framework (i.e., decentralized training and data privacy 
preservation), it is a natural choice for the implementation of the training of KPIs and SLAs predictors from 
the raw data collected locally at the analytic engines.  

 

4.2.5 REINFORCEMENT LEARNING  

According to [63], Reinforcement Learning (RL) is a family of ML methods that learn from interactions to 
achieve a goal. The reinforcement learning agent observers its environment – which comprises everything 
outside the agent, continually selecting actions to perform. The environment, responding to  those actions, 
presents new situations to the agent and also rewards, special numerical values that the agent tries to 
maximize over time [63] [64] [65]. 

In an essential way, reinforcement learning problems are closed-loop problems because the learning system's 
actions influence its later inputs. A Reinforcement learning agent uses methods to discover which actions 
yield the most reward by trying them out [63]. 

Reinforcement learning is different from supervised learning since supervised learning involves learning from 
a training set of labelled examples provided by a knowledgeable external supervisor. This is an important 
kind of learning, but alone it is not adequate for learning from interaction. In interactive problems it is often 
impractical to obtain examples of desired behaviour that are both correct and representative of all the 
situations in which the agent has to act [63]. 

Reinforcement learning is also different from unsupervised learning, which is typically about finding structure 
hidden in collections of unlabelled data. Uncovering structure in an agent's experience can certainly be useful 
in reinforcement learning, but by itself does not address the reinforcement learning agent's problem of 
maximizing a reward signal [63]. 

The book [63] classifies Reinforcement Learning methods in two macro-categories: (i) Tabular methods, and 
(ii) Approximate methods. Tabular methods adopt the strategy of building a model of the environment. The 
goal of these methods is to build a table or array containing an approximation of the action-value function – 
the function that represents the expected sum of rewards that can be obtained by taking an action from a 
specific state, for each possible state-action pair. The advantage of these methods is that they can often find 
exact solutions, that is, they can often find exactly the optimal value function and the optimal policy to select 
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actions. However, they can only be applied in situations where the number of state and actions is sufficiently 
small to be represented in a table. Examples of Tabular methods are Dynamic Programming, Monte Carlo 
Methods and Temporal Difference Learning [63]. Approximate solution methods do not use tables to 
approximate value functions. They use instead function approximation strategies (e.g., artificial neural 
networks) to approximate the state value function and the policy. Optimality cannot be ensured but in return 
these methods can be applied effectively too much larger problems. Approximate solution methods can be 
divided in two categories: “On-policy” methods and “Off-policy” methods. On-policy methods are designed 
to learn an optimal policy while using it to select the actions made by the agent. Off -policy, in contrasts, train 
a policy different from the one used by the agent select the decision [63].Approximate methods do not use 
tables to approximate value functions. Instead, they use function approximation strategies (e.g., artificial 
neural networks) to approximate the state value function and the policy. Optimality cannot be ensured but 
in return these methods can be applied effectively to more complicated problems. Approximate methods can 
be divided in two categories: “On-policy” methods and “Off-policy” methods. On-policy methods are 
designed to learn an optimal policy while using it to select the actions made by the agent. Off-policy methods, 
in contrasts, train a policy different from the one used by the agent to select the decisions [63]. 

 

4.3 Solutions on Data Analytics Using ML/AI Techniques  

The community has explored diverse ML/AI techniques for a variety of tasks in network management, e.g., 
network embedding, dynamic resource allocation, and admission control. This section will briefly summarize 
some of the works in the literature. 

 

4.3.1 DRL APPROACH USING GRAPH CONVOLUTIONAL NETWORKS  

Automatic virtual network embedding is an important task in network management and orchestration, and 
has attracted increasing attention due to high demand on zero touch management. Yan et al. [66] propose 
and implement a dynamic central online algorithm for automatic virtual network embedding by combining 
Deep Reinforcement Learning (DRL) with graph convolutional networks (GCNs). The algorithm automatically 
extracts spatial features in an irregular (non-structured) graph topology (i.e., the substrate network). For 
training the algorithm, a Policy Gradient method called "Asynchronous Advantage Actor -Critic (A3C)" [67] is 
used in the DRL model, where multiple instances of the training agent are curried out simultaneously which 
speeds up the process of learning. 

The algorithm has considered CPU power for the substrate node and bandwidth for the inter -node links as 
the main physical resources constrains. The optimization objectives are to select and embed VNFs 
automatically taking into account the acceptance ratio, long term average revenue and running time. 
Embedded nodes then are connected by using the shortest path algorithm.  

As the solution is DRL-based, the state is represented by the maximum available CPU and bandwidth 
resources on all SN nodes, free CPU power on each node, free bandwidth of every link on the SN, and also 
the required CPU and bandwidth by each virtual node in the VNR. The action by the algorithm is to embed 
the virtual nodes of the VNR and link them. This process is iterative and only terminates after all virtual nodes 
in the VNR are completely placed and linked. To evaluate each action of the a lgorithm, a reward function is 
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used to encourage choosing successful actions. The reward function includes request acceptance ratio, long 
term revenue and load balancing. 

 

4.3.2 DEEPVINE: VIRTUAL NETWORK EMBEDDING WITH DEEP REINFORCEMENT LEARNING 

The recent advances of AI/ML about deep neural networks have been tailored and extended to solve the VNE 
problem. Dolati et al. [68] adopt a general Convolutional Neural Network (CNN) for a DRL to embed a virtual 
network (VN), i.e., a set of virtually linked VNFs. It is a dynamic, online, centralized solution for VNF 
placement. As DRL performs well on image classification and recognition , they assume that the physical and 
virtual networks have grid typologies as such they can encode them as two-dimensional images. 

Those images are suitable to be directly fed to a deep neural network without any further processing. The 
DRL then selects an action upon which the image is updated and fed back to the neural network. The structure 
of this neural network has four convolution layers where the output of the last convolutional layer is divided 
between two fully connected layers and then merge in the last output. This "duelling" technique is proved to 
help learning better policies [69]. RL Q-learning algorithm is used as the training algorithm in this solution. 
Q-learning learns a value Q, called Q-value, for each state action pair which is equal to the maximum 
accumulated future reward when an action is performed in a state. 

The reward function is designed to achieve a high cumulative value, which is maximized when the maximum 
number of VNs are embedded upon resources availability. After embedding a VN in a PN, a shortest path link 
is constructed between nodes and the state (image) is updated. There are four possible actions carried out 
by this solution: (i) mark VNs (and PNs) for embedding, (ii) perform the embedding, (iii) update marked VNs, 
and (iv) update marked PNs. To adhere to image representation in DRL, the state is represented using three 
matrices, which is a direct adaptation of the RGB colour channels in a coloured image. First, the matrix 
encodes the substrate network and the VN concatenation, it includes CPU and BW and their parameters. 
Second, the matrix uses the same encoding with embedded VN set to 1. Third, matrix is used to check 
resource availability. It is the same as matrix 1 but indicates whether an SN node or link has enough remain ing 
capacity or not.  

 

4.3.3 DRL-BASED DYNAMIC RESOURCE ALLOCATION (DRA) SCHEME 

Dynamic resource allocation is enhanced with AI techniques to avoid or largely alleviate the resource under- 
and over-provisioning issues. The traditional method often sets a small utilization threshold. Resource will be 
scaled vertically or horizontally if the predefined threshold is reached. The simple method works; however, 
it often causes over-provisioning, and cannot fully exploit the resource of the infrastructure. The AI -based 
resource allocation dynamically optimizes the resource based on the actual demand, such that QoE is 
guaranteed, and on the other hand, more network slices can be supported in the same infrastructure. Wang 
et al. [70] develop a centralized, online DRL-based dynamic resource allocation scheme for networks slicing. 
They employ Deep CNN to model the complex 5G network environment. In this algorithm, features of SN are 
represented as a binary matrix to facilitate for the DRL agent to discover relations between multiple slices 
and learn to dynamically manage the resources of a slice depending on the perceived demands. It achieves 
resource optimization for all slices at once instead of individual VNFs.  
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The DRL model consists of four convolutional layers, with two MaxPooling2D layers inserted after the second 
and the fourth convolutional layer. Rectified Linear Unit (ReLU) activation functions are used in all layers 
except the output. The output of the second pooling layer is flattened to one dimensional vector to be passed 
through a fully connected layer. SoftMax activation function is applied to the output for the purpose of 
probabilistic actions. The RL training agent uses Policy Gradient technique, called "RMSProp" [71], in training 
the network. A main component of the model is the scheduler which dynamically adjusts the allocated 
resources as a result of the actions produced by the training agent. 

For state representation in the model, a four-dimensional tensor is constructed. The first dimension 
represents the resource requirements of a VNF for each type of resources. The second-dimension chains 
multiple VNFs of the same slice. The third dimension defines four key performance index of slicing resource 
management for each slice. These four-resource metrics are: resource allocation status of the VNFs of a slice 
on the physical nodes, the current resource usage of each VNF, the scale of the slice and the resource 
utilisation of the physical node. In the fourth dimension, all slice states are concatenated to produce the E2E 
model of the whole network. That tensor is directly applied as input to the agent as the environment state. 
The action generated by the agent informs the scheduler how to adjust the resources allocated to slices, then 
a scheduler might increase or decrease the resources of any VNF. To make the learning feasible and possible, 
the agent only affects one VNF at a time and keeps taking actions, in steps, until the resources of all the VNFs 
of each slice are updated. 

The overall objectives of the solution are to minimize the SLA violations of slices,  guarantee the performance 
and maximizing the resource utilisation of physical nodes. The DRL agent in this solution employs a reward 
function that depends on applying a penalty parameter for the SLA violation. It is calculated by summing the 
number of all VNFs in a slice that are allocated less resources than they require. The second parameter is the 
wasting penalty. This indicates the inefficient utilisation of resources which could lead to low revenue and 
energy waste. 

 

4.3.4 ADAPTIVE DRL APPROACH FOR SERVICE FUNCTION CHAINS (SFCS) DEPLOYMENT 

Xiao et al. [72] design and implement an adaptive online DRL approach, NFVdeep, to automatically deploy 
Service Function Chains (SFCs) to respond to different QoS requirement requests. NFVdeep is based on 
Markov Decision Process (MDP) model to capture the dynamic network state transitions. A Policy Gradient 
based DRL algorithm is adopted to improve the training efficiency and convergence to automatically deploy 
SFCs. 

The NFVdeep constructs a fully connected multi-layer DNN with an input layer, an output layer and a variable 
number of hidden layers. The number of hidden layers is dependent on the number of nodes in the network. 
For example, if the number of nodes is less than 200, there will be 3 hidden layers and 4 layers otherwise. 
The layers are connected using ReLU and Tanh activation functions. The training agent of the model uses 
Policy gradient-based approach to enable automatic feature engineering and end-to-end learning. This 
proposed solution aims to capture real-time network variations and to apply an online SFC deployment 
solution. Those network variations are presented as state transitions to DRL.  The main features considered 
are node resources (CPU and RAM) and link resources (bandwidth and latency). To train the agent, the state 
is defined as a vector that represents: (1) the remaining physical resource of each PN and the remaining 
bandwidth of the Physical links, (2) the required resources and bandwidth by the currently processed VNFs, 
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(3) the number of undeployed VNFs, (4) residual latency space, and (5) Time-To-Live (TTL) of the request. In 
training, the output of the agent is the node index, which represents the action. Each node is defined by an 
integral index. The VNF is placed with an index returned by the agent. The action 0 represents the case where 
the VNF cannot be deployed. If the action value is above 0, it indicates a successful VNF placement after 
which the system is updated and a new state is produced. 

The main objects of NFVdeep are minimizing the operation cost of occupied servers for NFV providers and 
maximizing the total throughput of accepted requests for customers. As there is a need to jointly optimize 
different but related objectives, the reward function is defined as the total accepted requests (income) minus 
the total cost of occupied servers (expenditure) to deploy the arriving requests. The higher the value the 
better is the reward and vice versa. 

 

4.3.5 DYNAMIC POLICY NETWORK BASED RL FOR VNE  

Yao et al. [73] suggest an online, centralized and dynamic policy network based RL approach that extract 
features from the substrate network which serves as input to the policy network model. At the heart of the 
policy network is a convolutional layer which performs operations on the input to produce a vector 
representing the available resources. This vector is transformed by Softmax layer into the probability for each 
node. The outputs are a set of available substrate nodes with their probabilities for possible mapping.  

