

 871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2
Final Report on AI-driven Techniques for the

MonB5G AE/MS

Document Summary Information

Grant Agreement No 871780 Acronym MonB5G

Full Title Distributed Management of Network Slices in beyond 5G

Start Date 01/11/2019 Duration 42 months

Project URL https://www.monb5g.eu/

Deliverable D3.2 – Final report on AI-driven techniques for the MonB5G AE/MS

Work Package WP3

Contractual due date M30 Actual submission date 30.04.2022

Nature Report Dissemination Level Public

Lead Beneficiary NEC

Responsible Author Zhao Xu (NEC)

Contributions from Bahador Bakhshi (CTTC), Luis Blanco (CTTC), Engin Zeydan (CTTC), Hatim Chergui
(CTTC), Josep Mangues (CTTC), Jordi Serra (CTTC) George Tsolis (CTXS), Adlen
Ksentini (EUR), Marina Costanti (EUR), Sabra Ben Saad (EUR), Thrasyvoulos
Spyropoulos (EUR), Anestis Dalgkitsis (IQU), Luis A. Garrido Platero (IQU), Anne-

https://upload.wikimedia.org/wikipedia/commons/b/b7/Flag_of_Europe.svg
https://www.monb5g.eu/
mailto:adlen.ksentini@eurecom.fr()

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 2

Marie Bosneag (LMI), Ashima Chawla (LMI), Zhao Xu (NEC), Sławomir Kukliński
(ORA-PL)

Revision history

Version Issue Date Complete(%) Changes Contributor(s)

Disclaimer

The content of the publication herein is the sole responsibility of the publishers and it does not necessarily
represent the views expressed by the European Commission or its services.

While the information contained in the documents is believed to be accurate, the authors(s) or any other
participant in the MonB5G consortium make no warranty of any kind with regard to this material including,
but not limited to the implied warranties of merchantability and fitness for a particular purpose.

Neither the MonB5G Consortium nor any of its members, their officers, employees or agents shall be
responsible or liable in negligence or otherwise howsoever in respect of any inaccuracy or omission her ein.

Without derogating from the generality of the foregoing neither the MonB5G Consortium nor any of its
members, their officers, employees or agents shall be liable for any direct or indirect or consequential loss
or damage caused by or arising from any information advice or inaccuracy or omission herein.

Copyright message

© MonB5G Consortium, 2019-2022. This deliverable contains original unpublished work except where clearly
indicated otherwise. Acknowledgement of previously published material and of the work of others has been
made through appropriate citation, quotation or both. Reproduction is authorised provided the source is
acknowledged.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 3

Table of Contents

Table of Contents ... 3

List of Figures ... 5

List of Tables .. 8

List of Acronyms ... 9

1 Executive summary ...12

2 Introduction ...16

2.1 Scope ..16

2.2 Motivation ..16

2.3 State-of-the-Art Technologies and Specifications ..17

2.3.1 Data Collection (Monitoring) ...17

2.3.2 Data Analytics ...19

2.3.3 Standardisation related to MS/AE ...20

2.4 MonB5G Novelty and Contributions on MS/AE ...22

2.5 Structure of the Deliverable ..23

3 Scalability of MonB5G MS/AE ...25

3.1 Scalable AI-driven Network Management ...25

3.2 Vision and Strategies of MonB5G for Scalable MS and AE ...27

3.2.1 Scalable MS ...28

3.2.2 Scalable AE ..31

3.3 Major Achievements of MonB5G on Scalability ...33

4 5G Data and Simulation ..34

4.1 Publicly Available Data Related to 5G ...34

4.2 Methodology of Data Generation with MonB5G Platform ...38

4.2.1 IQU dataset ...39

4.2.2 EUR dataset ..40

4.3 MonB5G Data for AI-Driven Network Management Research ...41

4.3.1 IQU dataset ...41

4.3.2 EUR dataset ..44

5 MonB5G MS/AE Architecture ..47

5.1 Overview of the MonB5G Architecture ...47

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 4

5.2 Architecture of MonB5G MS ...49

5.3 Architecture of MonB5G AE ..51

5.4 Cooperation between MS, AE and DE ...52

6 Distributed MonB5G Monitoring System...55

6.1 Workflow of MonB5G MS ...55

6.2 MonB5G MS at Different Technical Domains ...56

6.2.1 MS in RAN ...57

6.2.2 MS in EDGE ...58

6.3 Telemetry Monitored by MonB5G MS ...58

6.4 MonB5G MS Implementation and Visualization ..60

6.4.1 Implementation Details ...60

6.4.2 Implementation Results ..65

7 MonB5G Analytics Engine for Slice-Level KPI Prediction ..68

7.1 Local KPI Prediction ..68

7.2 Cross-Domain KPI Prediction ...71

7.3 Network Aware KPI Prediction ..78

7.3.1 Context-Aware Demand Predictors ...78

7.3.2 RAN-MEC split ConvNet architectures for network-aware KPI prediction84

8 MonB5G Analytics Engine for Network Fault Management ...88

8.1 Fault and Anomaly Detection Based on Link Traffic Observations with LSTM89

8.1.1 Concept ..89

8.1.2 Dataset ...91

8.1.3 Fault and Anomaly detection Results ..92

8.2 Local Analytics Engine for Fault Management with RNN ...93

8.2.1 Fault Detection Model ..94

8.2.2 ALGORITHM FOR PREDICTION BASED ANOMALY DETECTION ..94

8.3 Outlier Identification in Networks with Decentralized Optimization ..95

8.3.1 Contributions ..97

8.3.2 Scalability of Asynchronous Algorithms ...98

8.3.3 Outlier Detection and Fault Management ...99

9 Conclusions .. 102

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 5

List of Figures
Figure 1 Illustrates the MonB5G MS: internal components and reference points (left) and implementation of MS for two

domains (right) ... 13

Figure 2 Decentralized AE operations via federated learning (left) and distributed neural networks (right) 14

Figure 3 Distributed Architecture of NWDAF in R16 and R17 .. 20

Figure 4 Functional View of a Closed Loop and its Functions within the ZSM Framework [35] ... 21

Figure 5 Centralized Network Slice Management ... 26

Figure 6 Scalability trade-offs [37] .. 27

Figure 7 Distributed deployment of the monitoring system .. 29

Figure 8 Hierarchal deployment of monitoring systems .. 30

Figure 9 Decentralized AE with federating learning ... 32

Figure 10 Decentralized AE with distributed neural networks, where the local models are the bottom layers of the NN. 33

Figure 11 Real topology integration example. Nordu 2005 network from The Topology Zoo dataset [39]. 39

Figure 12 Simulated network graph example .. 40

Figure 13 Framework used for the dataset generation ... 41

Figure 14 Data Sample file .. 42

Figure 15 Data Mapping file .. 42

Figure 16 Sample pattern decoding script.. 44

Figure 17 Computing resource fluctuation of a server during simulation ... 44

Figure 18 Dataset structure of the EUR dataset ... 45

Figure 19 Generic view of MonB5G slice structure .. 47

Figure 20 Monitoring System Sublayer internal components .. 48

Figure 21 Internal components of Analytic Engine Sublayer .. 48

Figure 22 MonB5G MS internal components and reference points ... 51

Figure 23 Two major functions of MonB5G AE ... 52

Figure 24 Interfaces related to MS and AE .. 53

Figure 25 Generic Message Sequence Diagram for the Request of a Sampling Loop to a MS instance 55

Figure 26 MonB5G MS in the RAN Domain .. 57

Figure 27 MonB5G MS in the Edge/Cloud Domain ... 58

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 6

Figure 28 Data flow in the monitoring system .. 61

Figure 29 Implementation view of MS on two Technological Domains ... 62

Figure 30 Mapping Sampling Loop Orchestration to Implementation Tools .. 63

Figure 31 A Sampling Loop configuration .. 64

Figure 32 Netdata Sampling Function ... 64

Figure 33 MS Kafka Consumer example (Python) .. 65

Figure 34 Two Netdata samples in point (2) of Figure 28 ... 66

Figure 35 Two Netdata samples in Figure 34 which are in point (3) of Figure 28 .. 67

Figure 36 Two Netdata samples in Figure 34 which are in point (5) of Figure 28 .. 67

Figure 37 Two Netdata samples in Figure 34 which are in point (6) of Figure 28 .. 67

Figure 38 KPI inputs from MS .. 68

Figure 39 KPI plots from MS .. 69

Figure 40 Training Architecture of Slice KPI Prediction Model ... 70

Figure 41 Network Architecture with Decentralized MS/AE at the Edge and Cloud Domains .. 72

Figure 42 DL PRBs Distributions, with α = [0, 0,0], β = [15, 10, 10] PRBs and γ = [0.01, 0.01, 0.01]. 74

Figure 43 Parameter settings of the scalability test .. 76

Figure 44 MSE loss as a function of the number of FL rounds with and without policy (simulated scenario). 77

Figure 45 MSE loss as a function of the number of FL rounds (emulated/containerized scenario) .. 77

Figure 46 Convergence time of simulated vs emulated (containerized) solution with the proposed policy (m=25, K=[40,50])

 ... 78

Figure 47 Normalized Total Penalty for CROP UP = 0.5 pairs (less is better) .. 82

Figure 48 Normalized penalty for CROP UP = 1.0. .. 83

Figure 49 Probability of under-provisioning for CROP UP = 1.0 (less is better). .. 83

Figure 50 Average under-provisioning percentage for CROP UP = 1.0 (less is better). .. 83

Figure 51 DDNN Architecture for Network-Aware KPI Prediction: the Local Part of the NN in the RAN (near the BSs) and

the Remote Part in the MEC .. 85

Figure 52 Scalability curves, demonstrating the tradeoff between cost from prediction inaccuracy, e.g., MSE, (y-axis) and

percentage of predictions made locally (x-axis); The 3 curves represent different training weights for the offline tuning

of the Distributed DNN, while the actual accuracy cost (y-axis) and network traffic (x-axis) are measured online, on test

data. The cross corresponds to the baseline performance of a fully centralized DNN network with the exact same number

of convolutional layers as the distributed one. ... 87

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 7

Figure 53 Architecture of LSTM-based AE for anomaly detection in TN slices. ... 89

Figure 54 Traffic trace without pre-processing (a) and after performing median filtration (b) ... 91

Figure 55 Full trace (340 days) with two data subsets used for training the LSTM network (Xtrain1 and XTrain2) with

anomalies indicating potential faults (marked with red ellipses). .. 91

Figure 56 Training accuracy evaluation: original (blue) and trained (orange) time series .. 92

Figure 57 Anomalies detected with: (Top) the envelope estimation for Xtrain2; (Bottom) slowly varying threshold based on

envelope of the top panel. .. 92

Figure 58 Analytics Engine with Fault Management Model ... 94

Figure 59 Conditional Probability over sequences .. 94

Figure 60 Differences in the neighbor choosing criterion of the algorithms considered ... 97

Figure 61 Time spent by each node in the synchronous and asynchronous settings ... 98

Figure 62 Graphs used in the comparison of synchronous versus asynchronous decentralized dual ascent 98

Figure 63 Histograms of the generated for the comparison of the synchronous versus the asynchronous algorithms 99

Figure 64 Simulation of random exponential node activation. The plots show the convergence achieved by the synchronous

and asynchronous decentralized dual ascent algorithms for graphs with 10, 20 and 30 nodes respectively. 99

Figure 65 Geographic graph showing the connectivity between base stations used in our simulations 100

Figure 66 Convergence of the three decentralized dual ascent (DDA) algorithms considered: uniform neighbor sampling

(DDA-US), maximum gradient neighbor selection (DDA-MG), and our proposal, stored maximum gradient neighbor

selection (DDA-MSG) ... 101

Figure 67 Data heterogeneity between base stations 2, 7 and 11, and comparison of the local and the global parameter fits.

The figures show the data of 3 base stations in the network (yellow lines) with the fit of their local data only (red line)

and the fit of their local copy of the global parameter (black dashed line). ... 101

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 8

List of Tables
Table 1 Deliverable Structure and Mapping with Project Tasks ... 23

Table 2 Attributes of the IQU dataset .. 42

Table 3 Attributes of the Mapping File in the IQU dataset .. 43

Table 4 Meaning of the pattern codes .. 43

Table 5 Attributes of the EUR dataset ... 45

Table 6 MS Interfaces and the Associated Roles ... 54

Table 7 AE Interfaces and the Associated Roles ... 54

Table 8 Slice-Level KPIs Description and Measurement .. 59

Table 9 Dataset Features and Output ... 72

Table 10 DNNs evaluated with CATP and their parameters. All DNNs use a learning rate of 0.001 with Adam Optimizer, and

100 Epochs... 81

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 9

List of Acronyms

Acronym Description

3GPP Third Generation Partnership Project

AE Analytic Engine

AE-F Analytic Engine Function

AE-S Analytic Engine Sublayer

AI Artificial Intelligence

APM Application Performance Monitoring

CLA Closed-loop Automation

CNCF Cloud Native Computing Foundation

CNF Cloud Native function

DE Decision Engine

DE-F Decision Engine Function

DE-S Decision Engine Sublayer

EEM Embedded Element Manager

eMBB Enhanced Mobile Broadband

ETSI European Telecommunications Standards Institute

ECA Event Condition Action

ENI Experiential Networked Intelligence

FCAPS Fault, Configuration, Accounting, Performance, Security

InP Infrastructure Provider

ISM In-Slice Management

ITU International Telecommunication Union

KPI Key Performance Indicator

LCM Lifecycle Management

ML Machine Learning

MANO Management and Orchestration

MaaS Management as a Service

MAN-F Management Function

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 10

mMTC Massive Machine Type Communications

MEO MEC Orchestrator

MNO Mobile Network Operator

MLaaS MonB5G Layer as a Service

MS Monitoring System

MS-F Monitoring System Function

MS-S Monitoring System Sublayer

MEC Multi-access Edge Computing

NFVO Network Function Virtualization Orchestrator

NSD Network Service Descriptor

NSO Network Service Orchestrator

NSP Network Service Provider

NSI Network Slice Instance

NSMF Network Slice Management Function

NSSMF Network Slice Subnetwork Management Function

NST Network Slice Template

NSSI Network sub-Slice Instance

NGMN Next Generation Mobile Networks

NFVI NFV Infrastructure

OAI Open Air Interface

ONAP Open Network Automation Platform

OSM Open-Source MANO

OSS Operation System Support

PaaS Platform as a Service

PoC Proof of Concept

QoE Quality of Experience

QoS Quality of Service

RAN Radio Access Network

SON Self-Organizing Network

SLA Service Level Agreement

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 11

SFL Slice Functional Layer

SML Slice Management Layer

SM Slice Manager

uRLLC Ultra-Reliable Low-Latency Communication

VIM Virtual Infrastructure Manager

VNF Virtual network Function

VNFM Virtual network Function Manager

ZSM Zero-touch network and Service Management

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 12

1 Executive summary

Due to the huge business potential brought by the novel network slicing technology, a large number of slices
will co-exist in the 5G/B5G infrastructure. The traditional centralized management mechanism will suffer
greatly from the intensive communication between the central administration and the functional entities,
especially when the number of slices increases and they are deployed in multiple technical domains. The
delays caused by inefficient management will significantly degrade the Quality of Service (QoS) and even
violate Service Level Agreements (SLAs) with customers.

MonB5G intends to deploy a novel autonomous management and orchestration framework to address a
critical challenge in 5G and beyond, namely managing a massive number of network slices with different
requirements and functions. This deliverable reports the developed Monitoring System (MS) and Analytics
Engine (AE), two essential management entities of the MonB5G platform, towards Zero-Touch Scalable Slice
Management and Orchestration. They leverage distribution of management operations along with state-of-
the-art AI-based mechanisms for scalability, efficiency and automation. The developed system is based on a
hierarchical approach that enables flexible and efficient management of network tasks while introducing a
diverse set of decentralized levels through optimal adaptive assignment of monitoring and analysis functions
for the current and future status of slices.

The major technical contributions and innovations of MS/AE focus on Scalability and Automation. We embed
MS/AE into slices as management entities that provide slice-specific monitoring and analysis services. Within
each slice, the hierarchical management strategy is extended and applied. Monitoring and analysis operations
are distributed to the local management entities associated with the corresponding functional units such as
VNFs, domains and slices near which the management data and tasks are generated. The distribution of
operations between adjacent layers and between entities on the same layers is optimized using AI based
techniques such as federated learning. The state-of-the-art machine learning and representation learning
techniques are tailored and developed for the decentralized management tasks. The resulting MS/AE enables
online monitoring and analysis of each layer of functional entities for a massive number of slices with a
significant reduction in communication overhead and delay.

In particular, the MS is based on the specifications for autonomic network management and cloud-native
design. The MS can be conceived as a cross-domain virtual layer hosted by a NFV IFA 029 compliant PaaS (i.e.,
Container Infrastructure System (CIS)). The decentralized MS distributes monitoring tasks across multiple
levels of the management hierarchy (node, slice, domain, and inter-domain) in a programmable manner.
After being triggered and configured by AE, the programmable MS entities connect the corresponding
infrastructure and functional entities, e.g., VNFs, to gather the requested telemetry data with the granularity
defined by AE. We introduce three types of APIs, including Control API, Data Collection API, and Data
Processing API, to connect the MS entities to a MS bus to process real-time data feeds for unified, high-
throughput and low-latency communication. As shown in Figure 1, MS provides the following key benefits:

• The distributed MS entities, as part of the Slice Management Layer (SML), fulfil tight metrics sampling
loops (see Sampling Function, abbreviated as SF, in the figure) for the entities in the Slice Function
Layer (SFL) where the management data/tasks are generated, so that the communication overhead
introduced by MS itself is minimized.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 13

• Additional MAPE-based embedded element managers (EEMs) are deployed with the functional
entities to support fine-grained local telemetry collection. It also provides additional flexibility of
specific aggregators for various AE and DE functions.

• The configurations of the distributed MS entities are defined and triggered by the AE/DE entities with
AI-based policy-driven mechanisms that represents a decisive step towards a highly automated slice-
level monitoring system.

Figure 1 Illustrates the MonB5G MS: internal components and reference points (left) and implementation of
MS for two domains (right)

AE provides a variety of slice-specific analytics for inter-domain, cross-domain and network-aware KPI
inspections with a focus on AI-based scalability and automation. The novelty of AE focuses on the challenges
posed by decentralized management. On the one hand, AE distributes analytics tasks locally to reduce
communication overhead and unexpected delays. On the other hand, local analysis lacks a global view of
slice/network status, so predictions can be less accurate and even deviate from the actual situation.
Moreover, an AI driven strategy should be used to learn how to optimally distribute analysis operations
among management entities. To this end, the techniques of distributed ML and federated learning are being
explored. The main innovations are shown in Figure 2. In this process, abstract information (patterns and
data representations) is extracted and exchanged between lower and upper layers of the management
hierarchy to balance local predictive performance with time/resource costs. In addition, other novel ML
techniques, such as representation learning and context-aware analytics, are being explored for AE. The main
AE features include, for example:

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 14

Figure 2 Decentralized AE operations via federated learning (left) and distributed neural networks (right)

• Federated Resource estimation with low SLA violation: This AE feature introduces a set of well-
designed statistical constraints for distributed network management with enhanced federated
learning. The novel feature facilitates decentralized resource allocation in network slices while
guaranteeing very low violation of SLA.

• Moving analysis locally with distributed neural networks: The distributed AE entity can support slices
that are deployed in different domains. It facilitates prediction of sophisticated KPIs that depend on
the performance of all components (VNFs, links, across domains) of a slice. The prediction offloading
mechanism is data-drive, learn to optimize itself based on actual situations.

• Enhanced traffic load prediction: Traffic load forecasting is essential for many downstream tasks such
as resource allocation and admission control. The innovative AE feature can predict traffic load for
any technological domains. This feature integrates additional regularizations to model penalties for
over and under allocation of resources as well as resource reallocation settings. By ensuring that the
right number of resources are provisioned to a network slice when needed, it significantly reduces
the likelihood of SLA violations, and guarantees user perceived QoS.

• Local fault detection enhanced with neighbourhood information: This AE feature identifies the local
anomalies based on the learned normal behaviours of the monitored entities. By employing a graph -
based neural network, we integrate the information of neighbourhood entities. The anomalies can
thus be better detected, as this feature considers not only the status of the monitored entity itself,
but also a globe view of the related entities.

• Cross-domain anomaly detection with distributed optimization: All nodes in the network can obtain
the global minimum value by communicating only with their neighbours, without the need of a central
coordinator. The AE feature is asynchronous, namely, nodes can activate at any time without having
to wait for any other specific event in the network. Moreover, this feature does not requi re data
exchange among nodes, which largely reduces communication overhead.

In summary, MonB5G MS and AE enable distributed AI-driven monitoring and analytics for managing a large
number of slices. The decentralized monitoring and analytics operations are distributed among the
hierarchically structured management entities with a focus on reducing communication overhead and delay.
The distributed ML and FL techniques are extended to fit the decentralized management architecture, i.e.,

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 15

they automatically learn the distribution policies to balance predictive performance and overhead/delay. This
work is an important step towards scalable intelligent monitoring and analytics capabilities for zero-touch
slice management.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 16

2 Introduction

2.1 Scope

This deliverable reports on the accomplishments of Work Package 3 (WP3) of the MonB5G project related to
AI-driven techniques for the MS and AE for Zero-Touch Distributed Slice Management and Orchestration.
Beyond the initial development reported in the deliverable D3.1, this document covers the improved design
and implementation of MS and AE and the promising validation results. In particular, we explore the
scalability of the components, with distributed AI techniques tailored to the decentralized and pro grammable
management architecture leading to significant reductions in communication overhead and time delays that
can result from monitoring and analysis. We also report on two datasets generated with 5G simulators that
were used to test the proposed analysis functions, and will be published as an outcome of the MonB5G
project for the benefit of the 5G/B5G research community.

To the best of our knowledge, the proposed MS and AE are the first attempt in the literature that can fully
embed themselves in a decentralized management platform, significantly increasing the efficiency and
scalability by distributing these management operations to adjacent layers and multiple entities in the same
layer. The AI-driven techniques are explored to learn the optimal distribution policies considering the highly
dynamic network status. Although the operations are performed locally, near the nodes where monitoring
telemetries are generated and orchestration is performed, the use of the distributed AI techniques still
enables a comprehensive and accurate analysis that integrates a global view of the network entities involved.
Overall, the resulting MS and AE provide promising enablers for monitoring and analyzing a massive number
of coexisting slices using distributed, AI-driven techniques with low-overhead and delay.

2.2 Motivation

Given the huge benefits of network slicing for Mobile Network Operators (MNOs) and their customers, 5G
networks are expected to support a massive number of coexisting network slices with different performance
requirements, functionality and time spans [1] [2] for a variety of vertical industries. The commonly used
centralized network management systems face significant challenges to handle the highly complex networks.
An intelligent and scalable slice management platform is expected to orchestrate network infrastructure and
resources to dynamically and proactively enable the requested services and preferences. To this end, the
MonB5G platform has been developed with promising achievements.

As important management entities of the MonB5G platform, MS and AE will track and analyse the current
and future status of slices and participating functional entities deployed in various technical domains. The
telemetry data collected by MS and the analysis results from AE are important indicators that will be provided
to Decision Engine (DE) to optimize admission and orchestration. Since a large number of slices coexist in the
network infrastructure and each slice is often deployed in different technical domains, some new challenges
arise. Technically, the MS must meet the following requirements:

• The centralized cloud management system will need to evolve to a distributed, network state-aware
system to handle large number and high dynamicity of slices envisioned in 5G scenarios and beyond.
This will improve both the scalability and reaction time of network slice self -management and self-

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 17

configuration to achieve true zero-touch network management. Deploying such a platform will
require effective, detailed and sophisticated monitoring of KPIs and subsystem behaviour metrics,
the analysis of which will reveal potential or novel issues in the functionality of the framework.

• A distributed management plane must go hand in hand with the use of data-driven mechanisms based
on Artificial Intelligence (AI) algorithms for both distributed data analytics and automated decision
making and optimization. For AI-driven implementations of these components to be able to respond
automatically, rapidly, and scalably to non-stationary network conditions, new traffic patterns, and
evolving slice characteristics and intent policies, novel distributed Machine Learning (ML) algorithms
are needed. Training these algorithms requires the collection of large datasets of system-level
information. Such information can only be obtained through a cutting-edge monitoring system, the
deployment of which is an overall priority for MonB5G.

As for AE, it faces a number of other technical challenges. To support automatic data analytics for large
number of 5G network slices, the AE will use novel ML/AI techniques. Current research results have
demonstrated the potentials of ML/AI. However, slice-based network management raises a set of new
technical issues in managing heterogeneous resources (e.g., communication, computational and storage).
Previous H2020 calls have already established a solid framework for developing uniform network
management and orchestration systems, (e.g., 5G!Pagoda, 5G-EVE, 5GENESIS and SliceNet) but there are still
open issues to enable intelligent, scalable, and proactive slice analytics solutions, such as:

• Distributed management plane to support massive deployment of network slices.

• Definition of novel end-to-end (e2e) slice Key Performance Indicators (KPIs) and development of AI-
based mechanisms for their accurate prediction from multi-level metrics.

• Data-driven management system based on federated learning.

To solve all these challenges, we are developing MonB5G MS and AE with promising results. They are
embedded in the slices as distributed AI-based management entities that are deployed locally in different
technical domains, but collaborate to automatically monitor and analyse the corresponding slices. The
distributed ML and federated learning methods are developed to accurately analyse the selected slice KPIs
for resource-efficient decentralized management.

2.3 State-of-the-Art Technologies and Specifications

Data collection and analytics for 5G networks have been investigated extensively in both research literature
and standardisation, as they play an important role in network (slice) management. This section provides a
brief review of state-of-the-art techniques as well as the recent releases from 3GPP related to these entities.
Further details can be found in [3].

2.3.1 DATA COLLECTION (MONITORING)

 Different monitoring approaches are being researched and proposed depending on different layers and
nodes of 5G networks. For example, VNFs, deployed as VMs, leverage the telemetry capabilities of first the
VIM and later NFVO/MANO stack of choice. This has led to a number of relevant projects, for example:

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 18

• OpenStack: the set of projects under OpenStack Telemetry, with Ceilometer being the one most
widely adopted1.

• OPNFV: the Barometer project2 and the VES project3.

• OSM: the OSM MON module and respective Performance Management capabilities4.

• ONAP: the Data Collection Analytics and Events (DCAE) project5.

Recently there have been efforts to enable network monitoring in a programmable fashion6 and ongoing
standardization activities under IETF7.

On the CNCF (Cloud Native Computing Foundation) side, there is a separate set of projects under the
Observability & Analysis section of the landscape8, with Prometheus9, fluentd10 and Jaeger11 as the graduated
monitoring, logging and tracing projects correspondingly, with OpenMetrics/OpenTelemetry aiming to
establish open standards and protocols. The open APM (Application performance monitoring) ecosystem is
even broader12.

In addition, since 5G service implementations generally adopt cloud-native approaches, service
infrastructures/frameworks are expected to offer monitoring as common baseline capability. On the other
hand, specialized appliances are expected to better position themselves in a hybrid multi -cloud world with
cloud-native applications and services. The enhancements towards cloud native and PaaS are discussed in
ETSI IFA029, where the concept of VNF common and dedicated services has been introduced. These VNFs are
instantiated within the PaaS and provide data collection capabilities that are consumed by the network
services running over the PaaS [4]. Importantly, a generic monitoring service is now considered a specific
example of a VNF Common Service. Since Kubernetes is used asservice orchestration framework, the
implementation will most likely be based on the technologies/projects in the corresponding area of the CNCF
landscape. For example, ONF Edge Cloud13 platforms, i.e., Aether, CORD & XOS, have already adopted the
pattern of offering logging and monitoring as platform microservices, leveraging projects from the CNCF
observability and open APM ecosystems (Kafka, Prometheus/Grafana and ELK/Kibana).

1 https://wiki.openstack.org/wiki/Telemetry
2 https://wiki.opnfv.org/display/fastpath/Barometer+Home
3 https://wiki.opnfv.org/display/ves/VES+Home
4 https://osm.etsi.org/wikipub/index.php/OSM_Performance_Management
5 https://wiki.onap.org/display/DW/Data+Collection+Analytics+and+Events+Project
6 https://p4.org/p4/inband-network-telemetry/
7 https://datatracker.ietf.org/doc/draft-ietf-opsawg-ntf/
8 https://landscape.cncf.io/category=observability-and-analysis
9 https://prometheus.io
10 https://www.fluentd.org
11 https://www.jaegertracing.io
12 https://openapm.io
13 https://www.opennetworking.org/onf-edge-cloud-platforms/

https://wiki.openstack.org/wiki/Telemetry
https://wiki.opnfv.org/display/fastpath/Barometer+Home
https://wiki.opnfv.org/display/ves/VES+Home
https://osm.etsi.org/wikipub/index.php/OSM_Performance_Management
https://wiki.onap.org/display/DW/Data+Collection+Analytics+and+Events+Project
https://p4.org/p4/inband-network-telemetry/
https://datatracker.ietf.org/doc/draft-ietf-opsawg-ntf/
https://landscape.cncf.io/category=observability-and-analysis
https://prometheus.io/
https://www.jaegertracing.io/
https://www.opennetworking.org/onf-edge-cloud-platforms/

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 19

As cloud-native and edge-enabled service deployments become a reality, the next challenges are analysing
the vast amounts of telemetry data generated by monitoring systems and the need for human-in-the-loop
operations which increases toil (and costs). The evolution of monitoring and APM towards greater
automation and intelligence through ML/AI techniques is commonly referred to as “AIOps”. The recent
project Acumos AI [https://www.acumos.org] which is an integration of ONAP DCAE with the Linux
Foundation, is exactly a development in this direction.

2.3.2 DATA ANALYTICS

Data Analytics have become increasingly important in 5G network management. A variety of ML techniques
have been successfully extended and applied to provide diverse analysis functions in different problem
domains.

Supervised Learning, for example, is one type of ML methods where the problems of classification and
prediction are very important. The methodology for applying this type of learning requires data that is
labelled in some way and whose expected outcome is known to train a function approximator that can be
used to label/classify/predict the outcome of never-before-seen data inputs. Unsupervised Learning is in
similar direction, but in this type of ML the labels of the data and the expected output are not known, and
the function approximator must determine these labels itself, e.g., Principal Component Analysis (PCA).
Another family of ML methods widely used in network management is Reinforcement Learning (RL), in which
an agent learns to perform an optimal action based on its inputs and a reward function that provides the
agent with a measure of its performance. There are various promising lines of research being explored for
network analytics, such as:

• Traffic prediction within the context of mobile communications. The ML techniques have been
successfully used to forecast traffic load of networks, slices, and VNFs [5] [6] [7] [8]. For example,
Feed-Forward Neural Networks (FFNNs) and Autoregressive Integrated Moving Average (ARIMA)
methods have similar performance for time-based prediction [9] [10], while LSTM-based predictors
have shown better performance than ARIMA and FFNNs [11].

• Classification and Anomaly Detection. There are many types of anomalies that can be identified in a
mobile communication network. These anomalies range from the simplest faults, such as links broken
at the physical layer (broken wires or antennas), to application layer malfunctions and system
overloads. A typical anomaly is network congestion, which has been studied using time series
forecasting [12] [13] [14] [15] [16] [17]. In addition, Xie et al. [18] used a Deep RL approach to solve
the congestion problem by determining the initial congestion window (IW).

• Graph Representation Learning. Graph data is pervasive in 5G networks such as the graphs created
by the VNFs and virtualized links of a network slice. To handle this kind of data, diverse graph-based
ML methods have been explored, e.g., Graph Convolutional Networks (GCN) [19] and Relational
Graph Convolutional Network (RGCN) [20]. The representation of graph features extracted by a graph
model has been successfully used in recent works on automatic virtual network embedding, e.g., [21]
[22] [23].

• Federated Learning (FL). FL is a recent ML paradigm, which allows multiple agents to train a shared
model in a decentralized manner without exchanging their local data. Current research on FL
addresses many challenges caused by the standard centralized learning mode, e.g., [24] [25] [26] [27].

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 20

• RL for Dynamic Resource Allocation (DRA). DRA is enhanced with RL techniques to avoid or largely
alleviate the problems of under- and over allocation of resources. The traditional DRA approach often
sets a small utilization threshold. Resources are scaled vertically or horizontally when the predefined
threshold is reached. RL methods observe the current environment – which comprises everything
outside the agent and dynamically (globally or locally) select optimal actions [28]. For example, [29]
develop a centralized online DRL-based dynamic resource allocation scheme for networks slicing,
while the authors in [30] design and implement an adaptive online DRL approach, NFVdeep, to
automatically deploy Service Function Chains (SFCs) to respond to various QoS requests.

2.3.3 STANDARDISATION RELATED TO MS/AE

3GPP has recently released multiple specifications related to MS and AE, such as Network Data Analytics
Function (NWDAF) and Zero-Touch Service Management (ZSM). They have also been defined for dealing with
network slicing. We present here the relevant functions for 5G networks and for 5G network slicing.

Network Data Analytics Function (NWDAF)

The NWDAF function was introduced in R15 (TS 23.501 [31]) by 3GPP for the 5G Core network. The details of
NWDAF are described in TS 23.288 [32] and TS 29.520 [33]. The NWDAF allows network operators to either
implement their own ML based data analytics methodologies or integrate third-party solutions into their
networks. The NWDAF, as defined in TS 23.503 [34], is used for centralized data collection and data analytics.
Figure 3 illustrates the architecture of the NWDAF:

Figure 3 Distributed Architecture of NWDAF in R16 and R17

The Data Collection feature allows NWDAF to retrieve data from various sources (e.g., NFs such as AMF, SMF,
PCF or other NFs) that include: OAM global NF data, behavioural data related to individual UEs or UE groups,
metrics covering UE populations by spatial and temporal dimensions (e.g., per region for a given time pe riod)
For this purpose, NWDAF may use Generic Management Services (defined in TS 28.532) or Exposure Services
provided by NFs/AFs to retrieve data not provided by OAM. In the case of network slices, NWDAF must
determine which NF instance(s) of the relevant NF of a slice serve the UE or group of UEs (S-NSSAI(s) may
assist in this determination).