In this solution the learning agent employs a Policy Gradient method for training. To enable the agent to 
choose the substrate nodes, features of each substrate node need to be extracted and used as input to the 
policy network. In general, the state the agent receives is represented as a feature matrix where each row is 
a feature vector of a certain substrate node. There are four features extracted from each substrate node, 
namely; CPU, the number of node connections (node degree), the sum of bandwidths of all links for that 
node, and the average distance to other host nodes (to calculate the cost). The optimization metrics are long-
term average revenue, a long-term acceptance ratio, and a long-term revenue to cost ratio. Long-term 
revenue is the sum of CPU and bandwidth resource required by all VNs in a request. The cost is calculated by 
the consumption of the bandwidth on all links for the request, and finally the long-term acceptance ratio is 
the ratio of accepted requests to the total number of requests arrived. These metrics are applied during 
evaluation to evaluate the performance of this embedding algorithm. 

The training agent uses a reward function which calculates the revenue to cost ratio of a single virtual request 
for every virtual node in this request. The gradient is only calculated on a successful mapping of VN request. 
On failure, no gradient is returned. 

 

4.3.6 DRL IN MULTI-DOMAIN NON-COOPERATIVE VNF-FG EMBEDDING 

Quang et al. [74] propose a DRL-based VNF-FG embedding approach in non-cooperative multi-domain 
context. Each domain employs a DRL agent to learn from history of its actions and rewards. In this approach, 
only one given client who is responsible for requesting VNF-FG embedding does the final mapping between 
the VNFs and the substrate nodes and links of the domains. As a non-cooperative approach, each domain 
does not have information of the topology and available resources of other domains. They do not 
communicate with each other and each domain only exposes the prices of then resources to the client, then 
the client makes a final decision based on these prices. 
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At the heart of the DRL is an off-policy, actor-critic, Deterministic Policy Gradient (DDPG) [75] [76] algorithm 
which is used in the agent for training the network. DDPG uses two separate neural networks: the actor 
network which learns the policy, and the critic network which produces the Q-value to evaluate the action. 
In each domain there is a DRL agent that observes the state of that domain. An action is determined by the 
actor and its advantage is assessed by the critic network to improve the output. The client collects actions of 
domains which are called ’prices’, choose the best prices as the final action and executes it.  For each domain 
a reward reflecting the resources provision to the client is calculated. Finally,  the rewards are fed to the DRL 
agent to compute the loss and update the parameters of the DRL agent. The reward function is set to 1 only 
and only if the available resources are more than required and the QoS is satisfied.  The requests are 
presented by the client of the VNF-FGs as the environment state. The state is primarily defined as a 3D-tensor 
where each dimension is a channel of N * N matrix where N is the number of VNFs in a request.  The first 
channel is the required resources of the virtual links connecting VNFs in the request, which usually are 
bandwidth and latency. The other two channels are one for the source VNFs and the other one for the 
destination VNFs, and they represent the required resource in terms of CPU capacity, RAM and storage. 
Optimization decision is taken by the client depends on the resource prices that each domain offers. The 
price is calculated by summing the physical resources of all nodes of the substrate network as well as the sum 
of available link resources. They are presented to the client to select the domain with ’best price’ to do the 
embedding. In each domain there is a DRL agent that observes the state of that domain. An action is 
determined by the actor and its advantage is assessed by the critic network to improve the output. The client 
collects actions of domains which are called the ’prices’, choose the best prices as the final action and 
executes it. For each domain a reward reflecting the resources provision to the client is calculated. Finally, 
the rewards are fed in to DRL agent to compute the loss and update the parameters of DRL agent. The reward 
function is set to 1 only and only if the resources available are more than required and the QoS is satisfied.  
The requests are presented by the client of the VNF-FGs as the environment state. The state primarily defined 
as a 3D-array where each dimension is a Channel of N * N matrix where N is the number of VNFs in a request.  
The first channel is the required resources of the virtual links connecting VNFs in the request which usually 
are link bandwidth and latency. The other two channels are one for the source VNFs and the other one for 
the destination VNFs, and they represent the required resource in terms of CPU capacity, RAM and storage. 
Optimization decision is taken by the client depends on the resource prices that each domain offers. The 
price is calculated by summing the physical resources of all nodes of the substrate network as well as the sum 
of available link resources. They presented to the client to select the domain with ’best price’ to do the 
embedding.  

 

In a summary, ML/AI based data analytics for 5G networks and for 5G network slicing has attracted increasing 
attention, and the related definitions have been integrated into the 3GPP and ETSI specifications.  The current 
research results have demonstrated the potentials of ML/AI techniques. The slice-based network 
management generates a set of challenges related to scalability, security, automation in management of 
heterogeneous resources (e.g., communication, computational and storage), as well as to energy efficiency 
without sacrificing performance. Earlier H2020 calls have already set a solid framework for the design of 
uniform network management and orchestration systems, (e.g., 5G!Pagoda, 5G-EVE, 5GENESIS and SliceNet), 
however, there are still open challenges to enable a scalable, proactive, energy efficient and secure slice 
lifecycle management, such as: 
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• Distributed management plane to support massive deployment of network slices.  

• Definition of novel end-to-end (e2e) slice Key Performance Indicators (KPIs) and development of AI-
based mechanisms for their accurate prediction from multi-level metrics. 

• Data-driven management system based on federated learning. 

• Zero touch network configuration. 

• DE decisions tailored to the RAN. 

• AI-driven slice security management via robust and efficient trust-based mechanisms. 

• AI-driven energy efficient network management. 

Beyond the state-of-the-art advances, MonB5G will develop distributed AI-based analytics entities in this 
work package (i.e., WP3) to fulfil the challenges 2, 3, and 5, in order to present a highly automatic framework 
for management of a massive number of co-existing network slices, together with the achievements of WP4 
on Decision Engine and of WP5 on Security & Energy Enhancement. The current results of the WP about the 
distributed AI-driven analytics engine are reported in the sections 6, 7 and 8.   
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5 MonB5G Monitoring System  

In this section, we report the current progress of the distributed MonB5G monitoring system (MS). We have 
investigated state-of-the-art techniques for network monitoring, and explored the limitations of the existing 
systems and platforms. The results have been introduced in the section 3. Inspired by these findings, we 
propose the initial version of the distributed MS that is based on autonomic network management 
specifications and cloud-native design. The distributed MS is in line with the MonB5G architecture proposed 
in WP2, where MS is a sublayer of the slice management layer (SML) that is independent of the slice functional 
layer (SFL). There is an extra (embedded) element manager deployed at the VNF level, by which SML and SFL 
are connected. The distributed MS agents are designed to manage the tightest metrics sampling loops in its 
technological domain, such that the need for data transfer is largely reduced, and thus communication 
overhead of the monitoring system itself is minimized.  The programmable sampling functions permit design 
of different aggregators for specific (e.g., slice-level) AE/DE. 

 

5.1 Selection of Slice KPIs and Monitored Parameters  

We first select informative metrics to be monitored with the MonB5G MS at different layers of the network 
management hierarchy. There exist thousands of heterogeneous metrics that can be used to observe the 
status of the technical domains and the network slices. Selecting most informative metrics is of practical 
importance, as useless features can cause unnecessary communication overhead and increase unexpected 
complexity of analytics engine. To identify relevant metrics, we establish a mapping between slice-level KPIs 
that are needed by AE and DE and the MS monitored metrics. A Slice KPI can be calculated by aggregating 
the measurements over all the underlying VNF/PNF components. In addition, we conduct in-depth analysis 
on the granularities of the selected metrics that facilitate the design of sampling functions and are vital to 
meet the time constraints. 

To measure the MonB5G objective KPIs defined earlier in deliverable D2.2 [77], we select a set of 
network/slice-level KPIs and AI KPIs to monitor and analyse from a large number of candidates. While AI 
metrics are calculated by AE/DE and sent back to MS for storing them, network and slice-level KPIs are 
measured by MS directly, which are listed in the table below:  

Table 4 Mapping between the High-Level Project KPIs and the Selected Slice-Level KPIs 

High-Level Project KPIs Relevant Network/Slice/AI KPIs 

[UC1/ES1 KPI-1]: Reduction of SLA 
Violations 

SLA: End-to-end slice latency, Throughput, CPU, PRBs, 
connected users,  

[UC1/ES1 KPI-4]: Reduce Overhead to 
the central system 

Data volume exchanged between the local and central 
entities and Federated/Multi-agent learning KPIs 

[UC1/ES1 KPI-5]: Support more NS 
instances 

Number of admitted slices 

[UC1/ES1 KPI-6]: OPEX reduction consumed energy, number of operations 
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[UC1/ES1 KPI-7]: Reduce time to 
manage RAN resources 

RAN reconfiguration delay 

[UC1/ES1 KPI-8]: Improve slice 
performance isolation 

Latency in the absence of orchestration, scheduling etc. 

[UC1/ES1 KPI-9]: Reduce RAN-
oriented overhead 

MS Measurement frequency 

[UC1/ES2 KPI-1]: Reduce the number 
of SLA performance violations by 20% 

SLA: End-to-end slice latency, bandwidth, CPU, PRBs, 
connected users etc. 

[UC1/ES2 KPI-2]: Improve network 
energy efficiency by a factor of 10 

Consumed energy/bit/slice 

[UC1/ES2 KPI-3]: Reducing Static 
Slicing overhead will result in 30% 
higher utilization (will be achieved 
with dynamic reconfiguration 
techniques) 

Number of admitted slices with similar network configuration 

[UC1/ES2 KPI-4]: Compared to Static 
Slicing, demonstrate the same or 
better SLA tolerances (or risk of 
missing SLAs) when dynamic slicing 
techniques are used 

SLA: End-to-end slice latency, throughput, CPU, PRBs, 
connected users  

[UC1/ES2 KPI-5]: 10x reduction in 
signaling / monitoring overhead with 
the use of federation techniques 

Data volume exchanged between the local and central 
entities, and federated learning KPIs 

[UC2/ES1 KPI-3]:  E2e slice availability 
> 99% 

Slice availability time/measurement period 

[UC2/ES1 KPI-4]: Per slice component 
availability (probability that the 
service is available) > 99% 

Component availability time/measurement period 

 

We further define the identified network/slice/AI KPIs with detailed descriptions and introduce the 
commonly used manner to collect it. As depicted in the following table, the proposed distributed MS is 
designed to measure and store the following metrics at various discrete granularities. The granularities will 
depend on the requirements of both AE and DE, and could range between 1 min and 1 hour.  
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Table 5 Slice-Level KPIs Description and Measurement 

Metric Description Category Type Mapping to the Platform 

Latency 
(control 

plane (CP) 
and user 

plane (UP)) 

Average E2E downlink 
packet delay between 

Core cloud and UE 
Integrity Mean 

End-to-end latency, regardless of CP/UP, needs to be 
explicitly measured. That is, MonB5G administrative 
elements should send control (timestamped) packets 
through such planes and compute delay. For the CP, MS are 
expected to serve as source/sink of such timestamped 
packets. UP delay estimations on the other hand would 
require UE to send these aforementioned control packets in 
order to accurately derive a latency estimation at the RAN, 
whereas latency in the UP at the Edge/Cloud TD can be 
derived by MonB5G administrative elements in a similar way 
as that in the CP. 

Throughput 
Total packets Bytes in 
a granularity period 

Integrity CumSum 

Throughput can be derived from per-VNF telemetry. That is, 
by measuring the number of packets traversing VNF 
interfaces (e.g., leveraging EEM such as NetData) available 
throughput of the whole slice can be estimated accurately. 

CPU usage 
CPU 

consumption/Availabl
e CPU capacity 

Usage Ratio 

Per-VNF CPU and RAM consumption can be polled 
leveraging EEM (e.g., API exposed by NetData instance). 

RAM usage 
RAM 

consumption/Availabl
e RAM capacity 

Usage Ratio 

PRBs usage 
PRB 

consumption/Total 
PRBs per slice 

Usage Ratio 
With wireless SDN Controllers, the number of RB dedicated 
in the Uplink/Downlink direction can be queried/configured. 