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 21

Data collection procedures of NWDAF should allow data collection with the appropriate granularity. The Data
Collection from NFs/AFs is based on AMF, SMF, UDM, PCF, NRF and AF services. This mechanism is used to
obtain information on UEs. The information obtained from OAM may include NG RAN or 5GC performance
and fault measurements as well as 5G end-to-end KPIs.

Data analytics performed by NWDAF are either statistical information about past events or predictive
information. The NWDAF analytics include:

• Slice load level related network data analytics.

• Observed Service experience related network data analytics.

• NF load analytics.

• Network Performance Analytics.

• UE related analytics.

• User data congestion-related analytics.

• Data congestion-related analytics

• QoS Change analytics.

Zero-Touch Service Management (ZSM)

The ZSM framework, defined by ETSI, introduces closed-loop (CL)-based automation that includes an
analytical function (AF) and a Data Collection Function (i.e., monitoring) that are interfaced with several
internal as well as various external entities (authorized by ZSM). Figure 4 visualizes the closed loop and its
functions within the ZSM framework.

Figure 4 Functional View of a Closed Loop and its Functions within the ZSM Framework [35]

There are two functions closely related to MS and AE. The Collection Function is responsible for gathering
and pre-processing data from managed entities (e.g., VNFs) or from external sources (e.g., context awareness
positional data). Here the data can have different formats and be transferred from one or more sources
(databases or streams) to a destination where it can be stored and further analysed. Since the data have
different origins, each source must be transformed so that it can be analysed in conjunction with data from
other sources.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 22

The Analysis Function is responsible for deriving insights from available data gathered at the collection stage
as well as historical data. An insight is jointly extracted from the data and the appropriate context. An
example of an insight might be the conclusion that congestion has occurred in a set of resources, and the
context might be the location, time and date, the service affected, the users involved, and the underlying set
of slice resources. Insights can determine the root cause and locate it in the network. Deriving insights is
therefore a continuous process that can be extended with new data. Analysis is able to continuously improve
its results and provide better decision options to the decision function.

2.4 MonB5G Novelty and Contributions on MS/AE

The developed MS and AE are shifting their operations toward a decentralized, data-driven framework with
little or no human intervention. To automatically manage a large number of slices, the developed MS and AE
are embedded in the slices as distributed AI-based management entities that are locally deployed in different
technical domains but interoperate together to automatically manage the corresponding slices focusing on
service quality, energy efficiency, and communication resource optimization. We are mainly bringing in the
following novel techniques here:

• The distributed MS entities, as part of the Slice Management Layer (SML), fulfil tight metrics sampling
loops for the entities in the Slice Function Layer (SFL) where the management data/tasks are
generated, so that the communication overhead introduced by MS itself is minimized.

• Additional MAPE-based embedded element managers (EEMs) are deployed with the functional
entities to support fine-grained local telemetry collection. It also provides additional flexibility of
specific aggregators for various AE and DE functions.

• The configurations of the distributed MS entities are defined and triggered by the AE/DE entities with
AI-based policy-driven mechanisms that represents a decisive step towards a highly automated slice-
level monitoring system.

• FL is extended for decentralized resource estimation to maintain low SLA violation. This AE feature
introduces a set of well-designed statistical constraints for distributed network management with
enhanced federated learning. The novel feature facilitates decentralized resource allocation in
network slices while guaranteeing very low violation of SLA.

• Distributed neural networks are employed to move analysis operations locally. The distributed AE
entity can support slices that are deployed in different domains. It facilitates prediction of
sophisticated KPIs that depend on the performance of all components (VNFs, links, across domains)
of a slice. The prediction offloading mechanism is data-drive, learn to optimize itself based on actual
situations.

• We enhance AI-based traffic load prediction by improving the learning procedure with context-aware
loss. Traffic load forecasting is essential for many downstream tasks such as resource allocation and
admission control. The innovative AE feature can predict traffic load for any technological domains.
This feature integrates additional regularizations to model penalties for over and under allocation of
resources as well as resource reallocation settings. By ensuring that the right number of resources
are provisioned to a network slice when needed, it significantly reduces the likelihood of SLA
violations, and guarantees user perceived QoS.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 23

• Local fault detection is enhanced with neighbourhood information. This AE feature identifies local
anomalies based on learned normal behaviours of monitored entities. By employing a graph-based
neural network, we integrate the information of neighbourhood entities. The anomalies can thus be
better detected, as this feature considers not only the status of the monitored ent ity itself, but also
a globe view of the related entities.

• We accomplish cross-domain anomaly detection with distributed optimization. All nodes in the
network can obtain the global minimum value by communicating only with their neighbours, without
the need of a central coordinator. The AE feature is asynchronous, namely, nodes can activate at any
time without having to wait for any other specific event in the network. Moreover, this feature does
not require data exchange among nodes, which largely reduces communication overhead.

2.5 Structure of the Deliverable

The main technical chapters of the deliverable are listed in Table 1. Here we also map the tasks defined in
the grant agreement (GA) to the outputs reported in this deliverable to clarify and position the innovative
contributions within the framework of the MonB5G project.

Table 1 Deliverable Structure and Mapping with Project Tasks

Chapter Description Task(s) Starting Month

2
Introduce the motivations, state-of-the-art, as well as main
contributions of the proposed MS/AE solutions

T3.1 - T3.3 M4

3
Present the major strategies and techniques explored by
MonB5G MS/AE to achieve good scalability

T3.1 - T3.3 M4

4
Describe the 5G oriented datasets generated by the project,
and the established simulators

T3.1 M4

5

Describe the position of MS/AE in the MonB5G architecture,
and the interactions between MS/AE and other management
components.

T3.1 - T3.3 M4

6

Report the design and implementation of the monitoring
system, including MS at different technical domains, selected
telemetries that are important for tracking the slice status, as
well as the implementation details, visualization of some
samples.

T3.1 M4

7

Introduce the MonB5G AE for KPI prediction, including local KPI
prediction, cross-domain KPI prediction, as well as network
aware KPI prediction

T3.2 M7

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 24

8

Report the AE for fault management, including local fault
management, and outlier identification in networks with
decentralized optimization

T3.3 M7

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 25

3 Scalability of MonB5G MS/AE

A key focus of the MonB5G project is to solve the scalability issue of network slice management, i.e., a
scalable system to administrate a massive number of coexisting network slices with different technical
requirements. As essential components of the platform, MS and AE are developed in a distributed and
programmable framework. They distribute AI-enabled management operations at different levels of the
management hierarchy and provide significant complexity reduction and fast analysis of the slices. Unlike the
centralized management systems, the monitoring and analytics functionalities of the proposed management
platform are embedded locally as part of the slices with the AI-driven enablers to achieve high scalability,
especially for slices in multi-domains. To strengthen AE, novel distributed machine learning techniques, such
as federated learning and distributed neural networks, are extended and adapted to fit the distributed
management architecture. The resulting solutions effectively support the desired scalability.

In this chapter, we present the scalability of the MonB5G MS and AE. We start with the current challenges in
scalable slice management and then discuss the vision and strategy of MonB5G, along with the technical
contributions in MS and AE, to improve the scalability of slice management systems. Finally, we summarize
the main achievements of the work package related to scalability.

3.1 Scalable AI-driven Network Management

With the deployment of virtualisation technologies such as Virtualized Network Functions (VNFs) and
Software Defined Networks (SDNs), network slicing is being introduced as a key technical advancement to
provide tailored communication services with different performance requirements, functionalities and time
spans. In the future, 5G networks are expected to support massive number of network slices for a variety of
vertical applications, which will benefit innovative business models, not only for Mobile Network Operators
(MNOs), but also for MNO customers, who can dynamically request and negotiate services and performance
to achieve personalisation, resource and cost efficiency. However, the high number of parallel, flexible slices
brings additional challenges for network management, especially scalability.

Most existing network management systems, such as MANO, are problematic in managing numerous slices
in a scalable manner, especially in the presence of multiple technical domains as often envisioned in the
context of network slicing. A network slice consists of a set of interconnected VNFs, each of which
encapsulates specific sub-services to perform functionalities for which it is designed. To meet the service
requirements defined by the customer, a virtual subset of the physical resources of the network
infrastructure are allocated to the slice. Depending on the exact definition of the service, the slice, i.e., a
group of connected VNFs may be distributed across multiple network domains. Therefore, the slice
management systems should perform administration tasks in e.g., RAN, Edge and Cloud, which is different
from the traditional network management. The current MANO solutions mainly focus on centralised
approaches. In this scheme, the communication between the orchestration entity and the distributed
networking entities are intensive, as shown in Figure 5:

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 26

Figure 5 Centralized Network Slice Management

On the one hand, the monitoring information is forwarded to the centralized administration, on the other
hand, the management decisions related to CHOP (Configuration, Healing, Optimization, and Protection) of
each slice are returned to the distributed network components after analysing the data from the managed
entities. Thus, the centralized management approaches cause significant problems:

• Large traffic overhead

• Unexpected delays due to delayed responses

When the number of slices increases, the situation becomes critical. The size of the monitoring data increases
dramatically, especially when the slices span multiple domains. In each domain, the slices generate enormous
monitoring telemetries. Transferring the management-related data to the administration centre consumes
additional communication resources, and introduces unexpected latencies due to time cost of
communication between the local network entities and the central administration. In domains (e.g., RAN)
with stringent time constraints, this problem is critical. Overall, the limited scalability of centralized
orchestration approaches is not applicable when managing a large number of slices. Considering the high
variability, there are two main requirements for the novel slice management systems:

• Ensure up-to-date monitoring information with low overhead during the administration process.

• Enable automatic online analysis and decision making in response to unexpected network dynamics.

Thus, an efficient and intelligent closed-loop solution of AI driven monitoring, analysis, and actionable
decision making must be to orchestrate a massive number of parallel network slices. However, a s implied by
the Universal Scalability Law (USL) [36], increasing processing resources does not guarantee scalability, as it
also increases the complexity of their management, the degree of contention in the system and suffers from
a lack of collaboration among distributed decision entities. From a technical point of view, as shown in Figure
6, a scalable architecture must make a trade-off between the following factors:

• Using shared resources to minimise contention but also avoiding complex management of
unnecessary resources;

• Information flow through the exchange of only compressed parameters instead of raw data;

• Degree of collaboration by enabling the exchange of inferences between decentralised
analytics/decision engines, avoiding that they end up in competing approaches or overly collaborative
situations.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 27

Figure 6 Scalability trade-offs [37]

MonB5G aims for at least linear scalability, i.e. the network is able to handle a high number of concurrent
slices without sacrificing lifecycle management (LCM) KPIs or AI performance. From a design viewpoint, the
MonB5G solution fulfils the above trade-offs because it has the following features:

• Hierarchical architecture per technological domain [38]: Intuitively, in flat architectures, a
considerable increase of admitted slices would lead to performance degradation due to a large
number of peer-to-peer message flows or AI-based inference exchanges between the different
distributed local management entities. Similarly, in purely centralized architectures, a large amount
of raw monitoring data originating from a large number of parallel slices must pass through multiple
technological domains to be analysed and used for centralized decision-making. This poses a
challenge to transport and processing queues, leading to contention and large delays/overhead. In
contrast, MonB5G defines a fine-grained, distributed, yet hierarchical slice management architecture,
where analysis and decision are located close to the monitored resources. At the same time, for a
higher escalation level (slice-level, domain-level or IDMO-level) is considered, where a specific LCM
coordination, inference aggregation, or long-range policy takes the lead, based only on compressed
parameters sent by local entities.

• MS/AE/DE defined per slice: This means fewer contention compared to centralised approaches.

• Decentralised and collaborative analysis/decision making: The scope of collaboration is limited to a
well-selected subset of AEs/DEs for efficiency reasons. This implies a per slice-type or per-domain
selection policy or selection of AEs that provide a better performance improvement.

• Compressed models sharing: Trade-off between sharing raw data and not sharing data. In this case,
only compressed models or data are shared across the network.

3.2 Vision and Strategies of MonB5G for Scalable MS and AE

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 28

As essential components of the MonB5G platform, MS and AE embed into the architecture of the distributed
management system (please refer to D2.4 for details) and enable compelling performance in terms of
scalability with mainly two novel contributions:

• Distribution of hierarchical monitoring and analysis operations in different domains of network slices.

• Tailoring and extending novel distributed AI technologies for efficient and accurate analysis.

The hierarchical orchestrator has recently gained attention due to its flexibility in distributing a variety of
management tasks across entities targeting different network domains. In particular, a network slice can be
viewed as a combination of a set of sub-slices, each of which is often deployed in different domains. To
overcome centralised approaches, which are problematic due to traffic overhead and delay, multiple
management elements, such as monitoring and analysis, are introduced into each domain -specific sub-slice,
which is logically closer to the pool of resources to be managed, enabling faster and even proactive slice KPI
prediction and fault detection. The hierarchical orchestration provides different levels of centralisation for
monitoring and analysis. The hierarchical structure allows these management tasks to be performed at lower
levels, effectively limiting monitoring overhead and reducing the reaction time.

Furthermore, we see distributed AI as the key to automated and scalable management for optimal
distribution of analysis tasks across different hierarchical layers. On the one hand, the AI functions directly
analyse the status of network entities without human intervention so that the requested KPIs can be
efficiently predicted on pre-defined time scales (often stringent) on RAN, transport, NFV infrastructures, and
E2E network slices. Thus, the AI-based analytics functions provide latency improvement, and enable
processing of more network slices in a given time. On the other hand, deploying AI methods in a distributed
architecture is not straightforward. In such a decentralized management framework, the analysis function is
expected to be executed locally, i.e., near the data over which it is generated to reduce traffic load and enable
fast predictions. However, the local data is not capable of providing an overall view of the network status.
The accuracy of local predictions needs to be calibrated in an effective way.

In addition, local resources are usually limited, so the capabilities and flexibility of local AI models are less
powerful to handle complicated situations that often occur in the context of a highly dynamic network
environment. Therefore, the novel distributed AI technologies should be leveraged and extended to optimize
the distributed analysis operations. In particular, the local AI models need to integrate the information and
patterns learned with the global data. When the local AI-driven analysis is unable to solve the newly arrived
complicated tasks, it performs initial inference task and provides the upper layers with the refined
information (instead of the raw monitoring data) to facilitate problem solving and reduce the communication
overhead. In this context, the policy of information exchange between adjacent levels (horizontal and
vertical) is particularly critical, as it affects the overall ability of AE to provide the requested analysis functions
promptly. Therefore, the distributed AI technologies are adapted to learn the best distribution of analysis
tasks in the orchestrator hierarchy according to the current network status.

3.2.1 SCALABLE MS

The MonB5G monitoring system is designed to collect detailed information about the current status of
network slices, which are often deployed in multiple domains. To provide up-to-date monitoring for online
analysis of slice KPI and reconfiguration in response to unexpected network dynamics, scalability of MS is an

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 29

essential aspect for managing a large number of slices. To achieve the goal of scalability, we employed several
strategies in the design and implementation of MS, which are discussed in this section.

The first strategy that facilitates the scalability of MS is its distributed architecture. The MS is designed based
on the microservice architecture and implemented as a cloud-native application in a Kubernetes cluster. This
means first that the MS benefits from the auto-scaling features of Kubernetes. More specifically, the
resources of MS can be adjusted depending on the load; this requires defining the auto -scaling rules in the
Kubernetes deployment. Kubernetes, as the orchestrator of the application, monitors load of the system and
adjusts the number of pods based on the auto-scaling rules to keep the system load below the given
threshold. Second, in MS, all components, including the Sampling Functions (SFs), are implemented as
containers and deployed as pods in the Kubernetes cluster. On the other hand, each cluster can have multiple
working nodes which means that the system can be scaled by increasing the number of slices to be monitored
and consequently the number of SFs by adding more working nodes.

Figure 7 shows the distributed deployment of MS across three physical nodes. In this deployment, the
messaging bus, implemented by Kafka, is stretched in all three nodes (this “stretched cluster” feature is
supported by Kafka). This means that any message published by any producer on any node is available to all
consumers on all nodes. In this deployment, Node 1 only hosts the manager and the TSDB (Time Series Data
Base) pods. Node 2 and Node 3 host three different sampling functions that run separately. All of these
components communicate over the Kafka bus. If more sampling functions are needed and the resources on
Node 2 and Node 3 are not sufficient, another node can be added to the cluster. This deployment
demonstrates the linear scalability of the MS.