Number of 
admitted 

slices 

Number of slices 
successfully admitted 

with resource 
allocation for SLA 

Accessibili
ty 

CumSum 
With NFVO Northbound interfaces (e.g., Os-Ma), OSS/BSS 
(or other MonB5G administrative components) can request 
the number of running (or failed) network slice instances. 

Connected 
users/slice 

Number of RRC 
connected users per 

slice 

Accessibili
ty 

CumSum 
Users are directly mapped to UEs subscribed to a e/gNodeB. 
This metric can be extracted from the RAN management 
level (using its NBI), or from 4G vEPC or 5GC. 

Slice end-to-
end 

availability 
time 

Average time that 
slice VNFs are all 

available 

Retainabili
ty 

Mean 

Slice ‘readiness’ is announced by MonB5G administrative 
components to DMO via the domain shared messaging bus. 

VNF/PNF 
availability 

time 

Average time that a 
VNF/PNF is not in fault 

Retainabil

ity 
Mean 

Reliability 
(Packet loss 

rate) 

Number of erroneous 
packets/total packets 

per slice 
Integrity Ratio 

Packets can be loss at the RAN or NFV segments of the Slice. 
Therefore, RAN controller’s NBI and VNF-instances’ 
telemetry API (i.e., EEM) are exploited to compute this 
metric. 
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Data volume 
exchanged 

between the 
local and 

end-to-end 
entities 

Total bytes exchanged 
between local and 
end-to-end entities 

Integrity CumSum 

MonB5G administrative components should keep account of 
Requests/Responses as well as Publish/Subscribe operations 
among technological domains. This bookkeeping can be 
queried directly via their respective NBI, serving as input to 
the computation of this metric. 

Consumed 
energy 

Average power 
consumption in a 
granularity period 

Integrity Mean 
Initially expected to be the result of computations which 
take CPU/RAM consumption as base metric. 

Number of 
operations 

Total slice life-cycle 
management 
operation in a 

granularity period 

Integrity CumSum 
At Network Slice Instance level, this metric can be queried 
leveraging NFVO NBI. Such operations may include: VNF 
placement, scaling, termination, etc. 

 

5.2 Architecture of MonB5G MS  

MonB5G MS is conceived as a cross-domain virtual layer hosted by a NFV IFA 029 compliant PaaS (i.e., 
Container Infrastructure System (CIS)). This can be mapped to the Slice Management Layer (SML) or MonB5G 
Layer as a Service (MLaaS) concepts proposed in the MonB5G architecture in Deliverable 2.1 (D2.1).  Figure 6 
illustrates the overall architecture of the MonB5G monitoring system. 

 

Figure 6 Architecture of the MonB5G Monitoring System   

SML/MLaaS resources are orchestrated alongside the Slice Functional Layer (SFL), which hosts the managed 
components (e.g., tenant slices’ components) per Slice Orchestration Domain (SOD). That is, an end -to-end 
slice hosting functional components at the RAN, Edge and Cloud Technological Domains (TD) (i.e., Network 



871780 — MonB5G — ICT-20-2019-2020 

Deliverable D3.1 – Initial Report on AI-Driven Techniques for the MonB5G 
AE/MS [Public]  

 

 

©MonB5G, 2019                                                                                                                                               Page | 46 

 

Slice Service Instances (NSSI)) shares system resources with its corresponding SML/MLaaS instance. The 
proximity of SFL and SML/MLaaS in an SDO reduces network delays and inter-domain management traffic, 
allowing the creation of tight Closed Control Loops (CCLs) (e.g., instances of ETSI ZSM approach) at each TD. 
MonB5G proposes nesting CCLs per TD, i.e., VNF/PNF, Slice, and OSS/BSS. From a MS perspective, this implies 
different monitored elements and monitoring data consumers or requesters.  

Figure 7 provides an overview of the envisioned interactions involved in the request and retrieval of metrics 
via MonB5G MS. Particularly, it depicts a generic Requester (e.g., AE/DE hosted in a TD at the same or higher 
level) pushing a Sampling Loop1, which allows MS NBI to redirect a specific request to a precise Manager 
instance (e.g., in a particular TD). The MS Manager instance thus delegates Sampling Loop Orchestration and 
Life Cycle Management (LCM) to the CIS. Figure 7 also depicts generic Sampling Loop Operations, which 
include (a) metric sample collection from a Monitored Element NBI (i.e., Embedded Element Manager (EEM)), 
(b) sample processing (e.g., an operation, caching), and (c) registering. The latter may occur via publishing 
the result of (b) in a corresponding message bus (e.g., Kafka topic), or appended to a Time Series Database 
(TSDB) (e.g., InfluxDB, MongoDB, and Prometheus). Conversely, (a) and (b) operations are executed by 
Sampling Functions (SF), which are particular for each EEM or monitored element. 

Under the aforementioned paradigm Sampling Loops can be conceived as 1) periodic executions of Sampling 
Loop Orchestration + Operations managed by the CIS, or 2) a single execution with embedded configuration 
to ensure sufficient sampling resolution. This separation is rooted in CIS limitations on orchestrating Sampling 
Loops with periods lower than one minute. If mapped to CIS workloads, type-1 Sampling Loops are realised 
as Kubernetes CronJobs, while type-2 are standard Deployments. This is exemplified in Figure 8. 

 

1 E.g., Kubefed (https://github.com/kubernetes-sigs/kubefed), Ingress (https://kubernetes.io/docs/concepts/services-networking/ingress/) 

https://github.com/kubernetes-sigs/kubefed
https://kubernetes.io/docs/concepts/services-networking/ingress/
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Figure 7 MS Request and Metrics Retrieval from Monitored Element 

Sampling Loop configuration files should follow MonB5G information model for MS. That is, it is a 
configuration file to a well-known API designed to handle the range of configurations supported by MS (e.g., 
CIS workload type, TD, sample retrieval method, etc.). Furthermore, CIS workloads require Sampling 
Functions to be conceived as Docker images that admit configuration parameters via predefined environment 
variables. The case of higher-TD MS follows directly from Figure 7, but Requester may only retrieve from 
Storage/Msg. Bus e.g., in order to serve AE tailored to slice-wide or cross-domain analysis. 
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Figure 8 Mapping Sampling Loop Orchestration to Implementation Tools 

 

MS enables the workflow described in Figure 7. Flexibly, it allows Sampling Function to be agnostic of the 
technology used for Sampling Loops Admission Control and Orchestration, instead dedicating their focus on 
Loop Operations only. 

 

5.3 Domain-specific MS  

This subsection introduces in more details development of the distributed monitoring system at different 
technological domains as well as the motivations behind the implementation mechanism. For the domains of 
RAN, Edge and Cloud, we illustrate the locally deployed cloud-native MS entities with comprehensive 
discussions on their technical KPIs, including collection granularity, efficiency and cost of computation and 
storage, overhead of communication. Although the MS entities are distributed in different technological 
domains, they are designed as a whole for zero-touch management and orchestration using the MonB5G 
platform. The domain-specific MS entities follows the key norms and concerns as below:  

• Stay in line with the MonB5G framework and the target KPIs (see details in MonB5G Deliverable 2.1-
2.2) 

• Fulfil the functionalities, including data collection, aggregation, data pre-processing and storage  

• Implement different granularities for non-real-time and near-real-time intelligent control 

• Promote flexibility of MS entities, which activities are triggered and configured by AEs and DEs 

• Foster scalability and efficiency, e.g., communication overhead reduction 

For all MS entities distributed in the different technological domains, the principal consumers of the collected 
metrics are AEs. After triggered and configured by AEs, the programmable MS entities connects the 
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corresponding infrastructure and network functions (VNFs and PNFs) to collect the requested telemetries 
with the defined granularity. There are mainly three types of APIs associated with each MS entities, including 
Control API, Data Collection API, and Data Processing API. The MS Control API decides the data source, the 
metrics to be monitored, the sampling frequency, the data format as well as the communicat ion manner 
(e.g., publish/subscribe and request/response). The Data Collection API is the interface from which data are 
provided as AEs requested through the Control API. The Data Processing API is in charge of data filtering, 
aggregation, normalization etc. In the following subsections, we will provide more details of the domain 
specific MS entities.  

 

5.3.1 MS IN THE RAN DOMAIN  

The MonB5G monitoring system inspecting the RAN domain (MMS-RAN) is shown as Figure 9. It constitutes 
MS-sublayer of the SML for the RAN domain, and consists of the following functional components: 

• Monitoring manager (MM) is responsible for lifecycle management: trigger, manage and delete a 
monitoring task. It also supports remote configuration of the MS operations.  

• Monitoring data collector (MDC) connects with the RAN management and orchestration system to 
collect detailed real time metrics of eNB/gNB. Additionally, the RAN orchestrator is associated with a 
Netdata instance (https://www.netdata.cloud/) to collect other requested metrics, such as health 
and performance statistics of the containers of the RAN management system. Netdata empowered 
MDC provides fine granularity and high scalability for data collection. In the MonB5G platform, 
Netdata plays a role of MAPE-based Embedded Element Manager (EEM) that is implemented as a 
component of the corresponding functional entity (VNFC).  

• Monitoring data processor executes data pre-processing function defined by the requirements of the 
analytics engine, such as aggregation, filtering and normalization. This helps further reduce 
communication and computation overhead.  

• Monitoring database (optional) is utilized to store the pre-processed telemetries. The saved historic 
data facilitates improving performance of the AI models used in AEs and DEs. To keep aligned with 
open-source MANO (https://osm.etsi.org/), Prometheus (https://prometheus.io/) could be a choice 
to record the metrics. Since some features of Prometheus are not necessary in the case, i t is also 
possible to directly adopt Gnocchi (https://gnocchi.xyz/) as a lightweight solution. 

• Event alert & visualization (optional) is a function to directly report alarms based on pre-defined 
thresholds and visualize the collected telemetries in dashboards, e.g., Grafana 
(https://grafana.com/).  

• MS-bus aims to handle streaming data feeds among the aforementioned components. The 
publish/subscribe tools, such as Kafka (https://kafka.apache.org/), can be employed for a unified, 
high-throughput and low-latency communication. 

https://www.netdata.cloud/
https://osm.etsi.org/
https://prometheus.io/
https://gnocchi.xyz/
https://grafana.com/
https://kafka.apache.org/
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Figure 9 MonB5G MS in the RAN Domain 

In the proposed MMS-RAN, the separate data collector (e.g., Netdata) is an essential feature to handle the 
two levels of timing requirements in the RAN domain: near-real-time and non-real-time, which matches the 
intelligence control mechanisms defined in O-RAN specification [4]. By carefully crafting the configurations 
of the monitoring requests from MonB5G AEs/DEs, the instantiated MMS-RAN is able to efficiently and 
scalably collect the required telemetries with the defined pre-processing operations under the (stringent) 
time scales.   

 

5.3.2 MS IN THE EDGE/CLOUD DOMAIN 

The monitoring system entities located at the edge and cloud domains are structured in a similar manner. 
They both run on top of PaaS and deploy MS-components as sampling functions. For the edge/cloud domain, 
we develop a separate MonB5G MS component, consumed and configured by AEs/DEs, to inspect the running 
of the specified VNFs for the MonB5G platform, instead of directly utilizing the out -off-shell tools, e.g., OSM 
MON. Although MON is a powerful and user-friendly monitoring module in OSM, its features are designed 
for standard usage of a broad range of cases. The metrics to be monitored are pre -defined by the MON, and 
there is less flexibility to introduce customer-defined metrics. The MonB5G platform aims to zero-touch 
management and orchestration, and the MS modules are supposed to be automatically created, maintained, 
and employed by the AEs and DEs on the basis of real status of the network slices. A variety of telemetries 
can be requested by AEs and DEs for service quality analysis and slice optimizatio n. We thus propose the 
following MS module deployed in MEC/cloud to collect telemetries and alarms for VNFs with extra flexibility 
in configuration and lifecycle management. However, it does not mean OSM MON cannot be exploited. We 
provide additional access in our MS module to employ OSM MON for pulling the related telemetries. Figure 
10 illustrates the MonB5G monitoring module in the edge and cloud domains. 
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Figure 10 MonB5G MS in the Edge/Cloud Domain 

The essential functions of the MS components, such as monitoring manager and monitoring data processor, 
are implemented similarly as the ones for the RAN domain. The major differences focus on the component 
of the monitoring data collector. For the edge/cloud domain, each instantiated VNF is associated with a 
Netdata instance. When an AE requests telemetries of specific VNFs for analysis, the monitoring data 
collector activates the corresponding Netdata instances to provide the telemetries based on the 
configurations defined by the AE. Moreover, the monitoring data collector is also featured to connect OSM 
MON as well as VIM’s telemetry services (i.e., OpenStack’s Gnocchi in our case) for metrics collection.  The 
MS is structured as a sublayer located in the slice management layer of the MonB5G platform, and all the 
FCAPS functionalities can be dynamically deployed or updated during slice lifetime using the orchestration 
capabilities of Inter-Slice Management (ISM), which also support the MS with the resource scaling 
mechanism.  

In a summary, the domain specific MonB5G MS entities follow the concept of Slice Management Layer (SML) 
as a Service proposed in the MonB5G architecture in Deliverable 2.1. The distributed MonB 5G MS collects 
the operation status at multiple levels of the management hierarchy (node, slice, domain, and inter -domain) 
as a sublayer of the SML. After triggered and configured by AEs, the programmable MS entities connects the 
corresponding infrastructure and network functions (VNFs and PNFs) to gather the requested telemetries 
with the specific granularity defined by the AEs. The distributed MonB5G monitoring system achieves the 
following advantages. First, the distributed MS agents are designed to manage the tightest metrics sampling 
loops in the respective technological domain, such that the need for data transfer is largely reduced, and thus 
communication overhead introduced by the monitoring system itself is minimized. Additionally, an extra 
MAPE-based embedded element manager is deployed at VNF level to support fine granularity (1s) of 
telemetry collection. It also permits development of aggregators for specific (e.g., slice -level) AE and DE. 
More importantly the configurations of MS entities distributed at different technical domains are 
automatically defined and triggered by the AE/DE components with AI-assisted policy-driven mechanisms, 
which take a crucial step towards highly automated slice-level monitoring system.  
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5.4 Cooperation of MS with AE and DE  

The traditional centralized network management constitutes a bottleneck and is not scalable in case of a 
massive number of network slices as expected in beyond 5G and pre-6G cellular systems. While centralized 
approaches could benefit from a holistic view of the whole network, they provide poor scalability when 
dealing with realistic scenarios, and introduce a significant monitoring overhead. Therefore, distributed 
management techniques are mandatory to: i) minimize the exchange of information in the network, ii) 
guarantee scalability of the overall slice management system and, iii) reduce the latency. As a distributed 
system, the interfaces between different entities would be more complicated, and need to be defined clearly. 
The aim of this section is to provide an overview of the communication links and the interactions between 
the (local/central) MS and the AE and the DE blocks proposed in the context of MonB5G.  

Figure 11 shows the way the MS, AE and DE are expected to communicate with each other. This figure also 
includes the actuators which translate DEs decisions into API calls to different slice components (e.g., VNFs, 
links, PNFs) in each of the technological domains (RAN, Edge, Cloud) that a slice is supposed to cross.  

 

Figure 11 MS Interfaces 

The MS in Figure 11 is the one responsible for gathering a set of different metrics from the systems that the 
DE is controlling. This information can be passed to the DE and the AE directly, but they are also stored in a 
common online memory store (COMS), illustrated by the grey cylinder. This COMS is added in order to avoid 
implementing hard synchronization constraints among the MS, DE, AE whenever information needs to be 
exchanged. In this way, the DE and AE can be more flexible in terms of the length of their processing without 
compromising the granularity at which the MS can sample monitoring data from the controlled systems. So, 
it is the MS (depending on its capabilities and amount of information as well as the granularity set from the 
External User Interface (EUI)) that somehow defines how fast the data is sampled. It is worth emphasizing 
that COMS is in line with the ‘Knowledge’ block of the ETSI ZSM functional scheme presented in  Figure 5. 
Furthermore, it should be noticed that the COMS block is controlled by the MS, but this does not mean that 
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the MS only includes the memory (it includes the bus, the database, etc.). The COMS can be either a Time 
Series Data Base (TSDB) or an in-memory database.  

The AE then reads the monitoring information from the COMS in order to pre-process it (e.g., perform 
predictions) before making it available to the DE. The AE may also read information directly from the MS, but 
this is expected to be used in more punctual cases, where synchronization is needed. The prediction interval 
can also be set from the EUI. Once the AE outputs the pre-processed data, it will proceed to store it in the 
COMS. 

In a similar way, the DE is expected to read its input from the COMS, however it is also possible to receive 
this information directly from the AE and MS. Once the DE has generated its decisions, it will also store those 
in the COMS, as well as issue them to the actuator interfaces of the systems to translate them into API calls 
for slice components lifecycle management (LCM). DE parameters can be fine-tuned in runtime from EUI as 
well and might take effect in the next DE configuration update interval.  The table below provides a description 
of the different interfaces that link MonB5G DE with the other control blocks. 

 

Table 6 MS Interfaces and the Associated Roles 

Interface Type Role 

IMD Tensors/Database 
query 

DE reads raw MS measurements (either online or from COMS)/Store 
AI metrics and DE decisions in COMS 

IMA Tensors/Database 
query 

AE reads raw MS metrics/Store AI metrics, predictions in COMS 

IUM Database Query EUI reads/changes MS configuration (e.g., granularity) 
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6 MonB5G AE Vision 

6.1 AE Structure and Interfaces 

As show in Figure 12 MonB5G Analytics Engine (AE) has been designed to contain two main functions, namely, 
KPI prediction and fault detection, and exploits MonB5G distributed architecture to push the analysis close 
to the data collection Monitoring Systems (MS) in each domain (i.e., RAN, Edge and Cloud), minimizing the 
need to transfer raw slice performance and configuration data across the different network domains and 
slices. As will be shown in the developed solutions, this will lead to a dramatic reduction in the communication 
overhead and yields more scalability in managing a massive number of slices.  

6.1.1 KPI PREDICTION 

This function mainly consists of the following two modules: 

• Time-series prediction of slice-level metrics such as the traffic and resource usage in order to help 
the Decision Engine (DE) taking preventive actions against e.g., Service-Level Agreement (SLA) 
violations. To that end, time-series prediction leverages customized and fine-tuned serial 
architectures such as Long Short-Term Memories (LSTM) and other advanced variants. 

• Parameters’ space prediction that aims at establishing accurate models to link certain measured 
input metrics (e.g., traffic per slice, channel quality, CPU load) with a target output metric (e.g., 
energy consumption per slice) while ensuring a certain SLA requirement. This type of analysis will 
guide the DE to fine-tune its action space, where it can know the order of magnitude/interval of the 
action to achieve e.g., a low SLA violation rate. To that end, AE is intended to adopt a new class of 
statistical/constrained neural networks/models, among other techniques. 

6.1.2 FAULT DETECTION 

The role of this function is to detect abnormal events during a slice lifecycle, by mainly extracting and 
recognizing changes in data distributions and trends. This relies on advanced techniques of clustering and 
classification with e.g., novel architectures of neural networks. Since network slices are typically software 
and virtualization-based, the notion of fault includes but is not limited to the failures of the infrastructure on 
top of which the slice is running. Specifically, a slice fault could be a logical abnormality where, e.g., the 
classification of slice traffic (inspired by deep packet inspection) reveals that it does not fit into the slice 
predefined template, and therefore the isolation is breached. 

 

 

Figure 12 Local AE Functions 
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6.1.3 AE INTERFACES WITH MS AND DE 

Figure 13 shows the way the AE on one hand and MS, DE on the other hand, are expected to communicate 
with each other. The figure also includes the interfaces between other MonB5G management components, 
and the actuators which translate DEs decisions into API calls to different slice components (e.g., VNFs, links, 
PNFs) in each of the technological domains. (The figure looks the same as Figure 11, as all interfaces are 
illustrated to give a complete picture of the interactions of the blocks.) 

 

Figure 13 AE Interfaces 

The MS is the one responsible for gathering a set of different metrics from the systems that the DE is 
controlling. The information can be passed to the DE and the AE directly via a messaging bus, e.g., Kafka, but 
they are also stored in a common online memory store (COMS), illustrated by the grey cylinder. This COMS 
is added in order to avoid implementing hard synchronization constraints among the MS, DE, AE whenever 
information needs to be exchanged. In this way, the DE and AE can be more flexible in terms of the length of 
their processing without compromising the granularity at which the MS can sample monitoring data from the 
controlled systems. So, it is the MS (depending on its capabilities and amount of information as well as the 
granularity set from the External User Interface (EUI)) that somehow defines how fast the data is sampled. 
It is worth emphasizing that COMS is in line with the ‘Knowledge’ block of the ETSI ZSM functional scheme 
presented in Figure 5. 

The AE then reads the monitoring information saved in a common online memory store COMS located inside 

the MS block (in order to avoid implementing hard synchronization constraints) to analyze it (e.g., perform 

predictions) before making it available to the DE. The AE may also read live measurement information directly 

from the MS, but this is expected to be used in more punctual cases, where some synchronization is needed. 

The prediction interval can also be set from the EUI. Once the AE outputs the analysis results, e.g., 

predictions of traffic load and resource usage, it will proceed to store it in the COMS as well. 
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Table 7 provides a description of the different interfaces that link MonB5G AE with other management blocks. 

Table 7 AE Interfaces and the Associated Roles 

Interface Type Role 

IAD Tensors/Database 
query 

DE Reads the predicted KPI from AE (either online or from COMS) 

IMA Tensors/Database 
query 

AE reads raw MS measurements, and store AI metrics, predictions in 
COMS 

IUA Database Query EUI reads/changes AE configurations 

 

6.2 AE Cross-Domain Operation 

The MonB5G concept is based on taking advantage of local, distributed predictors in building accurate slice -
level KPI prediction and fault detection. This concept brings in certain advantages, but also comes with costs 
that must be taken into consideration. 

Training domain-specific distributed predictors may require using all the data collected at each slice. 

However, privacy-preservation might impose the constraint of keeping the data private. Decentralized 

Optimization techniques provide powerful tools to perform the training in a distributed manner without 

sharing the data owned by each slice. 

A simple example of such methods is shown in Figure 14. Panel a) shows the data of a 6-node network to fit 
a linear regression model. The color dots show the data at each node, and the full lines in color the best 
model parameters that each node would find in isolation. The dash-dot lines show the parameters estimated 
at each node at the end of the optimization process, and the red dashed line the optimal mode parameters 
if the problem was solved in a centralized manner (which would require the nodes to send the data to the 
central location). 

In this example, all nodes depart from the optimal model parameters that they would find in isolation , 
instead, find the model that best fits the totality of the data. The final solutions at each node after a f ew 
iterations of the algorithm are extremely close to the analytic solution found considering all the data. The 
configuration of the network plays a role in the speed at which the error from the optimum decreases, as 
shown in panel d). 
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Figure 14 Example Application of Decentralized Model Training. a) Data at Each Node; b) and c) Two 
Different Network Topologies; d) Difference in the Convergence Speed  

The same mechanism can be applied to learn predictors of the state of the entire network using the data 

collected at the analytic engines in each domain, and there is no requirement of the individual slices sharing 

their (private) data.  

The following advanced AI techniques will be explored and extended to instantiate MonB5G architecture, 
such that the decentralized AEs at different domains and slices are capable of collaborating to yield accurate 
prediction and detection:  

• Customized federated learning (FL) approaches, where the local AEs share their models, instead of 
raw data, with the E2E AE that performs particularly model aggregation and broadcasts it to the local 
AEs as depicted in Figure 15. 

• Distributed models, where the model layers located in different AEs as show in Figure 16. 

Both classes of approaches will be further exploited in the proposed solutions reported in the next sections. 
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Figure 15 Cross-Domain AE Cooperation via Federated Learning 

 

 

Figure 16 Cross-Domain AE Cooperation via Distributed NN 
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7 MonB5G Analytics Engine for Slice-Level KPI Prediction  

Slice-level KPI prediction is crucial in supporting proactive management of network slicing. Slice-level KPIs 
can be related to ensuring SLAs or to ensuring that the system works within certain parameters that we 
require. These predictions are consumed by the decision engine (presented in Deliverable 4.1) to enable 
correct run-time decisions about dynamic slicing. The slice-level KPIs that will be predicted are presented in 
Table 5. Please note that we do not aim to predict all slice-level KPIs, but instead will choose the ones that 
will be directly related to our final use cases. 