Figure 7 Distributed deployment of the monitoring system

The second strategy to achieve the scalability goal is the hierarchical architecture of the monitoring system,
i.e., it is possible to have multiple sub-monitoring systems which are collaborating in a master-slave pattern,
and the data monitored by the slave MS can be further gathered by the master MS as needed. With this
hierarchical structure, monitoring tasks can be performed at lower levels, limiting data traffic and reducing
the reaction time. Monitoring information can be extracted directly from distributed MS entities and
aggregated locally. Figure 8 shows the hierarchical deployment of the monitoring system. It is a hierarchical
deployment where the monitoring systems in the lower part of the figure are the low-level ones that directly
monitor the resources such as VNF and PNF. However, the MS in the upper part is the higher-level MS, which

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 30

does not directly monitor the resources. Instead, it connects to the broker or TSDB of lower level MSs to
gather data from them. When using MS in a multi-domain network, a low-level MS can be instantiated for
each technological domain, and the high-level MS would be a centralized MS that gathers data from multiple
domains.

Figure 8 Hierarchal deployment of monitoring systems

In this figure, the monitoring systems at the bottom of the figure primarily monitor their corresponding
domains. The telemetry data gathered by these monitoring systems is available through the “q” and “db”
interfaces. The sampling functions in the central MS (the monitoring system in the upper part of the figure)
can use these interfaces to gather the data from the other MS. An important point to emphasize is that the
sampling functions in the central MS do not need to gather all the raw data sampled by the MSs of domains
I, Instead, many different preprocessing methods such as filtering, aggregation, and even AI -based
compression/extraction are applied to the local data before transmission, largely reducing the amount of
data for the central system.

The third strategy to achieve the goal of scalability is to reduce the footprint of the system. To reduce the
resource footprint of the whole Slice Management Layer (SML), MS components are shared among other
administrative components i.e., AE and DE. This can be partially seen in Figure 8, where the Streaming Bus
also reaches AE and DE. Moreover, the TSDB is also accessible to AE and DE (via the db reference point, as
shown in Figure 8) so, they can use it to store analytics or policies, respectively. Additionally, Sampling
Functions can allow more than one TARGET for the same eem-nbi. This means that a single sampling function

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 31

can sample multiple telemetry data if the corresponding EEM supports it. This feature can significantly reduce
traffic between MS and EEMs and improve the scalability of the system.

The final strategy for improving the scalability of the monitoring is the way sampling functions are
implemented. Each sampling loop is implemented by a single Docker image. In this way, the loop resides
inside the Docker image, and there is no need to frequently create and destroy the sampling function
container. More specifically, the container of the sampling function is deployed only once and receives
samples from the EEM on a regular basis.

3.2.2 SCALABLE AE

The AE is designed to analyze the status of network slices using telemetry data collected by MS. Its outputs,
i.e., the analysis results, are then reported to DE as key indicators to learn from and infer actionable decisions
to maintain and optimize the slice performance defined in SLAs. Since slices can be deployed in multiple
infrastructure domains and the slice-level KPIs are diverse, there are a variety of analysis operations
performed in AE, such as traffic load forecasting for RAN, resource usage prediction for Edge, and SLA
violation detection for Cloud, which are computationally complicated and may potentially in volve data from
multiple domains.

As the number of slices increases, the scalability of AE becomes critical. To address the problem, we first
embed AE into the distributed MonB5G platform to achieve good scalability due to its hierarchical and
decentralized architecture. More importantly, AE extends the novel distributed AI technologies to optimally
distribute the analysis operations across different layers and entities. Specifically, we identify the following
strategies to extend the distributed AI methods to improve scalability:

1. Analysis operations should be distributed among different layers of the management hierarchy. In
this way, analysis will make full use of local computing resources and provide online analytics services
to function entities without unexpected delay.

2. The analysis should be executed close to the location where the data is generated. This will
significantly reduce communication overhead and time costs.

3. The distribution of analysis operations among management entities should be optimized by AI -
driven methods that depend on the current and (forecasted) future network status. Although a
threshold based static solution can be a good starting point, novel distributed AI, such as federated
learning and distributed neural networks, will be key to optimizing analysis operations to address the
challenge of high network status variability. In addition, these AI techniques facilitate the local AE to
integrate a global view of slice status during local analysis.

Distributed AI technologies play a critical role in improving scalability of the AE. Although AI methods have
been widely integrated into network management, such as the 3GPP defined Network Data Analytics Function
(NWDAF) in the 5G Core network and ETSI-defined zero-touch service management (ZSM) for management
automation, most existing AI-driven solutions focus on centralized solutions and the use of AI methods under
a distributed management platform is still challenging in terms of the distribution of the algorithms
themselves. For distribution of analysis operations between adjacent layers, and between multiple
management entities on the same layer, the AE extends the following novel AI technologies:

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 32

• Federated learning (FL). The FL methods have been viewed as a key enabler for distributed
management. They make no assumptions about the local data, and therefore allow for
heterogeneous local data with highly imbalanced data size, which meets the requirements of a highly
dynamic network status. The FL methods enable network scalability by distributing and performing
most of processing locally and rapidly. Figure 9 illustrates how FL is used to perform local inference,
while still integrating the comprehensive information via a global model.

• Distributed ML. These techniques, e.g., distributed neural networks, are a set of vital tools in scaling
network management. A typical scenario of distributed ML is to move the training and inference
mechanism from centralised architectures of Core/Cloud to Edge which are closer to the users. Thus,
the latency introduced by data communication and execution of ML models at the Core/Cloud level
can be significantly improved. Figure 10 illustrates the key ideas of the proposed AE with distributed
NNs. It distributes operations between local AE entities and high-level entities by optimizing the
predictive confidence, where local models are the bottom layers of a deep NN.

• Representation learning with e.g., Deep Neural Networks (DNNs). DNNs are typically used to learn
data representations of unstructured data. They are now used to compress the management data to
reduce the communication overhead. Meanwhile, the learned low-dimensional representations still
preserve the intrinsic properties of the data, which then guarantees the analytics quality, e.g.,
predicting the network/VNF status and load. Replacing LSTM with GRU layers in the local AE
significantly reduces training and testing times and achieves a set of results comparable to the state -
of-the-art. Additionally, incorporating Convolutional Neural Network based learning is a more
efficient method for extracting the local patterns required for scalable neural networks.

Figure 9 Decentralized AE with federating learning

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 33

Figure 10 Decentralized AE with distributed neural networks, where the local models are the bottom layers
of the NN.

The MonB5G AE is embedded in the decentralized hierarchical management architecture (defined in [D2.4])

and adapts the novel distributed AI techniques to ensure high quality of online analysis functions and further

reduce communication cost, computational complexity and transmission delay. By automatically distributing

the analysis operations to the different layers and entities with AI-driven policies, AE achieves good scalability

to manage a massive number of parallel slides without requiring intensive communication between central

administrative entities and networking ones.

3.3 Major Achievements of MonB5G on Scalability

To show scalability, MonB5G relies on the trend of some KPIs compared to the number of admitted slices and
supported slices compared to network resources. These trend models will be valid and extrapolated directly
to the massive slicing regime. Several evaluation mechanisms will be considered for this purpose:

• Characterize for example slice setup time and show that it exhibits a linear/sublinear trend compared
to the super-linear behaviour of state-of-the-art centralized Management and Network Orchestration
(MANO) solutions

• Demonstrate that overall AI performance (e.g., accuracy, loss) is not degraded while guaranteeing
that induced overhead does not increase super-linearly (e.g., exponentially) with the number of slices
as a result of MonB5G small footprint decentralised AE/DE architectures and algorithms.

• Ensure that the trend in the number of slices supported with fulfilled SLA scales at least linearly with
the increase in allocated resources, compared to centralized MANO which might exhibit sublinear
scalability.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 34

4 5G Data and Simulation

Data plays an important role in the development of AE. The proposed decentralized management plane will
use data-driven mechanisms based on AI algorithms. Training and testing these algorithms require large data
sets. However, it is difficult to acquire real network data from operators, due to concerns of data privacy of
end users and commercial confidentiality. To address the problem, we construct two 5G simulators (with
different focuses), and collect synthetic datasets to develop the proposed analysis functions. Part of the
datasets will be published as a result of the MonB5G project for the benefit of the 5G/B5G research
community.

4.1 Publicly Available Data Related to 5G

In section 3.3 of deliverable D3.1 [3] (previous version of this deliverable) we analysed an initial list of public
datasets that we identified, a subset of which we have already leveraged (for example, the Milan Dataset).
However, most of these datasets covered 3G/4G network traffic, while our primary interest is in datasets
generated by 5G networks.

To find public data related to 5G, we used search engines that focus on datasets, such as Google Dataset
Search14 & Kaggle Datasets15. To narrow our search to datasets useful for research purposes, we also
leveraged IEEEDataPort16, ResearchGate17 and reviewed project outcomes published as datasets on Zenodo18
and OpenAIRE Explore19. The following is a list of public 5G datasets.

Dataset: Large-Scale Dataset for the Analysis of Outdoor-to-Indoor Propagation for 5G Mid-Band
Operational Networks

Found via: ResearchGate & OpenAIRE/Zenodo

Published: February 5, 2022

Source (Zenodo): https://doi.org/10.5281/zenodo.5975814

Description: Dataset that supports publication with the same title20. The dataset includes measurements of
channel power delay profiles from two commercial 5G networks in Band n78, i.e., 3.3–3.8 GHz. Such
measurements were collected at multiple locations in a large office building in the city of Rome, Italy by using
the Rohde & Schwarz (R&S) TSMA6 network scanner during several weeks in 2020 and 2021. A primary goal
of the dataset is to provide an opportunity for researchers to investigate a large set of 5G channel

14 https://datasetsearch.research.google.com
15 https://www.kaggle.com/datasets
16 https://ieee-dataport.org/
17 https://www.researchgate.net/
18 https://zenodo.org/
19 https://explore.openaire.eu/
20 https://doi.org/10.3390/data7030034

https://doi.org/10.5281/zenodo.5975814
https://datasetsearch.research.google.com/
https://www.kaggle.com/datasets
https://ieee-dataport.org/
https://www.researchgate.net/
https://zenodo.org/
https://explore.openaire.eu/
https://doi.org/10.3390/data7030034

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 35

measurements, aiming at analyzing the corresponding propagation characteristics toward the definition and
refinement of empirical channel propagation models.

Applicability: No relevance to MonB5G use cases.

Dataset: Selected processed 5G base station RF-EMF measurement data

Found via: Google Dataset Search & OpenAIRE/Zenodo

Published: January 28, 2022

Source (Zenodo): https://doi.org/10.5281/zenodo.5914224

Description: This dataset presents selected processed 5G base station radio frequency electromagnetic field
(RF-EMF) measurement data acquired under measurement campaign in outdoor environment carried out at
5G-VINNI UK facility, based at British Telecom (BT)’s Adastral Park in Ipswich, UK. This dataset supports the
findings presented in Section 5 of the deliverable report D1 of the H2020/EMPIR 5GRFEX project entitled:
“Metrology for RF exposure from Massive MIMO 5G base station: Impact on 5G network deployment”.

Applicability: Type of measurements not of interest.

Dataset: 5G deployment dataset

Found via: OpenAIRE

Published: January 6, 2022

Source: https://data.mendeley.com/datasets/s2f3xvgnrr/2 (Mendeley Data DOI: 10.17632/s2f3xvgnrr.2)

Description: Dataset that supports the publication “5G network deployment and the associated energy
consumption in the UK: A complex systems' exploration”21, which took the UK as an example to investigate
the spatiotemporal dynamic characteristics of 5G evolution, and further analysed the energy consumption
and carbon footprint of 5G networks, as well as the consequent change in the operating expenses pattern.
The input dataset of the study covers postcode, area, number of mobile users, mobile user density, and
number of base stations and base station density of the specific country.

Applicability: Dataset type not of interest.

Dataset: 5G Campus Networks: Measurement Traces

Found via: Google Dataset Search & IEEE Dataport

Published: December 15, 2021

Source (IEEE Dataport): https://ieee-dataport.org/open-access/5g-campus-networks-measurement-traces
(DOI: https://doi.org/10.21227/xe3c-e968)

Source (GitHub): https://github.com/justus-comnets/5g-campus-measurements

Description: Dataset supporting the publication “5G Campus Networks: A First Measurement Stu dy”22.
Contains packet captures (PCAPs) for 5G SA and 5G NSA.

Applicability: Could be used for dataset generation.

21 https://doi.org/10.1016/j.techfore.2022.121672
22 https://doi.org/10.1109/ACCESS.2021.3108423

https://doi.org/10.5281/zenodo.5914224
http://empir.npl.co.uk/5grfex/wp-content/uploads/sites/55/2022/01/updated-EMPIR-18SIP02-5GRFEX-Deliverable-Report-D1.pdf
https://data.mendeley.com/datasets/s2f3xvgnrr/2
https://ieee-dataport.org/open-access/5g-campus-networks-measurement-traces
https://doi.org/10.21227/xe3c-e968
https://github.com/justus-comnets/5g-campus-measurements
https://doi.org/10.1016/j.techfore.2022.121672
https://doi.org/10.1109/ACCESS.2021.3108423

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 36

Dataset: 5G: Energy Efficacious Methodology Dataset

Found via: OpenAIRE

Published: October 8, 2021

Source: https://data.mendeley.com/datasets/5z37x49p74/1 (Mendeley Data DOI: 10.17632/5z37x49p74.1)

Description: The data consists of power consumption of 5G BSs, various demographic areas and LTE cellular
mobile DRX cycles. Researchers can use this data in the finding of energy consumption in 5G networks. It can
also help to carry out study for the energy-efficient 5G system model. The dataset can be utilized for
minimization of 5G BS power consumption, long cell phone battery life and energy-efficient system model.

Applicability: Only high-level parameters are included.

Dataset: A variegated look at 5G in the wild: performance, power, and QoE implications

Found via: Citations

Published: August 9, 2021

Source (GitHub): https://github.com/SIGCOMM21-5G/artifact

Description: Dataset that supports publication with same title23. The authors used 5G Tracker24 (app available
under license by UMN, see below) to capture the measurements.

Applicability: Could be used for dataset generation.

Dataset: 5Gophers v1.0 (Commercial 5G Network Performance)

Found via: Google Dataset Search & IEEE Dataport

Published: November 2, 2021

Source (IEEE Dataport): https://ieee-dataport.org/open-access/5gophers-v10-commercial-5g-network-performance
(DOI: https://dx.doi.org/10.1145/3366423.3380169)

Source: https://fivegophers.umn.edu/www20

Description: Dataset supporting publication “A First Look at Commercial 5G Performance on Smar tphones”25,
based on conducting a first measurement study of commercial 5G performance on smartphones by closely
examining 5G networks of three carriers (two mmWave carriers, one mid-band 5G carrier) in three U.S. cities.
The authors conducted extensive field tests on 5G performance in diverse urban environments,
systematically analyzed the handoff mechanisms in 5G and their impact on network performance, and
explored the feasibility of using location and possibly other environmental information to predict the network
performance. The authors also studied app performance (web browsing, HTTP download, and volumetric
video streaming) over 5G. The same authors also described the 5G Track (available under license by UMN)

23 https://doi.org/10.1145/3452296.3472923
24https://license.umn.edu/product/5g-tracker-android-application-for-collecting-and-visualizing-5g-

performance-data
25 https://doi.org/10.1145/3366423.3380169)

https://data.mendeley.com/datasets/5z37x49p74/1
https://github.com/SIGCOMM21-5G/artifact
https://ieee-dataport.org/open-access/5gophers-v10-commercial-5g-network-performance
https://dx.doi.org/10.1145/3366423.3380169
https://fivegophers.umn.edu/www20
https://doi.org/10.1145/3452296.3472923
https://doi.org/10.1145/3366423.3380169

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 37

they developed for their study, in publication “5G tracker: a crowdsourced platform to enable research using
commercial 5g services”26.

Applicability: Could be used for dataset generation. 5G Tracker app could also be used for data capturing.

Dataset: Lumos5G: Mapping and Predicting Commercial mmWave 5G Throughput

Found via: Citations & IEEE Dataport

Published: November 2, 2021

Source (IEEE Dataport): https://ieee-dataport.org/open-access/lumos5g-dataset
(DOI: https://dx.doi.org/10.1145/3419394.3423629)

Description: Dataset supporting publication of same title27, where the authors conducted a measurement
study of commercial mmWave 5G services in a major U.S. city, focusing on the throughput as perceived by
applications running on user equipment (UE). Through extensive experiments and statistical analysis, they
identified key UE-side factors that affect 5G performance and quantified to what extent the 5G throughput
can be predicted. The authors then proposed a composable machine learning (ML) framework that judiciously
considered features and their combinations and applied state-of-the-art ML techniques for making context-
aware 5G throughput predictions.

Applicability: Could be used for dataset generation.

Dataset: A series of 5G measurement tools and dataset

Found via: Citations

Published: July 30, 2020

Source (GitHub): https://github.com/piaobozaizai/5G_measurement

Description: Tools and dataset supporting publication “Understanding Operational 5G: A First Measurement
Study on Its Coverage, Performance and Energy Consumption”28. They authors demystify operational 5G
networks through a first-of-its-kind cross-layer measurement study. Their measurement focuses on four
major perspectives: (i) Physical layer signal quality, coverage and hand-off performance; (ii) End-to-end
throughput and latency; (iii) Quality of experience of 5G's niche applications (e.g., 4K/5.7K panoramic video
telephony); (iv) Energy consumption on smartphones.