Our solution will encompass several prediction methods, as described in the following sections, which are 
part of the AE component. Several relevant issues are investigated through various approaches:  

• In Section 7.1, we discuss local prediction, the advantages and the cost of using distributed predictors, 
and we give an example of a case where we use a distributed LSTM algorithm to predict traffic over 
a set of base stations in the RAN domain.  

• In Section 7.2, we present a novel method termed statistical federated learning to predict resource 
usage while ensuring pre-defined SLA violation rate.  

• In Section 7.3, we present an approach of taking the network context into account during prediction, 
as seen through the lens of defining the costs associated with under- and over-provisioning. A second 
approach is described through a split architecture for the predictor between the RAN and MEC 
domains, with the lightweight RAN predictors giving quick local predictions, while the MEC -based 
predictions can be used when we need a better accuracy from the predictor.  

7.1 Local KPI Prediction 

One interesting research direction that we investigated is the idea of collecting traffic load measurements 

from all BSs in the RAN domain of the network, and then gathering them in a central AE where we do the 

training. Then we send to all BSs the weights of the NN model as exported by the training process. For service 

time, each BS can directly use the pre-trained model to make predictions. Importantly, as the inference has 

to be carried out in a BS, the model needs to be lightweight, that is fast in terms of inference, and not very 

hardware demanding. 

To this end, here we explore the application of long-short-term memory (LSTM) NNs for the problem of 

predicting the traffic intensity (otherwise called load or demand) measured in MBs in time. Using such 

recurrent neural networks is a natural approach for tasks involving time-series data. Essentially, we are 

interested in the problem of resource prediction for each BS in the RAN domain of the network. A fitting 

dataset for our problem is the Milano dataset, as it includes “Internet traffic in MBs” for a variety of BSs 

placed in a geographical area. Please refer to the section 3 for more details of the dataset.  Our first attempt 

to tackle the problem is, for all BSs in the network, to split the time series dataset in windows of W time 

instances, and use this as our input X = [S(t-W), …, S(t)], the input of the LSTM model, and then to require 

from the NN model to be as close as possible to the next time instance, i.e., y = S(t+1).  
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Figure 17 Vanilla LSTM Neural Network. Left: Lag Signals (Inputs). Right: Predicted Signal of the Next Time 
Instance (Outputs) 

We then make batches from various BSs (X, Y) pairs and feed it to the NN. Interestingly, this task proves to 

be relatively hard for the LSTM, and LSTMs with low memory size (<10) even failed to converge in terms of 

training loss. In the figure below, we can see that the models with large memory size (20, 50, and 100) manage 

to converge in terms of training loss. 

 

Figure 18 Training Loss vs Epochs for Vanilla LSTMs with Different Memory Sizes 

To this end, we decided to depart from this over simplistic approach of using only the in/out signals, we 

augment the input vector with additional information, that is: (a) BS id, (b) day of the week, and (c) time of 

the day. This extra information is the so-called “embedding”, which essentially acts as some sort of encoding 

that further refines the LSTM’s understanding over the I/O signals we feed it. The new NN is shown as follows: 
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Figure 19 Enhanced LSTM Neural Network with Traffic and Meta Information as Inputs to Predict the Traffic 
of the Next Time Instance. 

We observed that this NN training loss performance converged well even for very light (low-memory) models. 

Below we can see some results from the training process, more specifically the training error along with the 

epochs, for different values of memory sizes. 

 

Figure 20 Training Loss vs Epochs for Enhanced LSTMS with Meta Data, Tested with Different Memory Sizes 

We then test this enhanced model, and “deploy” (in a simulation environment) it in different BSs. Right 

below, we see with blue, the true value of the traffic demand of some BSs, and with orange, we see the 
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predicted ones. It demonstrates that indeed we can achieve quite high accuracy, by deploying this lightweight 

model across many different BSs in the RAN domain. 

 

 

Figure 21 Traffic Intensity (Prediction and Ground Truth) for 6 Different BSs 

 

7.2 Cross-Domain KPI Prediction  

To minimize network overhead at the RAN/edge/cloud domains, dynamic resource usage prediction for 
network slicing can leverage advanced federated learning (FL) techniques. In this subsection, a new approach 
termed Statistical Federated Learning (SFL) for low overhead analytic engine (AE) is presented, which can 
learn resource usage models over a data distribution in an offline fashion while respecting some predefined 
local service level agreement (SLA) constraints defined in terms of long-term statistics over an observation 
window. The focus here is on resource cumulative distribution function (CDF)-based SLA---that is also dataset-
dependent and nonconvex non-differentiable---and the corresponding SFL local optimization task is 
formulated using the proxy-Lagrangian framework and solved via a non-zero sum two-player game strategy. 
Numerical results show that the proposed decentralized AE resource provisioning approach e nables SLA 
enforcement while significantly reducing the communication overhead compared to a centralized setup at 
the expense of a short delay. 
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As depicted in the following figure, we consider a beyond 5G RAN architecture under the central unit 
(CU)/distributed unit (DU) functional split, wherein each transmission/reception point (TRP) is co -located 
with its DU that is connected to the corresponding CU by a fronthaul link. In this respect, each CU k (k = 1, ..., 
K) runs as a virtual network function (VNF) on top of a commodity hardware located at the edge domain and 
performs slice-level RAN KPIs data collection via a monitoring system (MS) as well as implements AI-enabled 
slice resource analytics through the analytics engine (AE). For each CU k and slice n (n = 1, …, N), MS (k, n) 
has a local dataset Dk,n of size dk,n that is generally small and non-exhaustive. Therefore, the corresponding 
local AE participates in a federated learning task—to accurately train its resource analysis and prediction 
model—and is thereby connected to an end-to-end AE located at the Cloud domain that plays the role of 
model aggregator without having access to the raw local datasets [78]. 

 

 Figure 22 Network Architecture with Decentralized MS/AE at the Edge and Cloud Domains 

As summarized in the table below, the collected datasets correspond to encoded measurement data from a 
live LTE-advanced network with 3200 TRPs. It includes, as input features, the hourly traffics of the main 
over-the-top (OTT) applications, channel quality indicator (CQI), and multiple-input multiple-output (MIMO) 
full-rank usage. The supervised output KPI might be either the number of occupied downlink (DL) physical 
resource blocks (PRBs), or the central processing unit (CPU) load or the number of RRC connected users. 
Once the slices are defined, the traffic of the underlying OTTs is summed to y ield the traffic per slice.  

Table 8 Features of the Simulated Datasets 

 Metrics Description 

Features OTT Traffics per TRP Hourly traffic of the top OTTs: Apple, Facebook, Facebook 
Messages, Facebook Video, Instagram, NetFlix, HTTPS, QUIC, 
Whatsapp, and Youtube 

CQI Channel quality indicator reflecting the average quality of the 
radio link of the TRP 

MIMO Full-Rank Usage of MIMO full-rank spatial multiplexing in % 

Output DLPRB Number of occupied downlink physical resource blocks 
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CPU Load CPU resource consumption in % 

RRC Connected Users Number of RRC users' licenses consumed per eNB 

  

According to the SLA established between the tenant of the slice n and the physical operator, any assigned 
resource to the tenant should not exceed a range [αn, βn] with a probability higher than an agreed threshold 
γn. This translates into learning the resource allocation model under empirical cumulative density functio n 
constraints, which amounts to solving the following local optimization task at the FL round t (t = 0, ..., T -1), 

 

where ℓ(.) denotes the squared error loss function, 1(.) stands for the indicator function. 

The local SFL optimization can be solved using a proxy-Lagrangian approach that consists of two Lagrangians. 

The first one, L1, contains the loss function and a smooth approximation of the SLA constraints called proxy 

constraints, where the indicators are replaced with smooth sigmoid functions. The second Lagrangian, L2, is 

composed of the original SLA constraints. The joint optimization of the two Lagrangians turns out to be a 

non-zero-sum two-player game wherein the first player wishes to minimize L1 and the second player aims at 

maximizing L2. This process ends up reaching a nearly-optimal and nearly-feasible (i.e., nearly satisfying all 

the constraints) solution to the original constrained problem. The obtained weights are then sent back to the 
central server (e.g., the central AE) to perform averaging. This process is summarized in Algorithm 1 [79]. 
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PRB resources at the CU level are dynamically allocated to slices according to their traffic patterns and radio 
conditions (average CQI, MIMO full-rank usage) as shown in Figure 23-(a) and Figure 23-(b) while ensuring a 
long-term isolation via the constraints imposed to the cumulative distribution function (CDF) of the 
underlying resources. Indeed, in the baseline unconstrained FL, as depicted in Figure 23-(c), all three slices 
violate e.g., their upper bounds with a high probability that can be considered as unacceptable by operators 
and tenants in practice. In contrast, Figure 23-(d) shows that the number of provisioned DL PRBs is confined 
within their respective bounds α and β with a probability that reaches 99%. This is achieved by the proposed 
statistical federated learning (SFL) scheme that trains local resource allocation models to respect preset 
statistical metrics. 
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Figure 23 DL PRBs Distributions, with α = [0, 0, 0], β= [15, 10, 10] PRBs and γ = [0.01, 0.01, 0.01]. 

CPU dynamic allocation at edge is also required to ensure efficient utilization of the edge computing capacity 
and avoid switching-on servers to accommodate VNFs of different slices. The statistical CDF, as a measure of 
the resource violation rate, can serve to control the long-term CPU load distribution among slices. Indeed, as 
depicted in Figure 24-(a), the baseline CPU loads follow the trend of the slices traffics without respecting the 
SLA bounds α and β. This behaviour is further clarified by the corresponding empirical CDF, in Figure 24-(c), 
where it is shown that e.g., eMBB and Social Media slices are breaching the bounds with high probabilities of 
about 25% and 12%, respectively. Indeed, the baseline FL models cannot learn statistical properties over an 
observation interval and operate only at sample level. However, in the constrained scenario of Figure 24-(b), 
the CPU loads achieve a trade-off between dynamic allocation and long-term statistical SLA. In this case, the 
eMBB and Social Media CPU loads are confined in the imposed bounds with a high probability of 99% as 
depicted in Figure 24-(d). 
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Figure 24 CPU Load Distributions, with α = [0, 0, 0], β = [4, 7, 10], and γ = [0.01, 0.01, 0.01]. 

In this respect, Figure 25 showcases that the CPU load SLA violation rates of the different slices are 
dramatically reduced in the constrained case and reach the target threshold, i.e., 1%, which is an acceptable 
value for operators and slices tenants [78] [79]. 

 

Figure 25 CPU Load Average Violation Rates with α = [0, 0, 0], β= [4, 7, 10], and γ = [0.01, 0.01, 0.01]. 
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To highlight the trade-offs of the proposed statistical federated learning (SFL), we conduct extensive 
experiments where we consider an additional baseline, namely, a centralized constrained learning (CCL) 
model that is trained on the full dataset composed of the aggregation of the K=200 mini-datasets. The training 
is done using batches of the same size as the local datasets, i.e., 1000 samples. This means that a 
communication round in the federated setup is equivalent to 100 epochs over a batch in the centralized one.   

From Figure 26, we remark that the proposed SFL scheme requires only 5 communication rounds to achieve 
a similar loss as the centralized scheme. By considering more rounds, the SFL models of the three slices  reach 
lower loss values compared to CCL. This is justified by the fact that the AEs take K parallel gradient steps over 
their local datasets compared to a single step in CCL. Besides, the slight increase of loss in CCL after the initial 
rounds is due to the two-player non-zero-sum game between minimizing the loss and fulfilling the 
constraints. This behaviour is not perceived in SFL due to model averaging [79]. 

 

Figure 26 Convergence of SFL vs. CCL Scheme for CDF SLA with α = [0, 0, 0], β= [15, 10, 10] PRBs  

The table below shows the overhead induced by both CCL and SFL where the samples have been coded in 32 
bits. Starting from the convergence point of SFL, i.e., round 50, we can achieve more than 10 times overhead 
reduction at the expense of the short communication delay. Therefore, SFL turns out to be a more efficient 
scheme especially when the transmission latency is comparable to the CCL processing delay.  