Applicability: Could be used for dataset generation, but more recent datasets above are preferable.

Dataset: Synthetic Data Set for Network Data Analytics Function (NWDAF)

Found via: Citations

Published: July 17, 2020

Source (GitHub): https://github.com/sevgicansalih/nwdaf_data

26 https://doi.org/10.1145/3405837.3411394
27 https://doi.org/10.1145/3419394.3423629
28 https://doi.org/10.1145/3387514.3405882

https://ieee-dataport.org/open-access/lumos5g-dataset
https://dx.doi.org/10.1145/3419394.3423629
https://github.com/piaobozaizai/5G_measurement
https://github.com/sevgicansalih/nwdaf_data
https://doi.org/10.1145/3405837.3411394
https://doi.org/10.1145/3419394.3423629
https://doi.org/10.1145/3387514.3405882

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 38

Description: Synthetically generated dataset that supports publication “ Intelligent network data analytics
function in 5G cellular networks using machine learning”29.

Applicability: Could follow similar approaches for generating datasets.

Dataset: Beyond throughput, the next Generation: a 5G dataset with channel and context metrics

Found via: ResearchGate

Published: June 2020

Source (GitHub): https://github.com/uccmisl/5Gdataset

Description: Dataset supporting publication with same title30. In this work, the authors presented a 5G trace
dataset collected from a major Irish mobile operator. The first such publicly available dataset was generated
from two mobility patterns (static and car), and across two application patterns (video streaming and file
download). The dataset was composed of client-side cellular key performance indicators (KPIs) comprised of
channel-related metrics, context-related metrics, cell-related metrics and throughput information. These
metrics were generated from a well-known non-rooted Android network monitoring application, G-NetTrack
Pro.

Applicability: Could be used for dataset generation, but more recent datasets above are preferable.

Dataset: DeepSlice & Secure5G - 5G & LTE Wireless Dataset

Found via: Google Dataset Search & Kaggle Datasets

Published: November 2, 2019

Source (GitHub): https://github.com/adtmv7/DeepSlice

Source (Kaggle): https://www.kaggle.com/datasets/anuragthantharate/deepslice

Source (CRAWDAD): https://crawdad.org/umkc/networkslicing5g/2022-03-22/

Description: Dataset that describes a Deep Learning model for 5G and Network Slicing (eMBB, URLLC, IoT)
supporting two different publications:

• DeepSlice: A Deep Learning Approach towards an Efficient and Reliable Network Slicing in 5G Networks 31

• Secure5G: A Deep Learning Framework Towards a Secure Network Slicing in 5G and Beyond32

Applicability: Dataset type not useful for MonB5G purposes.

4.2 Methodology of Data Generation with MonB5G Platform

We have simulated two synthetic 5G data for development of AI algorithms in AE, DE and security
components. This section introduces design and architectures of the two simulators.

29 https://doi.org/10.1109/JCN.2020.000019
30 https://dx.doi.org/10.1145/3339825.3394938
31 https://doi.org/10.1109/UEMCON47517.2019.8993066
32 https://doi.org/10.1109/CCWC47524.2020.9031158

https://github.com/uccmisl/5Gdataset
https://github.com/adtmv7/DeepSlice
https://www.kaggle.com/datasets/anuragthantharate/deepslice
https://crawdad.org/umkc/networkslicing5g/2022-03-22/
https://doi.org/10.1109/JCN.2020.000019
https://dx.doi.org/10.1145/3339825.3394938
https://doi.org/10.1109/UEMCON47517.2019.8993066
https://doi.org/10.1109/CCWC47524.2020.9031158

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 39

4.2.1 IQU DATASET

The synthetic dataset generation is handled by IQU’s in-situ simulator called VNFNet. It is capable of
generating synthetic datasets of 5G/B5G networks with real SDN-NFV enabled topologies. It was developed
with migration to a production environment in mind and can be integrated with various RL algorithms via the
OpenAI environment. Simulations are based on existing real topologies from The Topology Zoo datasets [39],
and parameters are based on in-situ 5G measurements for URLLC use-case scenarios [40].

Figure 11 Real topology integration example. Nordu 2005 network from The Topology Zoo dataset [39].

The simulator has been validated in multiple publications, and its outs are supported by the works [40] [41].
The in-situ dataset generator was developed based on the review recommendations and the privacy concerns
of the operators.

Simulator design

The virtualized network was simulated using Python. The network simulation is based on a fork of
Containernet [42], an advanced branch of Mininet [43] a network emulator widely used in the literature, such
as [44] and [45]. It simulates a realistic virtual network, VM hosting, switching, and application code for
development and experimentation with SDN-NFV networks. The network topologies are taken from The
Internet Topology Zoo dataset and were customized to meet the requirements of the use-case scenario. In
addition, a custom OpenAI [46] Gym environment was developed to allow easy integration with RL and
distributed RL solutions.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 40

Figure 12 Simulated network graph example

Shown as Figure 12, network simulation is abstracted by graphs using the well-known NetworkX Python
module, and the SDN routing is handled by Dijkstra’s algorithm. Docker conta iners managed by Kubernetes
are used to emulate VNFs and computational resource utilization is simulated using a Python script. The rest
of performance emulation is based on the influential Containernet [42] project. The simulation is based on
real networks and use-case scenarios such as user mobility or congestion can be simulated.

4.2.2 EUR DATASET

The dataset, identified by the name “Eurecom AMF Resource Consumption Dataset” (EARCD), was created
with the help of the EURECOM 5G facility. An updated 5G UE emulator is used, which sends a large number
of UE Attach Request messages in parallel. The 5G CN consists of elements based on OpenAirInterface (OAI).

The project uses this dataset to build ML models that run in the closed-loop management system. For

instance, it is used in WP5 to detect mMTC attacks on the AMF. The dataset may be useful to researchers

interested in 5G data and OAI AMF performance. It is made publicly available so that it can be easily reused

by external parties to the project. The dataset is defined in D3.2 and is now accessible to only to project

partners. It will be released to the public before the end of the project.

Simulator design

Regarding the UE, we used and updated a 5G UE emulator, we leveraged the ‘my5G-RANTester” with a script
that allows emulation of real UE traffic (control plane) to communicate with 5G Core Network components.
We used the emulator to simulate an event with different SUPI values selected. The traffic generated is similar
to what real UEs would generate. My5G-RANTester follows the 3GPP Release 15 standard for NG-RAN (Next

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 41

Generation-Radio Access Network). With my5G-RANTester, it is possible to generate different workloads and
test different functionalities of a 5G core, including compliance with 3GPP standards.

We used my5G-RANTester to send a large number of UE Attach Request messages in parallel to simulate
traffic. My5G-RANTester is a tool to emulate control and data planes of the UE (user equipment) and the gNB
(5G base station). Scalability is also an important feature of the my5GRANTester, which can mimic the
behavior of a large number of UEs and gNBs accessing a 5G core simultaneously. Currently, the wireless
channel is not implemented in the tool. The AMF and 5G CN components are based on OpenAirInterface
(OAI). Additionally, we have developed an Element to dynamically allocate different resources (different
RAM, CPU) and collect the actual resources consumed by the AMF. This collected data is stored in a CSV file.

Figure 13 Framework used for the dataset generation

4.3 MonB5G Data for AI-Driven Network Management Research

Now let introduce the generated datasets, such as statistics of the datasets, meaning and range of attributes,
visualization of some data examples.

4.3.1 IQU DATASET

Realistic synthetic data review and analysis

The generated data is stored in a secure file with JSON structure (shown in Figure 14) and generated per slice
to be used by intra-slice multi-domain VNF management and orchestration DE. The state of all network
elements can be normalized to enable AI-based decision-making. An additional file is generated to map the
network state column values to the respective network element (shown in Figure 15).

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 42

Figure 14 Data Sample file

Figure 15 Data Mapping file

These files are created with the intent of being used as a dataset for further analysis or exploitation by the
Analytics Engine. The structure of the Data File can be analyzed as shown in Table 2:

Table 2 Attributes of the IQU dataset

Label Type Description

Iteration unsigned int Discrete runtime time reference

State* 2D array Domain state space statistics*

ActionServer unsigned int ID of the intra-domain server that will receive the VNF in auction (Winner)

ActionDomain unsigned int ID of the domain that will receive the VNF in auction (Winner)

Reward double Shared RL agent slice-wide reward

Latency double Average service latency measured after applying the new VNF placement

Rejections unsigned int Number of rejected users due to SLA violation

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 43

The Mapping File is an automatically generated JSON file that links the items of the State* 2D array of the
Data Sample files to the network elements and their function. These files are generated with the intention of
being used as a dataset decoder for further analysis or exploitation by the Analytics Engine. The MF files form
the 2D array equivalent in JSON formatting. The second layer extends the meaning of the State 2D array
elements from the Data Sample file for this particular domain. The first layer expresses the following:

Table 3 Attributes of the Mapping File in the IQU dataset

Label Type Description

Domain ID unsigned int The unique ID of the domain in the network

Pattern code string A code that includes various data about the element

The pattern codes are in String format, the letters used are unique and express a different attribute. The
main patterns are expressed in Table 4:

Table 4 Meaning of the pattern codes

Pattern Description

[0-9] An integer located in the start of each code expresses the unique ID of each network element

- The minus signed is used as a delimiter for word separation

cpu CPU cores

ram System memory

hdd Storage

bw Bandwidth

lat Latency

s When the letter “s” is present in a pattern it means that the following attribute “cpu/ram/hdd”
is a service requirement or SLA

n When the letter “n” is present in a pattern it means that the attribute is normalized and its value
belongs in [0, 1] space

The patterns are designed to minimize the size of the files exchanged and can be easily decoded with the
following example code snippet in Python:

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 44

Figure 16 Sample pattern decoding script

The synthetic data is generated in real-time and the management of the network is taking place through the
corresponding API or by using its respective Python module. All data can be converted to individual time -
series for analysis by the AE, stored or broadcasted to other decision-making elements.

Figure 17 Computing resource fluctuation of a server during simulation

4.3.2 EUR DATASET

In this section, we illustrate the details of the EUR dataset.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 45

Realistic 5G-data

The generated data is stored in a file with CSV structure. We dynamically allocate different resources
(different RAM, CPU) to the AMF image and collect actual resources consumed by AMF while processing the
received attach requests. This collected data is stored in a CSV file.

Figure 18 Dataset structure of the EUR dataset

Column names

The data set consists of 28132 rows. Each row of the dataset contains a “ timestamp”, “RAM Limit “, “CPU
Limit”, “RAM Usage”, “CPU Usage”, the number of Attach Requests (noted as “n”), and the Attach Request
duration (noted as “mean”). Table 5 presents the description of each column:

Table 5 Attributes of the EUR dataset

Columns names Description

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 46

timestamp The time of sending the attach requests

ram_Limit The RAM allocated to the AMF image

cpu_Limit The CPU allocated to the AMF image

ram_Usage The RAM consumed by the AMF image

cpu_Usage The CPU consumed by the AMF image

n The number of Attach Requests

mean the Attach Request duration (latency) in seconds. It corresponds to the time duration
between sending an Attach Request and receiving the Registration Accept.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 47

5 MonB5G MS/AE Architecture

5.1 Overview of the MonB5G Architecture

The main principle of the MonB5G architecture is to provide a framework for hierarchical, feedback -loop-
based control for fault, configuration, accounting, performance, and security (FCAPS) management, and slice
orchestration by using different control loops with different scopes, goals, and timescales at the Global
OSS/BSS level, Technological/Orchestration Domain level, Slice level and Node (VNF/PNF/CNF) level. The
MonB5G architecture consists of static (MonB5G Portal, Domain Manager and Orchestrator, Inter-domain
Orchestrator, Infrastructure Domain Manager) and dynamically deployed components (slices i.e., a set of
functions that implement a specific goal). Moreover, an AI-driven In-Slice Management approach is adopted
to separate the management functions of each slice and simplify slice management for slice tenants (e.g.,
through self-configuration, self-healing, performance optimization, exposure management interfaces etc.).
Both the static and dynamic components of the MonB5G architecture follow the same management
approach, as shown in Figure 19.

Figure 19 Generic view of MonB5G slice structure

The MonB5G generic management structure is composed of:
• Monitoring Subsystem Sublayer (MS Sublayer) – a set of functions responsible for collecting, aggregating

and processing the monitored data as well as passing the results to other components of the
architecture.

• Analytic Engines Sublayer (AE Sublayer) – several Analytic Engines focused on different goals, e.g. ,related
to FCAPS.

• Decision Engines Sublayer (DE Sublayer) - multiple engines responsible for reconfiguration decisions
based on data provided by system components.

• Actuators Sublayer (ACT Sublayer) – the components that transform DE decisions into atomic
reconfiguration-related operations, with the goal of simplifying reconfiguration (by supporting
abstractions and intent-based communication) and reducing management traffic between the DE and the
reconfigured node(s).

The above mentioned sublayers enable the implementation of an AI-based MAPE management.
This section focuses exclusively on describing the generic architectures of MonB5G MS Sublayer and AE Sublayer.
Note that, the internal structure, the characteristics of the processed data, as well as the scope of operations will
strongly depend on the deployment site i.e., the parts responsible for slice orchestration (i.e., IDMO, DMO) will
mainly use the data and domain-level slice KPIs provided by the domain orchestrators (e.g., MANO) , while at the

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 48

slice level (IDSM, network slice) the scope of monitoring and optimization will be more focused on the operation
of a slice itself. It should be emphasized that further changes may occur due to the type of domain in which the
MS/AE components are deployed (e.g., RAN, Cloud). Nevertheless, the implementation architecture of both MS
and AE follows the generic principles, described in detail in D2.4 [38] so that they can be easily adapted or
extended depending on the requirements derived from the specific deployment scenario (i.e., optimization goal,
algorithms used, security requirements, etc.).
The generic structures of the MS Sublayer and the AE Sublayer are shown in Figure 20 and Figure 21,
respectively. Both layers implement the publish-subscribe paradigm and expose the information to the
entities higher in the hierarchy via a dedicated message bus.
The generic MS sublayer consists of:

• Monitoring Information Collector/Aggregator – data collection from Slice Functional Layer;

• Monitoring Information Database – a database containing raw and processed monitoring data;

• Monitoring Information Processor – an entity responsible for processing monitoring data;

• Slice KPI calculator – an entity that calculates (predicts) slice-specific KPIs;

• Monitoring Sublayer Manager - an entity that enables remote configuration of the MS sublayer.

Figure 20 Monitoring System Sublayer internal components

In addition to collecting, aggregating, filtering, and interpolating monitoring data, MS is also responsible for
calculating the slice KPIs and collecting information about faults and topology changes. The operations are
performed with different temporal granularity and varying degrees of data aggregation, depending on the
optimization goal.
The AE Sublayer, follows the same approach in that it includes a set of engines (AE) that perform singula r
analytic tasks, and the corresponding AE Sublayer Manager provides resources for managing each AE.
Example analytic operations include security threat detection, real-time fault/performance degradation
detection, etc. Analytics results are stored in a separate database.

Figure 21 Internal components of Analytic Engine Sublayer

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 49

The following sections are dedicated to describing the implementation of the AEs or algorithms that can be
easily adapted and reused when implementing the MonB5G architecture.

5.2 Architecture of MonB5G MS

The general design goals and principles of MonB5G MS were discussed in D3.1 [3]. In this section, we review
the most important ones and then explain the architecture of the system in detail.

Based on the autonomic network management specifications and cloud-native design, MonB5G MS proposes
a scalable architecture. The deployment of MonB5G MS follows the concept of Slice Management Layer as a
Service proposed in the MonB5G architecture in D2.4 [38]. More specifically, MonB5G MS runs on top of a
MonB5G Slice Management Layer (SML). SML’s architectural characteristics enable the management of a
single Slice Functional Layer (SFL) or multiple ones, in the form of SML as a Service or MonB5G Management
Layer as a Service (MLaaS).

The SML underlay consists of NFV Objects, such as Virtual Network Functions (VNFs), orchestrated in close
proximity to the managed SFL in each technological domain. These resources are then used to create a
Platform as a Service (PaaS) in the form of a Container Infrastructure System (CIS), as described in ETSI NFV
IFA 029. The PaaS instances are in turn managed by an Umbrella PaaS Controller, which according to MonB5G
is placed at the centralized element location (e.g., OSS/BSS). Such an Umbrella PaaS Controller takes care of
provisioning other PaaS instances (i.e., CIS) with specif ic services for a target MS/AE/DE component, even
though AE/DE managers or functions may also request monitoring of some parameters.

The key concept of the MonB5G MS architecture is the Sampling Loop. Each loop is in fact a workload on CIS,
periodically executing a Sampling Function. Each sampling function, as the name implies, takes a telemetry
metric by contacting the Embedded Element Manager of the entities in the SFL. The monitoring system is
responsible for creating, executing, and terminating the sampling loops.