Table 9 Communication Overhead Comparison 

Overhead (KB) 

Rounds 50 60 70 80 

Overhead CCL 18750 

Overhead SFL 1055 1266 1477 1688 

Overhead 
Reduction 

x17.8 x14.8 x12.7 x11.1 
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7.3 Network Aware KPI Prediction 

7.3.1 CONTEXT-AWARE DEMAND PREDICTORS 

In order to enhance the capability of traffic predictors and reduce the gap between demand prediction and 
resource orchestration, it is necessary to make the predictors aware of the problem domain. This can be done 
in multiple ways, as for example through data augmentation, or adding regularization terms in the loss 
function. This latter approach is the one that we are describing in this section, for developing a novel traffic 
predictor within MonB5G. 

Context aware traffic prediction (CATP), introduced in Section 4.2.1, is often viewed as a framework to design 
traffic predictors that exploit knowledge from the resource orchestration problem domain, which is one of 
the most important problems in 5G networks. In this sense, the prediction becomes network aware and, at 
the same time, it becomes useful for KPI prediction since there is a close relationship between resource 
provisioning and QoS guarantees. By ensuring that the proper number of resources are made available to a 
network slice when they are needed, it reduces the probability of SLA violations significantly, ensuring the 
users’ perceived QoS. 

The starting point for the development of CATP is to consider the loss functions commonly used to solve 
regression problems where a neural network is used as a function approximator. When doing regression with 
DNN function approximators, it is common to use the Mean Squared Error (MSE) or Mean Absolute Error 
(MAE) as the loss functions, shown as the following equations, in which n is the batch of values used in the 
current iteration, yi is the ground-truth values of the variable being predicted and y i

p are the predicted values. 

               𝑀𝑆𝐸 =
∑ (𝑦𝑖−𝑦𝑖

𝑝
)
2𝑛

𝑖=1

𝑛
                                                 (7.1)  

                                                           𝑀𝐴𝐸 =
∑ |𝑦𝑖−𝑦𝑖

𝑝
|𝑛

𝑖=1

𝑛
                                                  (7.2) 

Using MAE as the basis loss function, we can define a cost model for the MAE function according to the 
equation below  

               𝑀𝐴𝐸𝑐𝑜𝑠𝑡 = |𝑦𝑖 − 𝑦𝑖
𝑝
|                                              (7.3) 

We enhance the capability of the predictors by introducing extra regularization terms to the MAE cost model, 
resulting in a new cost model Cmodel as follows: 

                                        𝐶𝑚𝑜𝑑𝑒𝑙 = |𝑦𝑖 − 𝑦𝑖
𝑝
| + 𝜆ℎ ∗ 𝐻𝑟𝑒𝑔(𝑦𝑖 , 𝑦𝑖

𝑝
)                                   (7.4)  

The second term of the above equation, Hreg() includes the problem domain knowledge about resource 
orchestration in 5G networks (the context), that is, it expresses the relationship between traffic prediction 
values and resource provisioning. This term can be viewed as a constraint on the training process of the 
predictor. The λh is a weighting factor, which prioritizes the targets of satisfying the constraints Hreg and 
minimizing the accuracy loss (the first term of the equation). As λh becomes larger, the loss function prioritizes 
meeting the regularization constraints. In contrast, as λh becomes smaller, the loss function prioritizes the 
accuracy minimization as given by the MAE cost model.  
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It is widely known that in 5G networks there are different penalty costs that the infrastructure provider (InP) 
has to assume when a network slice is under- or over-provisioned of resources. By considering this, the term 
Hreg() can be defined as: 

𝐻𝑟𝑒𝑔(𝑦𝑖 ,  𝑦𝑖
𝑝
) =  {

𝐻𝑢−𝑝(𝑦𝑖,  𝑦𝑖
𝑝
)                𝑖𝑓 𝐶𝑑𝑢−𝑝(𝑦𝑖,  𝑦𝑖

𝑝
) =  𝑇𝑟𝑢𝑒

𝐻𝐼(𝑦𝑖,  𝑦𝑖
𝑝
)                 𝑖𝑓 𝐶𝑑𝐼(𝑦𝑖 ,  𝑦𝑖

𝑝
) =  𝑇𝑟𝑢𝑒

𝐻𝑜−𝑝 (𝑦𝑖,  𝑦𝑖
𝑝
)                𝑖𝑓 𝐶𝑑𝑜−𝑝(𝑦𝑖,  𝑦𝑖

𝑝
) =  𝑇𝑟𝑢𝑒

                (7.5) 

In the above equation, we have defined a regularization function H reg(yi, yi
p) with different behavior 

depending on the conditionals. If the conditionals are themselves formulated as a function of the domain of 
the variables yi and yi

p, with associated functions H∗(yi,yi
p), then the regularization term Hreg(yi,yi

p) becomes 
an approximation constrained (regularization) function. The conditions in the above equation represents the 
cases when a network slice would be under-provisioned (Cdup(yi, yi

p)), or ideally provisioned (CdI (yi , yi
p )), or 

over-provisioned (Cdop (yi , yi
p )). At this point, it is necessary to define the functions H∗(yi, yi

p) and the 
corresponding conditionals.  

 

7.3.1.1 PROBLEM DOMAIN KNOWLEDGE EMBEDDING AS REGULARIZATION CONSTRAINTS  

In 5G networks, there is a significant cost for under- and over-provisioning of physical resources (e.g., 
bandwidth) to support the traffic load. This cost could be assumed by the InPs, the tenants, the end users or 
all of them in one way or another. From an InP’s perspective, the cost of under- and over-provisioning 
resources has different implications.  

Penalty for Under-Provisioning  

When a network slice is under-provisioned, it will incur in the following penalties:  

• A penalty proportional to the difference between the needed resource and the given resource. In the 
context of the RAN domain, this penalty quantifies the amount of traffic dropped, which in turn 
translates as a degradation of the quality of service as perceived by the end user.  

• Another penalty associated to the process of re-arranging the resource allocation to meet the 
demand of the under-provisioned network slice. Making this kind of changes requires hardware 
(depending on the technological domain, necessary for RAN) and software support, which increases 
the complexity of the system used to support the infrastructure. This increases the total cost of 
ownership for the InP.   

Considering these two sources of penalty, it is reasonable to define Hu−p (yi , yi
p ) as the following equation. 

Here, TD(yi, yi
p) represents the penalty of service degradation, and RR(y i, yi

p) represents the penalty of 
resource reconfiguration.  

                                        𝐻𝑢−𝑝(𝑦𝑖 , 𝑦𝑖
𝑝
) = 𝑇𝐷(𝑦𝑖 , 𝑦𝑖

𝑝
) + 𝑅𝑅(𝑦𝑖 , 𝑦𝑖

𝑝
)                (7.6) 

We define RR(yi, yi
p) as the equation below, where the parameter Cr represents a gain factor that dictates the 

sensitivity of Hu−p (yi , yi
p ) to the cost of re-configuring resources. Notice that in this equation, the difference 

yi − yi
p is larger than zero. The r in Cr stands for reconfiguration.  

                                                𝑅𝑅(𝑦𝑖 , 𝑦𝑖
𝑝
) = 𝐶𝑟 ∗ (𝑦𝑖 − 𝑦𝑖

𝑝
)                              (7.7) 
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TD(yi, yi
p) is also defined linearly, where it is expected that Cd > Cr in most cases.  

𝑇𝐷(𝑦𝑖 , 𝑦𝑖
𝑝
) = 𝐶𝑑 ∗ (𝑦𝑖 − 𝑦𝑖

𝑝
)                                 (7.8) 

Thus, Hu−p(yi, yi
p) can be expressed as in the following equation.  

       𝐻𝑢−𝑝(𝑦𝑖, 𝑦𝑖
𝑝
) = (𝐶𝑑 + 𝐶𝑟) ∗ (𝑦𝑖 − 𝑦𝑖

𝑝
)                  (7.9) 

 

Penalties for Over-provisioning  

So far, we have considered the penalty associated with the case where a network slice is under-provisioned 
of resources. Now we will consider in this part the penalty associated with over-provisioning. When a network 
slice is over-provisioned of resources, the following penalties are typically incurred: 

• A penalty related to the wasted allocated resources. When a network slice is over-provisioned, it will 
have resources that will be idle, reducing revenue potential for the InP.  

• As it was the case with the under-provisioned case, the InP will also incur operational costs related 
to re-configuring resource allocation, since it has to reclaim the resources given to the over -
provisioned network slice. 

• Assuming full resource allocation of the infrastructure and resource overbooking, having one or 

more network slices taking up resources unnecessarily increases the chances of other network slices 

not having enough resources (traffic being dropped), and of preventing other network slices to be 

admitted for execution.  

The resource utilization efficiency of the infrastructure gets reduced when one or more network slices are 
over-provisioned because resources remain idle while not doing any useful work. This makes it more costly 
for the InP to maintain its infrastructure, since it is the InP who ultimately assumes the  cost for energy 
consumed by the idle resources, the physical space the resources occupy and the investment of adding them 
to the infrastructure. When over-provisioning occurs, the InP needs to re-allocate the resources (to another 
active network slice in need) or just release them (pool idle resources), resulting a reduction of the 
operational costs.  

If a tenant reserves resources that are idle and the InP decides to re-allocate them to a different network 
slice, then resource overbooking is taking place. An InP might decide to overbook resources once it 
determines which network slices are over-allocating resources too frequently, and to which degree. If a 
network-slice is over-provisioned in this scenario, there is a possibility that these idle resources (even though 
they were allocated) might be needed by another network slice that has an increase on its demand. However, 
the latter will not be able to get the resources it needs instantaneously, resulting in traffic getting dropped. 
As a consequence, the chances of other network slices being under-provisioned of resources increase, as well 
as the associated service degradation.  

Considering all of these factors, it is possible to define Ho−p (yi , yi
p ) as the equation below, in which RS(yi, yi

p) 
represents the penalty associated to having idle resources in the network slice, RR(y i, yi

p) has the same 
meaning than in the under-provisioning case (penalty for resource reconfiguration), and OB(y i, yi

p) represents 
the cost of overbooking.  

𝐻𝑜−𝑝(𝑦𝑖, 𝑦𝑖
𝑝
) = 𝑅𝑆(𝑦𝑖 , 𝑦𝑖

𝑝
) + 𝑅𝑅(𝑦𝑖 , 𝑦𝑖

𝑝
) + 𝑂𝐵(𝑦𝑖 , 𝑦𝑖

𝑝
)             (7.10) 
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Here the term RR(yi, yi
p) has an identical form to that of Eq. 7.7. On the other hand, RS(y i, yi

p) represents the 
penalty cost for reserving resources that are idle. For now, we opt for a linear equation for this penalty cost, 
defined in the following equation. The parameter Cw (the w stands for waste) is a gain factor that determines 
how sensible is Ho−p(yi, yi

p) to resource idleness.  

     𝑅𝑆(𝑦𝑖 , 𝑦𝑖
𝑝
) = 𝐶𝑤(𝑦𝑖

𝑝
− 𝑦𝑖)                                         (7.11) 

The term OB(yi,yi
p) represents the penalty cost associated to overbooking, assuming that: 1) overbooking is 

enabled, 2) full resource utilization is taking place, and 3) the possibility of sudden under-provisioning if 
resources are not reclaimed fast enough to provision another network slice that might need it. In this case, 
OB(yi,yi

p) can be defined as the equation below, in which the parameter Cd has an identical meaning than in 
Eq. 7.8. The parameter Pr quantifies the probability of other network slices incurring under-provisioning 
conditioned on the presence of idle resources.  

𝑂𝐵(𝑦𝑖 , 𝑦𝑖
𝑝
) = 𝑃𝑟 ∗ 𝐶𝑑(𝑦𝑖

𝑝
− 𝑦𝑖)                                     (7.12) 

Thus, Ho−p(yi, yi
p) can be defined as: 

𝐻𝑜−𝑝(𝑦𝑖, 𝑦𝑖
𝑝
) = (𝐶𝑤 + 𝐶𝑟 + 𝑃𝑟 ∗ 𝐶𝑑) ∗ (𝑦𝑖

𝑝
− 𝑦𝑖)                       (7.13) 

 

Conditionals in Hreg(yi, yi
p)  

In Eq. 7.5, the conditionals Cdu−p, CdI and Cdo−p are defined for Ho−p(yi,yi
p), HI(yi,yi

p) and Hu−p(yi,yi
p) respectively. 