MS runs within a CIS Instance and leverages a cloud-native design for messaging between its components,
creates or modifies Sampling Functions, and makes collected telemetry data available to other services (i.e.,
AE, DE, or other MS instances). This enables autonomous TD management and minimizes the resource
intensive exchange of raw telemetry data between TD of an end-to-end service.

MonB5G MS is essentially a cloud native application whose functionality is split into several microservices
deployed on a CIS. The resources for the latter are orchestrated by the Domain Manager and Orchestrator
(DMO), or the Central Element (e.g., IDMO). The components of MS in turn allow (authorized) external
Requesters to launch, modify or delete Sampling Loops.

As mentioned earlier, sampling Loops are CIS workloads that execute a Sampling Function (i.e., one or more
containers), whose Life Cycle Management (LCM) is delegated to the CIS itself. That is, MS interacts with the
CIS control plane via its respective API to define the desired state of a particular Sampling Loop (specified by
the Requester in a Sampling Loop configuration file), and CIS performs the tasks associated with Sampling
Loop Deployment and LCM during its operational phase.

Figure 22 shows the MS architecture. To create Sampling Loops and provide the necessary infrastructure to
exchange metrics in a streaming bus and databases, the MS implements several components:

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 50

1) Manager: admits the Sampling Loop configuration file, that defines the characteristics for the loop,
including a reference to a Sampling Function. It also implements streaming bus Consumers, which are
subscribers to a particular bus Topic and whose only task is to collect metrics and send them to the
Time Series Data Base (TSDB).

a. Consumers (C_*): are subscribers to a specific Topic. Their only task at Manager is to listen
for metrics and then transfer them to the TSDB. Each Topic needs a Consumer at the Manager
to transfer metrics to the TSDB.

2) Sampling Function: is the agent that implements the Sampling Loop Operations, i.e., triggers an API
to collect metrics at a given interval and then passes them to the streaming bus. It is implemented as
a Docker image. The Sampling Loop configuration file references SF e.g. , via the Docker Hub registry.

3) CIS API: CIS control plane, i.e., Kubernetes API Server.
4) Broker/Bus: a streaming bus and broker e.g., Kafka.
5) Time Series Data Base (TSDB): a persistent storage populated by Consumers and used by other

functions for bulk metrics retrieval.

The figure shows a Slice Functional Layer (SFL) and its components and an instance of a Slice Management
Layer (SML) with a CIS control plane (CIS API in the figure). More specifically, MS is implemented in an isolated
namespace within SML, and its components are interconnected via RESTful APIs, shown in this figure as
different reference points (e.g., NBI and SBI).

• MS NBI: MS Northbound Interfaces include:
o m: Loop creation HTTP API.
o q: Kafka bootstrap. Used to subscribe/publish or create topic.
o db: API endpoint for MS persistent storage.

▪ Consumers use this NBI to populate the TSDB.

• MS SBI: MS Southbound Interfaces include:
o ka: authorized service Account to CIS API.
o qsf: Sampling Function (SF) access to Kafka bus.
o ms-e: connector to Embedded Element Manager NBI.

• EEM NBI: this includes:
o eem-nbi: exposed metrics from Monitored Element.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 51

Figure 22 MonB5G MS internal components and reference points33

In summary, the distributed architecture of the MonB5G monitoring system provides the following
advantages. First, the distributed MS agents are designed to manage the tightest metric sampling loops in
their respective technological domains, largely reducing the need for data transmission and thus minimizing
the communication overhead introduced by the monitoring system itself. Furthermore, an additional MAPE -
based embedded element manager is deployed at the VNF level to support fine granularity (1s) of telemetry
acquisition. It also enables the development of aggregators for specific (e.g., slice -level) AE and DE. More
importantly the configurations of MS entities distributed across different technical domains are automatically
defined and triggered by the AE/DE components with AI-assisted policy-driven mechanisms, which is a crucial
step towards highly automated slice-level monitoring system.

5.3 Architecture of MonB5G AE

As show in Figure 23, MonB5G AE has been designed to contain two main functions, namely, KPI prediction
and fault detection, and exploits MonB5G distributed architecture to push the analysis close to the data
collected by MS in each domain (i.e., RAN, Edge and Cloud), minimizing the need to transfer raw slice
performance and configuration data across the different network domains and slices. This leads to a dramatic
reduction in transmission overhead and yields more scalability in managing a massive number of slices.

33 CIS API interface to Umbrella PaaS Controller is implemented leveraging Kubernetes KubeFed library:
https://github.com/kubernetes-sigs/kubefed

https://github.com/kubernetes-sigs/kubefed

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 52

Figure 23 Two major functions of MonB5G AE

The function of KPI prediction is designed to perform:

Time-series prediction of slice-level metrics such as the traffic and resource usage in order to help
the Decision Engine (DE) taking preventive actions against e.g., Service-Level Agreement (SLA)
violations. To that end, time-series prediction leverages customized and fine-tuned serial
architectures such as Long Short-Term Memories (LSTM) or advanced variants.
Parameters’ space prediction, which aims at establishing accurate models to link certain measured
input metrics (e.g., traffic per slice, channel quality, CPU load) with a target output metric (e.g.,
energy consumption per slice) while ensuring a certain SLA requirement. This type of analysis will
guide the DE to fine-tune its action space, where it can know the order of magnitude/interval of the
action to achieve e.g., a low SLA violation rate. To that end, AE is intended to adopt a new class of
statistical/constrained neural networks/models, among other techniques.

The function of fault detection is to detect abnormal events during a slice lifecycle, by mainly extracting and
recognizing changes in data distributions and trends. This relies on advanced techniques of clustering and
classification based on novel architectures of neural networks. Since slices are typically software and
virtualization-based, the notion of fault includes but not limited to the infrastructure on top of which the
slice is running. Specifically, a slice fault could be a logical abnormality where, e.g., the classification of slice
traffic (inspired by deep packet inspection) reveals that it does not fit into the slice predefined template, and
therefore the isolation is breached.

5.4 Cooperation between MS, AE and DE

Traditional centralized network management is a bottleneck and cannot scale with massive numbers of
network slices expected in beyond 5G and pre-6G cellular systems. Centralized approaches can benefit from
a holistic view of the entire network, but scale poorly in realistic scenarios and incur a significant monitoring
overhead. Therefore, distributed ML techniques are imperative to:

• minimize the exchange of information in the network

• ensure the scalability of the entire slice management system

• reduce the latency time.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 53

The goal of this section is to provide an overview of the communication links and interactions between the
(local/central) MS and the AE and the DE blocks that have been proposed as part of MonB5G to illustrate the
interaction between these components.

Figure 24 shows how the MS, AE and DE blocks are intended to communicate with each other. This figure
also includes the actuators that translate DEs decisions into API calls to different slice components (e.g., VNFs,
links, PNFs) in each of the technological domains (RAN, Edge, Cloud) that a slice should traverse.

Figure 24 Interfaces related to MS and AE

The MS in Figure 24 is the entity responsible for collecting a number of different metrics from the systems
that the DE controls. This information can be passed directly to DE and AE, but it is also stored in a common
online memory store (COMS), represented by the grey cylinder in Figure 24. This COMS was added to avoid
hard synchronization conditions between MS, DE and AE when information needs to be exchanged. In this
way, DE and AE can be more flexible in terms of the duration of their processing without compromising the
granularity with which MS can retrieve monitoring data from the controlled systems. Thus, it is the MS
(depending on its capabilities and the amount of information as well as the granularity set by the External
User Interface (EUI)) that somehow defines how fast the data is sampled. Note that COMS coincides with the
‘Knowledge’ block of the presented ETSI ZSM functional scheme.

The AE then reads the monitoring information from the COMS to preprocess it (e.g., perform predictions)

before making it available to the DE. The AE can also read the information directly from the MS, but this is

likely to be used in more selective cases, where some synchronization is required. The prediction interval can

also be set via the EUI. Once the AE outputs the preprocessed data, it stores it in the COMS.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 54

Similarly, DE is expected to read its input from COMS. However, it is also possible to obtain this information
directly from AE and MS. Once the DE has generated its decisions, it also stores them in the COMS and passes
them to the actuator interfaces of the systems it controls to translate them into API calls for slice components
lifecycle management (LCM). DE parameters can also be fine-tuned at runtime by the EUI and may take effect
in the next DE configuration update interval.

The following two tables summarize descriptions of the various interfaces that connect AE and MS to other
MonB5G entities.

Table 6 MS Interfaces and the Associated Roles

Interface Type Role

IMD Tensors/Database
query

DE reads raw MS measurements (either online or from COMS)/Store AI
metrics and DE decisions in COMS

IMA Tensors/Database
query

AE reads raw MS measurements/Store AI metrics, predictions in COMS

IUM Database Query EUI reads/changes MS configuration (e.g., granularity)

Table 7 AE Interfaces and the Associated Roles

Interface Type Role

IAD Tensors/Database
query

DE Reads the predicted KPI from AE (either online or from COMS)

IMA Tensors/Database
query

AE reads raw MS measurements/Store AI metrics, predictions in COMS

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 55

6 Distributed MonB5G Monitoring System

This chapter discusses the details of the operation of the monitoring system. The architecture of the system
was explained in Section 5.2. In this chapter, we explain how the architecture is implemented and used in
practice. At the beginning, the steps of the workflow of the system are explained. The use of MS in both single
and different technical domains is the next section of this chapter. Finally, after discussing the telemetry
monitored by MonB5G MS, the details of the implementation of the system are explained.

6.1 Workflow of MonB5G MS

As explained earlier, the main task of MS is to receive the monitoring requests from the requesters, launch
the corresponding sampling loops, and store the monitoring data in the database or streaming bus. This
workflow is illustrated in Figure 25, which includes a Message Sequence Diagram (MSD) detailing the
procedure for setting up a Sampling Loop.

Figure 25 Generic Message Sequence Diagram for the Request of a Sampling Loop to a MS instance

As can be seen in Figure 25, this workflow is composed of the following steps:

i. Within the Manager component of MS, a set of (Kafka) streaming Consumers is configured.

1.1 These are subscribed to preconfigured topics, which are used to populate metrics.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 56

1.2 Messages produced in a particular Topic (e.g., T_x) are sent to the subscribed Consumers.

ii. A Requester sends a Sampling Loop configuration file (L) to Manager’s Northbound Interface (NBI).
This configuration contains the Sampling Function, the sampling Interval, the NBI address of
Monitored Element, and the Topic.

2.1 Manager performs a basic syntax check of L.

2.2 Manager populates a CIS Workload Template with data from the Sampling Loop configuration

file.

2.2.1 Via CIS API, a custom CSI Workload is deployed that represents a Sampling Loop is
deployed.

2.2.2 A confirmation is returned to Manager.

2.3 The details of the deployed Sampling Loop are returned to Requester.

iii. Each loop boots up and waits for an interval specified in the Sampling Loop configuration. This interval
determines the frequency of sampling.

3.1 After the interval, the Sampling Loop (i.e., its Sampling Function) triggers the Monitored
Element NBI (i.e., its Embedded Element Manager (EEM)).

3.2 A metric x sample is retrieved.

3.3 Later, validation or other pre-processing is performed (this applies to any Sampling Function).

3.4 Finally, the sample x is sent by the Producers in the Sampling Function to the streaming bus
 with topic name T_x.

4.4 The consumers at the Manager of the topic T_x forwards the sample x to the Time Series Data
 Base instance in the Technological Domain (TD).

Note that the workflow described in Figure 25 can be triggered by any authorized Requester e.g., Tenant,
DMO, AE, or DE functions, among others.

6.2 MonB5G MS at Different Technical Domains

Since supporting multiple domains is one of the main goals of the MonB5G architecture, the monitoring
system was also designed and implemented to support multiple domains. This subsection details the
development of the distributed monitoring system for several technological domains. For the RAN, Edge and
Cloud domains, we illustrate the locally deployed cloud-native MS entities with comprehensive discussions
of their technical KPIs, including data collection granularity, computation and storage efficiency a nd cost and
communication overhead. Although the MS entities are distributed across different technical domains, they
are designed for zero-touch management and orchestration with the MonB5G platform. The domain-specific
MS entities follow the following main concerns:

• Stay in line with the MonB5G framework and target KPIs

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 57

• Meet functionalities, including data collection, aggregation, data pre-processing and storage

• Implement different granularities for non-real-time, near-real-time and real-time intelligent control

• Promote flexibility of MS entities whose activities are triggered and configured by AEs and DEs

• Promote scalability and efficiency, e.g., reduce communication overhead

6.2.1 MS IN RAN

The MonB5G monitoring system inspects the RAN domain as shown in Figure 26. It constitutes MS-sublayer
of the SML for the RAN domain, and consists of the following functional components:

• The Monitoring manager (MM) is responsible for lifecycle management: triggering, managing and
deleting a monitoring task. It also supports remote configuration of MS operations.

• The Monitoring data collector (MDC) connects to the RAN management and orchestration system to
collect detailed real-time metrics from eNB/gNB.

• The Monitoring data processor performs data pre-processing functions defined by the analytics
engine requirements, such as aggregation, filtering and normalization. This helps to further reduce
the communication and computation overhead.

• The Monitoring database (optional) is used to store raw telemetry data. The stored historical data
facilitates the improvement of AI models used in AEs and DEs.

• The MS-bus is used for real-time data transfer between the above components. The
publish/subscribe tools, such as Kafka34, can be used for high-throughput, low-latency unified
communication.

Figure 26 MonB5G MS in the RAN Domain

34 https://kafka.apache.org/

https://kafka.apache.org/

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 58

6.2.2 MS IN EDGE

The monitoring systems in the edge and cloud domains shown in Figure 27, are almost similar to the
architecture of the monitoring system for RAN, except that the data is collected using the VNFs and
computing infrastructure instead of the RAN PNFs. They both run on PaaS and deploy MS components as
sampling functions. The MonB5G platform aims for zero-touch management and orchestration. The MS
modules are automatically created, maintained, and used by AEs and DEs based on the actual status of the
network slices. AEs and DEs can query a variety of telemetry data. Therefore, we propose the following MS
module deployed in MEC/cloud to collect telemetry data from VNFs.

Figure 27 MonB5G MS in the Edge/Cloud Domain

The main functions of the MS components, such as the monitoring manager and the monitoring data
processor, are implemented similarly to those of the RAN domain. The main differences are in the monitoring
data collector component. In edge/cloud domain, each instantiated VNF is associated with a Netdata
instance. When AE requests telemetry data from specific VNFs for analysis, the monitoring data collector
activates the corresponding Netdata instances associated with the VNFs to provide the telemetry data based
on the configurations defined by AE. MS is structured as a sublayer located in the slice management layer of
the MonB5G platform, and all FCAPS functions can be dynamically deployed or updated during the slice
lifetime using the orchestration capabilities of Inter-Slice Management (ISM), which also support MS with the
resource scaling mechanism.

In summary, the distributed MonB5G MS captures the operational status at multiple levels of the
management hierarchy (node, slice, domain, and inter-domain). Once triggered and configured by AEs, the
programmable MS entities connect the appropriate infrastructure and network functions (VNFs and PNFs) to
collect the requested telemetry data.

6.3 Telemetry Monitored by MonB5G MS

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 59

MonB5G Monitoring system is a generic platform that can theoretically collect all measurable telemetry data.
As explained in the previous section, the telemetry data is measured by the environment through the
corresponding EEM (for example, Netdata measures the CPU or RAM utilisation). The corresponding sampling
function requests the data from the EEM and publishes it on the bus in MS. As long as there is an EEM for
telemetry data that exposes the data via a (property) protocol, it is possible to develop the corresponding
sampling function and consequently use it in the monitoring system. In other words, the list of telemetry data
is determined by the EEM (located external to the SM) and not by the monitoring system itself. To further
explain the telemetry data to be monitored, Table 8 shows the list of metrics and their mapping to the
platform.

Table 8 Slice-Level KPIs Description and Measurement

Metric Description Category Type Mapping to the Platform

Latency
(control

plane (CP)
and user

plane (UP))

Average E2E downlink
packet delay between

Core cloud and UE
Integrity Mean

End-to-end latency must be explicitly measured
independently of CP/UP. That is, the MonB5G
administration elements should send control packets
(timestamped) through such planes and calculate the delay.
For CP, MS is expected to serve as a source/sink for such
timestamped packets. UP delay estimations on the other
hand, would require the UE to send these aforementioned
control packets to derive an accurate latency estimate at
RAN while UP at the Edge/Cloud TD latency can be derived
by MonB5G administrative elements in a similar manner as
at the CP.

Throughput
Total packets Bytes

divided by the
granularity period

Integrity CumSum

Throughput can be derived from per-VNF telemetry. That is,
by measuring the number of packets traversing the VNF
interfaces (e.g., using EEM such as NetData), an accurate
estimate of available throughput for the entire slice can be
derived.

CPU usage
CPU

consumption/Available
CPU capacity

Usage Ratio

The consumption of Per-VNF CPU and RAM can be queried
using EEM (e.g., via the API of the NetData instance).

RAM usage

RAM

consumption/Availabl

e RAM capacity

Usage Ratio

PRBs usage
PRB consumption/Total

PRBs per slice
Usage Ratio

Wireless SDN Controllers from which the number of RB
dedicated in the Uplink/Downlink direction can be
queried/configured.

Number of
admitted

slices

Number of slices
successfully admitted

with resource
allocation fulfilling SLA

Accessibi
lity

CumSum

By using NFVO Northbound interfaces (NBI) (e.g., Os-Ma),
OSS/BSS (or other MonB5G administrative components) can
query the number of running (or failed) network slice
instances.

Connected
users/slice

Number of RRC
connected users per

slice

Accessibi
lity

CumSum Users are directly mapped to UEs subscribed to an
e/gNodeB. This metric can be extracted at the RAN

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 60

management level (using its NBI) or by extracting this
information from 4GvEPCor 5GC.

Slice end-to-
end

availability
time

Average time with slice
VNFs is all available

Retainab
ility

Mean

Slice ‘readiness’ is announced by MonB5G administrative
components to DMO via the domain shared messaging bus.

VNF/PNF
availability

time

Average time where a

VNF/PNF is not in

fault

Retaina

bility
Mean

Reliability
(Packet loss

rate)

Number of erroneous
packets/total packets

per slice
Integrity Ratio

Packets may be lost in the RAN or NFV segments of the Slice.
Therefore, RAN controller’s NBI and VNF-instances’
telemetry API (i.e., EEM) are used to compute this metric.

Data volume
exchanged

between the
local and

end-to-end
entities

Total Bytes exchanged
between a local and
end-to-end entities

Integrity CumSum

MonB5G administrative components should keep
accounting of Requests/Responses as well as
Publish/Subscribe operations between technological
domains. This bookkeeping can be queried directly via their
respective NBI and serves as input for the calculation of this
metric.

Consumed
energy

Average Power
consumption x

granularity period
Integrity Mean

Originally this was expected to be the result of calculations
that use CPU/RAM consumption as the base metric.

Number of
operations

Total slice life-cycle
management operation

(scaling, placement,
termination, etc) in a

granularity period

Integrity CumSum
At Network Slice Instance level, this metric can be queried
using NFVO NBI. Such operations can be: VNF scaling,
termination, etc.

6.4 MonB5G MS Implementation and Visualization

This section discusses some important details of implementation of MonB5G MS and also present some real
implementation results.

6.4.1 IMPLEMENTATION DETAILS

In the previous sections, it was discussed that the distributed architecture of MonB5G MS is implemented on
the CIS across multiple technological domains. In this section, we describe more details of the
implementation.

The monitoring system is deployed as a Kubernetes cluster, i.e., the components of the system, including the
“manager” and “sampling functions”, are actually implemented as pods on the Kubernetes cluster. There are
four types of pods in the system:

• Manager pod: there is only one pod of this type in the current implementation (it may be replicated in
future versions). This pod consists of two containers, i.e., the “manager container” and the “Kafka-

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 61

consumer” container. The manager container implements the “m” interface and is responsible for LCM
of the sampling functions. The Kafka consumer container is responsible for copying the telemetry d ata
into the TSDB.

• Kafka pod: there are several pods of this type; they implement the bus and the broker of the architecture;
this pod consists of multiple “zookeeper” and “broker” containers.

• TSDB pod: this pod implements the TSDB, which are in fact the containers of the influxdb system.

• SF pod: there are multiple pods of this type. Each pod implements a sampling function consisting of two
containers: sampler container and Kafka producer container. The sampler container implements the
eem-nbi interface and communicates with the EEM to get the telemetry data. The Kafka producer
receives the telemetry data from the sampler container via the virtual file system of the pod and publishes
it on the bus.

The data flow through these system components is shown in Figure 28. In step (1), data is retrieved from the
EEM by the sampler container. This container extracts the data from the eem-nbi interface and writes it to a
file in the virtual file system of the SF pod, which is step (2). The Kafka producer container retrieves the data
from the virtual file system and publishes it to the bus in step (3) under the topic specified in the configuration
of the sampling loop. The Kafka consumer container in the manager pod has already subscribed to this topic
and therefore receives the data in step (4). This container stores this data in the TSDB in step (5). Finally, the
sampled data is delivered to the external application such as AE or DE. If these applications have al ready
implemented the messaging protocol, they can connect directly to the bus to retrieve the data. Otherwise,
this data is available through the TSDB.

Figure 28 Data flow in the monitoring system

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 62

Figure 29 Implementation view of MS on two Technological Domains

Figure 29 depicts the implementation of the MS in two domains. This figure shows a view of SML and MS,
serving two NSSIs, one of which (NSSI-a) has SFL components on two Technological Domains (TD i.e., vNFVI-
1 and vNFVI-2, emulating Cloud and Edge domains). As shown, each SFL component has access to external
Provider Networks (i.e., nssi-*-datanet) that enable communication between SFL/SML component seven
though they are located on different TD. Upon request (via m reference point), MS creates specific SF in close
proximity to the SFL components, reducing latency in retrieving telemetry data and limiting MS traffic to its
TD.

To support multi-domain monitoring, the KubeFed control plane between the two K8s APIs (i.e., CIS API)
enables the deployment of MS components (MS* in Figure 29) on a target CIS (SML in Figure 29), resulting in
LCM of such workloads. This process requires the implementation of a new field in the Sampling Loop
configuration file that specifies the Sampling Loop and the Destination CIS. Manager then uses the reference
point ka and KubeFed to request the creation of Sampling Loops at specific CIS.

The CIS i.e., K8s, used to implement MS has limitations in orchestrating Sampling Loops with periods of less
than one minute; therefore, sampling loops are divided into two types: 1) periodic executions of Sampling
Loop Orchestration + Operations managed by CIS, or 2) a single execution with embedded configuration to
ensure sufficient sampling resolution. Type-1 Sampling Loops are implemented as Kubernetes CronJobs,
while type-2 are standard Deployments. This is illustrated in Figure 30.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 63

Figure 30 Mapping Sampling Loop Orchestration to Implementation Tools

Sampling Loop configuration files should follow the MonB5G information model for MS. That is, it is a
configuration file for a known API designed for the configurations supported by MS (e.g., CIS workload type,
TD, sample retrieval method, etc.). In addition, CIS workloads require that Sampling Functions need to be
designed as Docker images that allow configuration parameters via predefined environment variables.

Figure 30 shows an example of a Sampling Loop configuration file. In summary, it specifies the following:

• An array of sampling loops (.config.loops)

• Each loop should in turn define:
o .config.loops.[*].name: a unique name.
o .config.loops.[*].container: contains a reference to:

▪ dockerImage: SF itself.
▪ args: specific arguments that can be passed to SF.

▪ env: adds environment variables to SF, to apply orchestration-time configurations.

These include:

• TARGET: the eem-nbi endpoint.

• INTERVAL: sampling interval in seconds.

• TOPIC: the Kafka topic in which the results of this SF will be published

▪ resources: the maximum CPU and RAM resources allocated to a given SF.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 64

Figure 31 A Sampling Loop configuration

As mentioned earlier, the sampling function, which will be dockerized, implements the eem-nbi interface and
communicates periodically with the EEM. An example of the implementation of a sampling function for
Netdata EEM is shown in Figure 32.

Figure 32 Netdata Sampling Function

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 65

Kubernetes passes the environment variables TARGET, INTERVAL, and LOG_DIR to the sampling function.
Then, the sampling function connects to the TARGET, retrieves the telemetry data, and stores the responded
telemetry data in a separated file in the LOG_DIR every INTERVAL second. These files are processed by the
Kafka producer container of the pod and their contents are published to the bus.

Figure 33 MS Kafka Consumer example (Python)

Requesters (e.g., users, MS, AE, or DE) can upload, create, or destroy various Sampling Loop configurations
on demand. Moreover, requesters can implement a MS Consumer such as the one in the example Figure 33
to receive telemetry data collected by the Sampling Functions.

6.4.2 IMPLEMENTATION RESULTS

In this section, some sample results of the real deployment of the monitoring system in the CTTC testbed are
presented. The following figures show some results of the sampling loop deployed by the configuration
shown in Figure 31. These results correspond to the points (2), (3), (5) and (6) in Figure 28.

Figure 34 corresponds to point (2) in Figure 28showing two Netdata telemetry data sampled and reported by

the sampling function. The returned data from the EEM is a JSON showing the different portions of the CPU

consumption, e.g., “user”, “system” and “IRQ”.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 66

Figure 34 Two Netdata samples in point (2) of Figure 28

This sampled telemetry data is passed to the Kafka producer container which publishes them on the bus for
the specified topic in the loop configuration. Figure 35 shows the output of this container, which represents
the data not only in JSON format, but also in byte streaming, which is serialized to be published in the bus.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 67

Figure 35 Two Netdata samples in Figure 34 which are in point (3) of Figure 28

As mentioned earlier, the data published on the bus, is not only directly accessible to AE/DE, connected to
the broker, but it is also stored in the time series database by the Kafka consumer that received the data
from the bus and wrote it to the TSDB. This happens in point (5) of Figure 28. The output history of the
container is shown in Figure 36.

Figure 36 Two Netdata samples in Figure 34 which are in point (5) of Figure 28

Finally, the data in the TSDB can be retrieved from other external applications such as AE and MS. To
demonstrate this, a test program was developed to query the data from the TSDB. Figure 37 shows the output
of the program that gets the two sampled telemetry data; this output corresponds to point (6) in Figure 28.

Figure 37 Two Netdata samples in Figure 34 which are in point (6) of Figure 28

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 68

7 MonB5G Analytics Engine for Slice-Level KPI Prediction

To support automated and proactive decisions at the slice level, the AE components provide (among other
functions) predictions of slice KPIs. End-to-end KPIs at the slice level have been defined and include, for
example upstream/downstream throughput for NSI, average end-to-end uplink/downlink delay, virtualized
resource utilization per NSI, etc. The collection of these KPIs is supported by MS, as discussed in the previous
chapter (MS). Although KPI prediction has been implemented in older systems, there are some characteristics
that we need to consider when implementing it in a 5G system, at the slice level. The number of slices, as
well as the amount of data collected when automatic slice redeployment is enabled, are important factors
that affect the effectiveness and efficiency of AE so a scalable solution must be developed.

Our solution will include several prediction methods which are described in the following sections and are
part of the AE component. Several relevant issues will be investigated through different approaches.

7.1 Local KPI Prediction

AE leverages MonB5G’s distributed architecture to move analysis close to the data collection MS in each
domain (i.e., RAN, Edge and Cloud), minimizing the need to transfer raw slice performance and configuration
data across different network domains and slices.

Figure 38 KPI inputs from MS

As shown in Figure 38 the input datasets are generated for each slice instance. These (JavaScript Object
Notation (JSON)) files link the items of the State 2D array of data source files to the network elements and
their function. These files are generated with the intention of being used as dataset decoder for further
analysis or use by AE.

1. Dataset Files (DSs): Dataset files that contain the JSON files used by the AE engine.
2. Mapping Files (MFs): Network status mapping files that link the state of the DS files to the network

elements and their function.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 69

Figure 39 KPI plots from MS

Multivariate time-series analysis as shown in Figure 39 is an important statistic that simultaneously analyzes
multiple measurements to study the behavior of time-dependent data, and forecasts future values depending
on the history of variations in the data. We propose a GNN-based architecture to improve model predictions
by incorporating network resource information (CPU, RAM, Bandwidth, and Storage) to capture the spatial
dependencies between variables in the dataset.

Here, the CNN helps in extracting the feature representation. CNNs are specialized to handle data structures
with multiple dimensions. In the case of 1D data, filters slide over time-series data by extracting a feature
map for local subsequences in the data. They create representations for fixed-size contexts and the effective
context size can easily be made larger by stacking several CNN layers on top of each other. This allows precise
control over the maximum length of dependencies to be modeled. Since convolutions are common in
computer graphics with direct hardware support on GPUs, CNNs are a more efficient method for extracting
local patterns.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 70

Graph Neural Networks models the relationship between a set of objects (nodes or vertices V) and their
connections/interrelationships (given by a set of edges E linking the respective nodes/vertices). We define a
graph as G = (V, E) where V is the set of nodes and E is the set of edges.

An edge eij = (vi, vj) connects nodes v i and vj. A common way to represent and store a graph is with an
Adjacency matrix A ∈ ℝ N×N where N = |V|, which is a square matrix such A ij = 1 if there is an edge from node
vi to node vj, and 0 otherwise. The number of neighbors of a node v is known as the degree of v and is denoted
by Dii = ∑ j Aij, D is then the diagonal degree matrix.

To discover hidden associations among nodes, a graph learning layer computes a graph adjacency matrix,
which is later used as an input to all graph convolution modules. The graph learning layer learns a graph
adjacency matrix adaptively to capture the hidden relationships among time series data. The adjacency
matrix is a numerical representation of all the linkages present in the data. By propagating information
through structures, graph neural networks allow each node in a graph to know the context of its neighbours.
We compute the correlation matrix of slice latency between different resource KPIs, which represents our
adjacent matrix. These form the node features in the network.

Figure 40 Training Architecture of Slice KPI Prediction Model

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 71

We propose a combination of convolution and recurrent connections that uses multiple time series as input
to the network. Our model receives, as input, sequences of slice latency values and an adjacency matrix. We
estimate an adjacency matrix by applying a Laplacian normalization that allows the use of an efficient layer-
wise propagation rule, based on the first-order approximation of spectral convolutions. The sequences for
the input model, as shown in Figure 40 are passed through the Recurrent Neural Network (LSTM/GRU) layers,
while the correlation matrices are processed by Graph Convolution layers. To speed up the training, we
deployed Gated Recurrent Units (GRU). We split the training and testing data as 80-20 ratio. A Batch
Normalization layer was applied, which acts as a regularization and greatly improves the overall performance.
The predictions are then retrieved at the end. The errors of the model are calculated as Root Mean Squared
Error (RMSE) on test data. The results of the AE feature can be used for down-streaming tasks, e.g., fault
management, which is discussed in more detail in Chapter 8.

7.2 Cross-Domain KPI Prediction

Dynamic resource usage forecasting for network slicing can leverage advanced Federated Learning (FL)
techniques to minimise network overhead in RAN/edge/cloud domains. The traditional centralized approach
to monitoring, analysing, and controlling the underlying raw data is problematic because it involves
significant overhead and delays and represents a single point of failure. The decentralized approach, on the
other hand, provides scalability, low data exchange and this greater security. From this perspective,
distributed AI approaches, particularly FL techniques, can play a prominent role in monitoring scattered data
across the network while reducing computational costs and enabling fast local analysis and decision-making.

The techniques presented in this section implement a novel scalable SLA-driven stochastic FL method for
provisioning network slicing resources under SLA constraints. In particular, the contributions of the methods
presented in this section are twofold:

1) To address the FL resource provisioning task in local AEs, a new approach called Statistical Federated
Learning (SFL) for low overhead AE is presented. It learns the resource utilization models offline via a
data distribution while respecting some predefined local SLA constraints defined in terms of long -
term statistics over an observation window. The focus here is on the resource cumulative distribution
function (CDF)-based SLA, which is dataset-dependent and nonconvex non-differentiable. The
corresponding SFL local optimization task is formulated using the proxy-Lagrangian framework, and
solved via a non-zero sum two-player game strategy.

2) To ensure scalability in the presence of massive slicing, a novel SLA-driven stochastic FL policy is
designed to select a subset of AEs that will participate in the FL task at each round , which enhances
the convergence time while maintaining the same computational cost regardless of how the number
of AEs in the network increases. The proposed solution uses Docker compose and Docker containers
to facilitate the development and testing of FL applications in B5G/6G networks. This subset selection
policy of AEs is an enhancement of the SFL algorithm mentioned above to improve the scalability of the
algorithm by selecting the number of FL agents in the learning process in a massive slicing environment.

As depicted in Figure 41, we consider a 6G topology with a Central Unit (CU)/Distributed Unit (DU) functional
split where each Transmission/Reception Point (TRP) is co-located with its DU, which is connected to the
corresponding CU through a fronthaul link. Each CU consists of a MS as well as an AI-enabled slice resource

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 72

analytics function, called AE. For each CU k and slice n (n = 1,…,N), MS (k, n) has a local dataset 𝒟𝑘,𝑛 =

{𝐱𝑘,𝑛
(𝑖)
, 𝑦𝑘,𝑛
(𝑖)
}𝑖=1
𝐷𝑘,𝑛 of size Dk,n that is generally small and non-exhaustive. Therefore, the corresponding local AE

participates in a federated learning task to accurately train its resource analysis and prediction model, and is
connected to an end-to-end AE that resides in the Cloud domain and plays the role of a model aggregator
without having access to the raw mini-datasets.

Figure 41 Network Architecture with Decentralized MS/AE at the Edge and Cloud Domains

Table 9 summarizes the input features and the supervised output of the local dataset. It includes as input features,
the hourly traffic of the main over-the-top (OTT) applications, the average Channel Quality Indicator (CQI), the
MIMO full-rank usage and the number of DL average active users. The supervised outputs are the number of
occupied DL Physical Resource Blocks (PRBs) , the Central Processing Unit (CPU) load (in %) and the number of
RRC user licenses consumed. The datasets are non-IID due to the different traffic profiles resulting from the
heterogeneous distribution of users and the corresponding channel conditions. Note that this non-independent
and non-identically distribution of the dataset makes it difficult to apply FL algorithms for training [47].