It is important to note that HI(yi,yi
p) = 0, since HI(yi,yi

p) denotes the penalty of the optimal resource allocation 
cases, which should be the smallest penalty value, i.e., zero.  

For Cdu−p, it is straightforward to define it as yi
p−yi < 0, which represents the condition where the predicted 

resource demand yi
p for the current sample i is smaller than the real resource demand y i. In the same manner, 

it is possible to define Cdo−p as yi
p − yi ≥ ys, where the term on the right is introduced as “safety gap” or “slack” 

(for which s in ys stands for) between the prediction and the ground-truth value favoring a controlled degree 
of over-provisioning for the network slice. This value can be defined a-priori, and can be adjusted according 
to the constraints of the InP.  

There are many cases in which it is necessary to provide a small degree of over-provisioning to prevent short-
term fluctuations of the load degrading the service. Thus, CdI will be consequently defined as 0 < yi

p −yi  < ys 

                                           𝐻𝑟𝑒𝑔(𝑦𝑖 ,  𝑦𝑖
𝑝
) =  {

𝐻𝑢−𝑝(𝑦𝑖,  𝑦𝑖
𝑝
)       𝑦𝑖

𝑝
−  𝑦𝑖 <  0

𝐻𝐼(𝑦𝑖,  𝑦𝑖
𝑝
)         0 ≤ 𝑦𝑖

𝑝
−  𝑦𝑖 ≤ 𝑦𝑠

𝐻𝑜−𝑝 (𝑦𝑖,  𝑦𝑖
𝑝
)       𝑦𝑠 <  𝑦𝑖

𝑝
−  𝑦𝑖

               (7.14) 

Where the slack ys can also be centered around the difference between y i
p and yi. Thus, reformulating the 

above equation by modifying the conditionals Cdu−p, CdI and Cdo−p, we can obtain the regularization term as 
below: 

                              𝐻𝑟𝑒𝑔(𝑦𝑖 ,  𝑦𝑖
𝑝
) =  

{
 

 
𝐻𝑢−𝑝(𝑦𝑖,  𝑦𝑖

𝑝
)        𝑦𝑖

𝑝
−  𝑦𝑖 < −

𝑦𝑠

2

𝐻𝐼(𝑦𝑖 ,  𝑦𝑖
𝑝
)        −

𝑦𝑠

2
 ≤ 𝑦𝑖

𝑝
−  𝑦𝑖 ≤

𝑦𝑠

2

𝐻𝑜−𝑝 (𝑦𝑖,  𝑦𝑖
𝑝
)         

𝑦𝑠

2
<  𝑦𝑖

𝑝
−  𝑦𝑖

         (7.15) 
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With the complete mathematical definition of the penalty and the conditionals (under-, over- and ideal 
provisioning regions), we can then formulate a series of CATP loss functions.  

 

7.3.1.2 LINEAR CATP LOSS WITH A NON-ZERO REGION OF IDEAL PROVISIONING  

Now we will put everything together to obtain the loss functions for the CATP method. We consider two 
variants: safe slack and centered slack. 

 

Linear CATP with Safe Slack 

First, we will use the linear variation of Hreg(yi,yi
p) shown in the following equation with the conditionals 

presented in Eq. 7.14. 

              𝐻𝑟𝑒𝑔(𝑦𝑖 ,  𝑦𝑖
𝑝
) =  {

(𝐶𝑑 +  𝐶𝑟)(𝑦𝑖 −  𝑦𝑖
𝑝
)         𝑦𝑖

𝑝
−  𝑦𝑖 <  0

0                                                                       0 ≤ 𝑦𝑖
𝑝
−  𝑦𝑖 ≤ 𝑦𝑠

(𝐶𝑤 +  𝐶𝑟 + 𝑃𝑟 ∗ 𝐶𝑑 ∗ (𝑦𝑖
𝑝
−  𝑦𝑖 −  𝑦𝑠)        𝑦𝑠 <  𝑦𝑖

𝑝
−  𝑦𝑖

      (7.16) 

Given this definition for Hreg(yi,yi
p), the first cost model from CATP, named C01, can be defined as follows: 

             𝐶01  =  |𝑦𝑖 − 𝑦𝑖
𝑝
|  +  𝜆ℎ ∗ 𝐻𝑟𝑒𝑔(𝑦𝑖 , 𝑦𝑖

𝑝
)  = 

                         

{
 
 

 
 𝜆ℎ (𝐶𝑑 +  𝐶𝑟 +  

1

𝜆ℎ
) (𝑦𝑖 −  𝑦𝑖

𝑝
)                                                     𝑦𝑖

𝑝
−  𝑦𝑖 <  0

0                                                                                                      0 ≤ 𝑦𝑖
𝑝
−  𝑦𝑖 ≤ 𝑦𝑠

𝜆ℎ (𝐶𝑤 +  𝐶𝑟 + 𝑃𝑟 ∗ 𝐶𝑑 +  
1

𝜆ℎ
) (𝑦𝑖

𝑝
−  𝑦𝑖 −  𝑦𝑠)                           𝑦𝑠 <  𝑦𝑖

𝑝
−  𝑦𝑖

  (7.17) 

In the above equation λh =1, and considering that Cd + Cr + 1 ≈ Cd + Cr and Cw + Cr + Pr∗Cw +1≈ Cw + Cr + Pr ∗ Cw, 
then only Cd, Cr and Cw will define the behavior of the loss function when using the MAE cost model of Eq.7.3. 
All these considerations result in the following equation for C01.  

                      𝐶01(𝑦𝑖 ,  𝑦𝑖
𝑝
) =  {

(𝐶𝑑 +  𝐶𝑟)(𝑦𝑖 −  𝑦𝑖
𝑝
)                                             𝑦𝑖

𝑝
−  𝑦𝑖 <  0

0                                                                               0 ≤ 𝑦𝑖
𝑝
−  𝑦𝑖 ≤ 𝑦𝑠

(𝐶𝑤 +  𝐶𝑟 + 𝑃𝑟 ∗ 𝐶𝑑)(𝑦𝑖
𝑝
−  𝑦𝑖 −  𝑦𝑠).               𝑦𝑠 <  𝑦𝑖

𝑝
−  𝑦𝑖

   (7.18) 

In the above equation, ys is included both in the ys < yi
p − yi and the respective function to make C01 continuous 

in its domain in order for it to be differentiable. This is a necessary condition of loss functions to train DNNs. 
The loss function for C01 (yi , yi

p ) is shown as: 

                                                    𝐿𝑐𝑎𝑡𝑝01(𝑦𝑖,  𝑦𝑖
𝑝
) =  

1

𝐵
∗  ∑ 𝐶01(𝑦𝑖,  𝑦𝑖

𝑝
)𝐵

𝑖=1                        (7.19) 
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Linear CATP with Centered Slack  

C01 can be modified to define a new cost model C02 that is also linear on RS(y i,yi
p), RR(yi,yi

p), OB(yi, yi
p) and 

TD(yi, yi
p) but with the conditionals in Eq. 7.15. C02 will have different approximation constraints. We then 

obtain:  

            𝐶02(𝑦𝑖,  𝑦𝑖
𝑝
) =  

{
 
 

 
 (𝐶𝑑 +  𝐶𝑟)(𝑦𝑖 −  𝑦𝑖

𝑝
+  

𝑦𝑠

2
)                                             𝑦𝑖

𝑝
−  𝑦𝑖 < −

𝑦𝑠

2

0                                                                               −
𝑦𝑠

2
≤ 𝑦𝑖

𝑝
−  𝑦𝑖 ≤

𝑦𝑠

2

(𝐶𝑤 +  𝐶𝑟 + 𝑃𝑟 ∗ 𝐶𝑑) (𝑦𝑖
𝑝
−  𝑦𝑖 −

𝑦𝑠

2
)                           

𝑦𝑠

2
<  𝑦𝑖

𝑝
−  𝑦𝑖

         (7.20) 

The ys term is added for the same reasons it was added in Eq. 7.18, but in this instance, it is added as ys/2 
because the ideal provisioning region is now assumed to be zero-centered, making the loss model more 
tolerant to under-provisioning within a very small range. Also, it needs to observe the differentiable 
requirement that was defined for C01. The resulting loss function Lcatp02 is similar to Eq. 7.19, but with C01 

replaced by C02, as shown in the following equation:  

                                          𝐿𝑐𝑎𝑡𝑝02(𝑦𝑖,  𝑦𝑖
𝑝
) =  

1

𝐵
∗  ∑ 𝐶02(𝑦𝑖,  𝑦𝑖

𝑝
)𝐵

𝑖=1                        (7.21) 

Currently, this work is on the experimental phase and the first results will be available soon . This time series 

predictor will be implemented as an AE component within the MonB5G architecture, where it will pre-process 

historical traffic information that goes through a monitored element. In the current implementation of this 

predictor, the monitored element is a base station in the RAN domain. However, since this predictor is 

agnostic to the type of the monitored element and agnostic to technological domains, the predictor could be 

used to predict any other elements in the communication infrastructure, such as a MEC load balancer, a 

CNF/VNF in the MEC or a Core VNF.    

 

7.3.2 RAN-MEC SPLIT CONVNET ARCHITECTURES FOR NETWORK-AWARE KPI PREDICTION 

The setup we are interested in is based on the DDNN [80] framework. The idea behind this setup is that a 
small (in terms of computing power) neural network (NN) is placed on the radio access network (RAN), and 
tries to carry out analytics tasks (e.g., KPI prediction). Since the NN is small, it has low model capacity, and is 
thus expected to perform well only for “easy” examples, for which its prediction confidence levels are high. 
Furthermore, the small NN can communicate and send its “maps” (the exported knowledge) to some other 
NN that has more layers and is capable of doing further and more powerful processing. To use the second 
NN though, the price to pay is the utilization of the communication link between RAN and MEC. This will 
introduce unexpected communication overhead. Therefore, an interesting trade-off that arises is to try to 
get satisfactory prediction accuracy by resolving many of the tasks locally (i.e., in the local NN placed on RAN). 
A variety of architectures are possible along this line. The most basic one is illustrated as the figure below: 
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Figure 27 DDNN Architecture for Network-Aware KPI Prediction: the Local Part of the NN in the RAN (near 
the BSs) and the Remote Part in the MEC 

In particular, there are mainly the following contributions in the novel distributed DNN approach:  

Preprocessing - BS clustering. Before we talk about training, it is important to stress that the use of CNNs 
which treat the incoming signal as a “picture” will be highly benefited by some reasonable preprocessing of 
the data [27]. Here we aim to make traffic predictions for the traffic of the next time instance for the number 
B of base stations, and for each of these BSs, we can use T past traffic samples. We arrange the BSs ids in a 
2D matrix of size WxH (WxH should be equal to B); having for each of these BSs T past samples, we can append 
them, and this leaves us with an input sample being a tensor of size WxHxT. A core part of the preprocessing 
we make is that we place the BSs in the 2D image in such a way that spatial correlations are exploited. 
Essentially the core idea behind CNNs is to capture through convolution the correlations between pixels that 
are closed to each other. This feature is something that happens naturally in 2D images, as near-by pixels are 
heavily correlated. The preprocessing we make tries to imitate this exact process. To this end, we use kShape 
[81]￼ which finds the k clusters of the B BSs. Having done that, we can use some algorithm on how to do the 
placement on the image. 

Architecture and Controller. We use a lightweight CNN placed in the RAN, which can communicate with a 

CNN with 2 layers placed in the MEC. The two CNNs are connected through a communication link. Deciding 
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whether the inference will be carried out in the RAN or MEC, is made by some controller which makes 

inference in the RAN. Essentially, after the convolutional layer, there is a fully connected layer which outputs 

B traffic predictions (see the figure above). The convolutional layer helps as it offers the opportunity to use 

random drop out. So, when local inference is made, the CNN runs the inference N times by switching on and 

off randomly a number of the NN weights, and measures an output N array of B values, over which we can 

estimate prediction uncertainty (e.g., variance), to dictate us how confident is the NN for local prediction. 

Training. The success of training relies primarily on constructing an appropriate cost function. A reasonable 

definition is to not only take into consideration the prediction error in the MEC, but put also a weight to the 

error in the RAN as well. To do so, we construct the NN loss function, which is the sum of two terms: 

𝐿(𝑦𝑅𝐴𝑁 , 𝑦𝑀𝐸𝐶 , 𝑦; 𝜃) = 𝑤𝑅𝐴𝑁 ∙ 𝐿(𝑦𝑅𝐴𝑁 , 𝑦; 𝜃) + 𝑤𝑀𝐸𝐶 ∙ 𝐿(𝑦𝑀𝐸𝐶 , 𝑦; 𝜃)               (7.22) 

The above expression forces the NN to make good decisions early in the architecture; something that 

obviously creates some trade-off in the accuracy of the MEC exit. We choose the weights empirically by 

keeping some balance through the following condition wMEC +wRAN = 1. 

Then, we can empirically try a variety of weight pairs such as [wMEC, wRAN ]=[0.9, 0.1], [wMEC, wRAN ]=[0.5, 0.5] 

and [wMEC, wRAN ]=[0.1, 0.9], and train an NN. By putting more weight on the RAN (the weaker, with less layers 

NN), we expect its prediction accuracy to be improved, although the MEC’s accuracy might be harmed.  

Offloading Policy. After having trained an NN, the logic we need to follow is based on the DDNN approach. 

Therefore, we have to find a way to quantify the uncertainty of the NN at the RAN side (the weak one).  

However, the original DDNN focused on the task of image classification, whose output is by design some 

probability mass function over the classes, which naturally led them to use the entropy to measure the 

uncertainty. However, our task is more complicated since we deal with signal, and more specifically with 

time-series prediction. To quantify some sort of uncertainty, we leverage the notion of dropout, by doing the 

inference (prediction) for the B signals multiple, say N, times. Random drop-out will switch on and off 

different weights of the NN, and thus if the output signal remains robust, then the N inferences do not change 

too much, this would be highly confident, and consequently signal prediction is performed locally at the RAN-

placed NN. One would need to iterate a loop outside the training, where they should try different predefined 

levels of certainty for the RAN-placed NN. Thus, in other words, one should condition on the threshold of 

certainty, and if the RAN NN is confident, it would predict, and the local decision would increase, and then 

measure the accuracy of the prediction. If the confidence is low, then we offload to the MEC. 

Note that this is a three-stage algorithm a): preprocessing the data by clustering, b): training the NN given 

the dataset, and c) offloading policy; it could be possible to combine more (two or maybe even three) in the 

training of the NN. Currently the work is in progress, and we are verifying the proposed method with 

extensive experiments.  

 

In summary, we have proposed some distributed AE modules for slice-level KPIs prediction. These modules 

include local prediction for a specific technological domain, and cross-domain prediction with advanced 

federated learning and distributed deep neural network models. All these innovations aim to provide local 
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and quick analysis to reduce potential latency and communication costs caused by the standard centralized 

analytics approaches, such that the scalability of the slice management system can be enhanced. Some of the 

results (e.g., the SFL approach reported in the section 7.2) have been published in the top-tier conferences, 

and some on-going work (e.g., the DDNN and the CATP approaches reported in the section 7.3) will be 

reported in the next period of the project with the detailed simulation. More experimental results about the 

scalability of the proposed modules will be reported with quantified measurements. 
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8 MonB5G Analytics Engine for Network Fault Management  

In this section, a definition of fault management and initial MonB5G approaches to fault management will be 
presented. Below we will describe local (i.e., slice or single domain) fault identification based on AE with 
some elements of root cause analysis and the outline of fault detection procedures in the multi-domain case. 
We will also outline the AI algorithms that can be used for AE-based fault detection. 

8.1 Fault management problem description 

Fault management in case of the MonB5G architecture should deal with the faults of both the infrastructure 
(hardware-based part and resource virtualization layer) and network slices. Network slices are typically built 
using software components therefore, in such case the ‘software’ faults that should be handled e.g., software 
bugs or improper implementation of functions. In cases when hardware nodes (i.e., PNFs) are also allocated, 
hardware faults have to be handled. It has to be noticed that in cases when the infrastructure fault is not 
handled properly, it can be also discovered by analytic engine of a slice. In this section we will focus only on 
faults identified by anomaly detection approach - the directly signalled faults are therefore ignored. These 
types of faults are typically detected by observing degradation of the performance over time. 

 In general, the following faults categories can be identified: 

1. Infrastructure faults 
a. Link degradation 
b. Storage error 
c. Data centre issues (overheating, malfunctioning of servers, power supply issues) 
d. PNF faults (antenna, cabling, hardware issues) 

2. Network slicing related faults 
a. VNF-related, functional faults 
b. Slice topology related faults 

3. Orchestration related faults 
a. Improper scaling of resources for VNFs (can be detected at slice level) 
b. Orchestrator functionality related faults 
c. Orchestrator significant performance degradation leading to faults. 

The anomaly-based fault detection has to be combined with root cause analysis that helps to indicate the 
source of the problem. Such analysis will be linked with the MonB5G architecture and described later on. 

8.2 Local Analytics Engine for Fault Management 

A good cooperation between the prediction tasks in the AE (covered in Section 7) and the DE will reduce the 
number of alarms to deal with at fault management level. This is achievable due to usage of proactive 
methods of management, which should minimise the number of events that could trigger alarms.  

However, we are also proposing mechanisms for detecting faulty situations, which might be triggered both 
by physical and virtualised resources or a combination thereof. The local analytic engine (i.e., the AE of slices 
or DMO) related to fault management is responsible for identifying patterns of configurations and KPIs that 
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can lead to future faults. The set of monitored faults is highlighted in Section 8.1 and specific alarms will be 
generated for these types of faults. 

The AE algorithm to detect faults can be based on supervised learning.  This is a classification type of 
algorithm, where different network configurations and KPI values are used as inputs, together with the types 
of faults. There are many examples in the literature of classification for fault management. One approach is 
to use a decision tree type of algorithm, which will learn which configuration options and KPI values are 
associated with the different types of faults. These options and values refer to the local domain of the AE , 
and include the context (configuration) together with run-time values of KPIs. The training must be done 
before online usage of the classification algorithm and can be re-done when new types of configurations, 
KPIs or faults must be taken into account. 

The AE fault management engine can periodically query the MS for the inputs it requires to check for existing 
faults. Alternatively, this process can be triggered by alarms sent by the PNFs/VNFs (through the MS), using 
thresholds which the classification algorithm found to be relevant. The AE fault management engine uses 
these values to recognise whether a fault occurred; if this is the case, then it sends to the DE the type of fault 
and possibly additional information. The DE must decide how to resolve the alarm.  

Other classification algorithms, such as LSTM, can be used for classification. In Section 8.3, example of LSTM-
based classification is described which discusses its usage in the context of distributed and cross-domain AE 
for fault management. Nonetheless, the same type of algorithm can be used for the local fault management 
AE engine. 

8.3 Cross-Domain Analytics Engine for Fault Management 

In this part, we will briefly explain our approach to distributed fault management for the domains of RAN and 
MEC. To this end, we initially depict the assumed scenario we try to face below, and explain it right 
afterwards. 
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Figure 28 Distributed CNN for Slice State Recognition  

In the simplest of its form, this architecture essentially boils down to the following bottom up we have: (a)  
Incoming slice traffic (time series data) in the RAN enters some NN, this could be a ConvNet, e.g., DeepCog, 
or an LSTM, and then (b) tries, given a set of measurements to realise much earlier and classify the state of 
the slice in a category (to be discussed). Then if the decision of the local RAN classifier is confident, it takes 
its own decision, otherwise it sends its data over the internet in order to use the capacity of a more 
sophisticated NN at the MEC, which ultimately decides. 

In particular, the detailed description of two key subprocesses of the distributed approach is provided here: 

State Classification. This is obviously orthogonal to the distributed architecture, as it could be readily done 
using only one NN. Essentially, we want given some series of signals for some slice, say S(t-W), …, S(t), to 
classify the state of the slice for every time step SC(t) (state classification). Therefore, this task can be 
formulated as an object classification problem, where slices at different time steps are viewed as an object, 
and the corresponding operational states of the slices as class labels, i.e., {Normal, Alarming, Crisis}. This 
could be carried out using an appropriately labelled dataset, where the states of the signals are decided by 
experts to train the model. 

Distributing the NN. Decomposing the decision in two NNs, one placed in RAN, and one in the MEC, is only 
an added value to the problem, and it offers for an opportunity to capture the DDNN trade-off. By that we 
mean the architecture, where decisions/state-classifications are carried out in the RAN, provided that the NN 
is highly confident, and otherwise the knowledge acquired by the RAN-NN (the maps in the case of ConvNets), 
is forwarded to a second NN (the MEC one), with additional layers and bigger capacity. Using this, we may 
lower the accuracy of the decisions, but dramatically reduce the communication overhead between RAN and 
MEC.  
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8.4 Interactions with Other MonB5G Management/Orchestration Components 

For the local (slice/domain) Fault Management engine, the interactions between AE, DE, and MS are defined 
as Section 6.1. The MS sends to the AE information on KPI values and alarms from PNFs/VNFs. The AE sends 
to the DE the type of alarm and possibly additional info on KPIs and configurations. In addition, we must have 
input information for the AE on existing configurations. 

In general, the following interactions can happen in case of fault detection by AE:  

1. Fault is detected by AE of a slice, information about that is sent to DMO.  
2. The DMO can correlate information obtained from fault management AEs of different slices and from 

the fault management AE of the Infrastructure. On that basis it can identify whether the fault was 
caused by the infrastructure (i.e., resource related) or has been caused by the slice components.  

3. Finally, the information about the detected fault (and its potential mitigation)  is passed to the IDMO 
that may decide about termination of the multidomain slice if the fault has not been solved and the 
KPIs of the impacted slices are degraded. 
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9 Conclusions  

In this deliverable, we presented the initial development of the distributed AI-empowered monitoring system 
and analytics engine as essential components and sublayers of the innovative MonB5G platform for zero -
touch management of massive numbers of network slices.  In the current version, we have initially explored 
and developed a variety of functions, such as distributed MS blocks at different domains, context-aware 
traffic predictor, feature extractor for native network data, resource estimator with low SLA violation, and 
slice state recognizer, etc. 

We provided a comprehensive analysis of new requirements and opportunities introduced by scalable 
network slicing together with a thorough review of state of the art in network slice monitoring and analysis. 
The proposed initial framework of the MonB5G MS and AE addresses the identified technical challenges by 
enabling a distribution of AI-driven monitoring and analytics functions at all levels of the management 
hierarchy. The concept of distribution facilitates slice monitoring composed of network function (VNF/PNF) 
monitoring, domain monitoring, and further extends to slices created in multiple domains. The complexity of 
the monitoring system was specially reduced by means of the hierarchical closed-loop controls and the 
minimised interactions between entities at different management levels and technical domains. The MonB5G 
AE is also structured hierarchically, and empowered by the advances of distributed AI techniques, which were 
tailored to build hierarchical KPI prediction and fault management at multiple MonB5G management levels. 
In order to achieve the goal of scalable analysis, the AI-driven analytics functions perform prediction and 
detection locally, which allows to dramatically reducing the communication overhead between different 
management entities and significantly improving the response time for sensitive management tasks. Only if 
the local analysis is less confident or needs more information from the closely connected network functions 
and domains, the compressed local information, i.e., the representations of the native data encoded by the 
leading-edge AI techniques, transfers to the upper levels of the network entities triggered via an autonomic 
mechanism. 

The outcomes of this deliverable are initial achievements of the work package 3 in the MonB5G project, and 
will be extended and further enhanced in the final deliverable D3.2 in the next stage of the project that w ill 
finally be leveraged in the development of the monitoring system and analytics engine of the MonB5G 
platform. It will enable significant breakthroughs to achieve monitoring and analytics functions in a scalable, 
intelligent, and resource-efficient manner for massive network slicing with zero-touch management systems. 
In the next step, we will further refine the development of the MS and AE towards efficient and autonomic 
interoperation with other MonB5G entities, and further complete the fault management functions of the 
MonB5G platform, as well as collect experience related to the implementation of the management functions.  
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