Table 9 Dataset Features and Output

 Metrics Description

Features

OTT Traffics per TRP
Includes the hourly traffic for the top OTTs: Apple, Facebook,
Facebook Messages, Facebook Video, Instagram, Netflix, HTTPS,
QUIC, WhatsApp, and YouTube

CQI
Channel quality indicator reflecting the average quality of the radio
link of the TRP

MIMO Full-Rank Usage of MIMO full-rank spatial multiplexing in %

Users Downlink average active users

Output

CPU Load CPU resource consumption in %

DL PRBs Number of Downlink Physical Resource Blocks (PRBs) occupied

RRC Connected Users Number of RRC users’ licenses consumed per gNB

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 73

According to the SLA established between slice n tenant and the physical operator, any assigned resources
to the tenant should not exceed a range [𝛼𝑛, 𝛽𝑛] with a probability higher than an agreed threshold 𝛾𝑛. This
means that the statistically constrained resource allocation model is learned under Empirical Cumulative
Density Function (ECDF) and the complementary ECDF constraints, which amounts to solve the following local
optimization task at FL round t (t = 0,...,T -1), i.e.,

where ℓ(.) is the squared error loss function, 1(.) represents the indicator function.

The local Statistical Federated Learning (SFL) optimization can be solved using a proxy-Lagrangian approach

[48] that consists of forming two Lagrangians. The first one, L 1, contains the loss function and a smooth

approximation to the SLA constraints, called proxy constraints, where the indicators are replaced by smooth

sigmoid functions. The second Lagrangian, L2, consists of the original SLA constraints. The joint optimization

of the two Lagrangians turns out to be a non-zero-sum two-player game, where the first player wants to

minimize L 1 and the second player wants to maximize L 2. This process leads to a near-optimal and near-

feasible solution (i.e., all constraints are nearly satisfied) to the original constrained problem. The obtained
weights are then sent back to the FL server to perform the aggregation of the local models. This process is
summarized in Algorithm 1. The details of the two-player game are omitted from this section, interested
readers are referred to reference [49].

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 74

To evaluate the performance of the proposed statistical FL technique, three primary slices (eMBB, social media,
and browsing) are considered next to analyze the proposed FL policy. The traffic corresponding to each slice is the
sum of the associated OTT traffic collected from hourly traffic over five days. The slices are as follows: 1) eMBB:
Netflix, YouTube and Facebook video; 2) Social Media: Facebook, Facebook Messages, WhatsApp and Instagram;
3) Browsing: Apple, http and QUIC.

The PRB resources are dynamically allocated to the slices according to the corresponding traffic patterns and
radio channel conditions (i.e., MIMO full-rank usage and CQI), as shown in Figure 42 (a) and (b), while
ensuring the long-term isolation of slices through the constraints on the CDF of the underlying physical
resources. A total number of K=200 AEs was simulated. We use α, β vectors to denote the upper and the lower
assigned resource bounds, respectively, to each the three slice types (i.e., eMBB, social media and browsing), α =

[0,0,0], β = [15, 10, 10] PRBs and γ = [0.01, 0.01, 0.01] denote the probability threshold for different slices. When
no constraints are enforced, as shown in Figure 42 (c), all three slices violate their upper bounds with a high
probability, which can be considered unacceptable by both operators and slice tenants. Figure 42 (d) shows
that the number of allocated PRBs is within the corresponding upper and lower bounds [𝛼𝑛, 𝛽𝑛] with a 99%
probability.

Figure 42 DL PRBs Distributions, with α = [0, 0,0], β = [15, 10, 10] PRBs and γ = [0.01, 0.01, 0.01].

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 75

To ensure scalability under massive slicing, a new SLA-driven stochastic FL policy is next presented to select
the subset of AEs that participate in the FL task in each round. This approach will enhance the convergence
time, as the AEs that have smaller number of SLA violations will have a greater chance of participating the FL
task. Since the cardinality of the subset of selected AEs remains fixed, the computational cost of each FL
round remains the same regardless of how the total number of AEs increases.

To ensure scalability in a massive slicing scenario, we aim to select a subset of active AEs in each round of the
federated learning process to optimize the FL computation time and the underlying resource computation.
To this end, a new SLA-driven stochastic policy is considered for selecting the AEs. Once the training round is

completed at round t, each AE (k,n) evaluates the generalization of its FL model using a test dataset 𝒟𝑛̃ of

size 𝐷̃𝑛, which is common to all monitoring systems of slice n, and computes the SLA violation rate over the
common test dataset.

Next, at each FL round t, all the AEs send their violation rates derived from this test dataset, denoted as 𝜈𝑘,𝑛,
to the FL aggregation server, which generates a probability distribution 𝜋𝑘,𝑛 using a softmin function as

𝜋𝑘,𝑛 =
exp{ − 𝜈𝑘,𝑛}

∑ exp{ − 𝜈𝑝,𝑛}
𝐾
𝑝=1

.

The softmin function rescales the values so that the elements are in the range [0, 1] and the sum of all
elements is equal to 1. Based on the above probability distribution, only a subset of m<K AEs are considered
at each FL round to participate in the learning process. In other words, only a subset of AEs would
stochastically participate in the FL task. The IDs of the m selected AE agents are generated from a non-uniform
random sample where the probabilities for each AE depend on 𝜋𝑘,𝑛. Under this stochastic policy, AEs with

low SLA violation rates receive a high probability of participation in the FL round to drive convergence of the
model, but AEs with high SLA violations could also participate in FL training with a low probability to
guarantee the generalization that could emerge from their datasets.

The model averaging in the server at round t is calculated as

𝐖𝐧
(𝐭+𝟏)

= ∑
𝐷𝑘,𝑛
𝐷𝑛

𝐖𝐤,𝐧
(𝐭)

𝑘∈{𝑘1,…,𝑘𝑚}

where 𝐷𝑛, in this case, denotes the sum of the sizes of the datasets that cooperate in the FL task. The
proposed method is summarized in Algorithm 2 [50].

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 76

To evaluate the feasibility of the proposed technique in a real scenario and to prove the scalability of the proposed
policy, a cloud native approach of the FL agents was implemented. To emulate a cloud-native deployment, the
Docker compose tool was considered. The main reason for choosing Docker compose is that it usually runs on
Kubernetes. The FL server and the agents (i.e., AEs) communicate with each other via REST API. Since this section
focuses on the algorithm overview, the details of this cloud-native implementation are omitted here. We refer
interested readers to reference [50].

In the following, three primary slices (eMBB, social media and browsing) are considered to evaluate the proposed
FL policy. The traffic corresponding to each slice is the sum of the associated OTT traffic, collected from hourly
traffic over five days. These three slices are split as follows: 1) eMBB: Netflix, YouTube, and Facebook video; 2)
Social Media: Facebook, Facebook Messages, WhatsApp and Instagram; 3) Browsing: Apple, http, and QUIC. The
parameter settings are presented in Figure 43.

Figure 43 Parameter settings of the scalability test

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 77

To illustrate the faster convergence of the proposed technique, the next figure shows that the policy-based FL
converges faster than the FL without policy because the selected AEs (i.e., FL agents) with the lower violation rate
have a higher probability of participating in the training. In this case, a total number of K=100 AEs were simulated,
and m=50 AEs were selected for the FL task. We use α, β vector to denote the upper and the lower assigned
resource bounds, respectively, to each the three slice types (i.e., eMBB, social media and browsing), α = [0,0,0],

β = [4,7, 10] % and γ = [0.01, 0.01, 0,01] denote the probability threshold for different slices. The proposed subset
selection policy is able to provide faster convergence than the FL with all possible AEs.

Figure 44 MSE loss as a function of the number of FL rounds with and without policy (simulated scenario).

Figure 45 shows the results when the proposed algorithm was trained with K = [40, 50] Analytic Engines.
In both cases, the proposed method converges faster when only m = 25 AEs are selected for cooperation
in the FL task for the emulated (containerized) solution. The values of α, β and γ are those presented in the
previous paragraph.

Figure 45 MSE loss as a function of the number of FL rounds (emulated/containerized scenario)

To show the scalability of the proposed solution, Figure 46 presents the computation time versus the rounds for
the simulated and the emulated (containerized) system. Note that the computational load depends on the size of

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 78

the physical computer. Interestingly, since we set the cardinality of the subset of AEs to m = 25 AEs, the
computation cost remains at the same level regardless of the total number of AEs K = [40, 50].

Figure 46 Convergence time of simulated vs emulated (containerized) solution with the proposed policy

(m=25, K=[40,50])

Finally, the violation rate observed in the policy-driven constrained FL presented in this section shows a
significantly lower number of SLA violations compared to the traditional FedAvg approach, which has violation
rates of 0.275, 0,124 and 0,923 for eMBB, social media and browsing slices, respectively, while maintaining the
performance of the constrained FL technique without policy, (i.e., around 1%).

As shown in deliverable D3.1 [3] and [49], SFL can reduce the communication overhead more than ten times
compared to a centralized constrained learning baseline. The selection policy presented in this section further
reduces this overhead by limiting the number of agents that cooperate during the FL task, which promotes
scalability in a massive network slicing scenario.

7.3 Network Aware KPI Prediction

7.3.1 CONTEXT-AWARE DEMAND PREDICTORS

Instead of accurately predicting traffic, it is also possible to develop predictors consider knowledge related
to network slicing [51] and resource orchestration [52], making them in fact context-aware. The context in
this case is implicitly define as the resource orchestration problem in 5G (and Beyond-5G, for that matter)
networks for network slicing. Even though the type of resource demand and resource prediction is agnostic
to this type of resource demand predictor, for this project the consortium developed a resource demand
predictor that focuses on predicting traffic load.

The knowledge that makes the predictor context-aware is formulated as constraints that describe the relation
between resource prediction and resource allocation: underestimating slice resource load prompts
orchestrators to under-provision slice resources, which causes (among other things) SLA violations; and
overestimating res yields resource over-provisioning with penalties of its own, but it can be desirable to some

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 79

degree given the fluctuation-prone behavior of traffic [53]. This knowledge is included as regularization terms
in the loss functions used to train the DNNs [54]. This predictor we called it the “Context-Aware Traffic
Predictor”, CATP for short.

In order to enhance the capability of traffic predictors and reduce the gap between the prediction of resource
demand and resource orchestration, it is necessary for the predictors to include problem domain knowledge.
When solving regression problems with DNN function approximators, it is common to use the Mean Squared
Error (MSE) or Mean Absolute Error (MAE) as the loss functions, the latter shown in Eq.1 in which B is the
batch of values used in the current iteration, 𝑦𝑖 is the ground-truth values of the variable (i.e. real load in the

context of this paper) and 𝑦𝑖
𝑝

 is the predicted value (predicted load). In a resource orchestration setting, the

predicted value of the load 𝑦𝑖
𝑝

 is used to drive the resource orchestration policies.

𝑀𝐴𝐸 =
∑ |𝑦𝑖 − 𝑦𝑖

𝑝
|𝐵

𝑖=1

𝐵
 (𝐸𝑞. 1)

Using MAE as the basis loss function, we can define a cost model for the MAE function according to Eq. 2

𝑀𝐴𝐸𝑐𝑜𝑠𝑡 = |𝑦𝑖 − 𝑦𝑖
𝑝
| (𝐸𝑞. 2)

The capability of a predictor can be enhanced by including regularization terms to the MAE cost model,
resulting in a new cost model expressed in Eq. 3.

𝐶𝑚𝑜𝑑𝑒𝑙 = |𝑦𝑖 − 𝑦𝑖
𝑝
| + 𝜆ℎ ∗ 𝐻𝑟𝑒𝑔(𝑦𝑖 , 𝑦𝑖

𝑝
) (𝐸𝑞. 3)

The second term of Eq. 3, 𝐻𝑟𝑒𝑔, embeds problem domain knowledge related to resource orchestration in

5G/B5G networks. This term can be viewed as a constraint for the predictor. The 𝜆 is a weighting factor which,
as it becomes larger, will drive the predictor into satisfying the resource orchestration constraints given by
𝐻𝑟𝑒𝑔. But as 𝜆 becomes smaller, then the loss function prioritizes prediction accuracy.

In the context of 5G/B5G networks, the terms 𝑦𝑖 and 𝑦𝑖
𝑝

 of Eq. 3 can represent the real load (i.e. real resource

demand) and the predicted load (i.e. the predicted resource demand), and the latter can be treated as the
equivalent to the resources allocated to the element handling the load. Thus, Eq. 2 can also be interpreted
as the difference between the real resource demand and the resource allocation (based on the predicted
load). By considering this, the function 𝐻𝑟𝑒𝑔 in Eq. 3 can be defined as shown in Eq. 4.

𝐻𝑟𝑒𝑔(𝑦𝑖 , 𝑦𝑖
𝑝
) = {

𝐻𝑢−𝑝(𝑦𝑖, 𝑦𝑖
𝑝
) 𝑦𝑖 > 𝑦𝑖

𝑝

𝐻𝐼(𝑦𝑖 , 𝑦𝑖
𝑝
) 𝑦𝑖 ≈ 𝑦𝑖

𝑝

𝐻𝑜−𝑝(𝑦𝑖 , 𝑦𝑖
𝑝
) 𝑦𝑖 < 𝑦𝑖

𝑝

 (𝐸𝑞. 4)

Equation 4 defines a piece-wise function 𝐻𝑟𝑒𝑔(𝑦𝑖 , 𝑦𝑖
𝑝
) as the regularization term. In Eq. 4 (and here on

forward), the subscripts u-p, I and o-p stand for under-provisioning, ideal and over-provisioning, respectively.

If the conditionals in this function are dependent on the domain of 𝑦𝑖 and 𝑦𝑖
𝑝

, with associated functions

𝐻∗(𝑦𝑖, 𝑦𝑖
𝑝
) , then 𝐻𝑟𝑒𝑔(𝑦𝑖 , 𝑦𝑖

𝑝
) becomes an approximation constrained (regularization) function [55].

When a network slice is under-provisioned of resources due to predictor estimating a resource demand

smaller than the real resource demand (𝑦𝑖 > 𝑦𝑖
𝑝

), the following sources of penalties appear:

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 80

• A penalty proportional to the difference between the amount of resources given to the slice

(corresponding to the predicted load 𝑦𝑖
𝑝

) and the real load of the slice. Assigning less resources based

on the predicted load 𝑦𝑖
𝑝

 will increase the probability of an SLA violation

• A penalty associated to re-arranging the resource allocation to meet the demand of an under-
provisioned network slice. Re-assigning resources requires hardware and software support, which
increases the total cost of ownership for the infrastructure provider (InP) [56].

The cost of under-predicting resource demand, which results in resource under-provisioning can be
represented as growing linearly as a function of the difference between the predicted and re al resource
demand. This is represented in the first term after the equality in Equation 5 with the parameter 𝐶𝑑. This
latter represents a gain parameter for the under-provisioning cost. As 𝐶𝑑 grows, the predictor will be trained
with a high-penalty of resource under-provisioning, learning to avoid this condition as much as possible.

𝐻𝑢−𝑝(𝑦𝑖, 𝑦𝑖
𝑝
) = (𝐶𝑑 + 𝐶𝑟) ∗ (𝑦𝑖 − 𝑦𝑖

𝑝
). (𝐸𝑞. 5)

The second term after the equality in Equation 5 represent the cost re-arranging resources. Such an operation
will occur if some resource unde-provisioning occurs in order to prevent an increase in the probability of SLA
violations. Similar to 𝐶𝑑 the parameter 𝐶𝑟 represents a gain for the re-arranging costs, and as 𝐶𝑟 grows, the
predictor will be trained with a high-penalty of resource re-arrangement. In most cases, it is expected that
𝐶𝑑 ≫ 𝐶𝑟, since the operational penalty of over-provisioning is usually much larger and carries a lot of
negative implications for the service provided and the infrastructure owner, in terms of lost revenue and
associated losses.

When a network slice is over-provisioned of resources due to predictor over-estimating the resource demand

with respect to real resource demand (𝑦𝑖 < 𝑦𝑖
𝑝

), the different sources of penalties are:

• A penalty related to the idle resources, which reduces revenue potential for the InP.

• An operational cost incurred by the InP due to re-configuring resource allocation

• Assuming full resource allocation and resource overbooking, network slices with idle resources
increases the chances of under-provisioning of other network slices, and preventing more slices and
their respective user service requests to be admitted for execution.

These three sources of penalties will generate Equation 6, which has some resemblance with Equation 5,
since both consider different a growing linear behavior (linear) for the penalties associated to any type of
under-provisioning/under-estimation. The costs associated to over-provisioning and resource re-
arrangement are both consider linear with respect to the difference of the estimated (predicted) resource
demand and the real resource demand.

𝐻𝑜−𝑝(𝑦𝑖, 𝑦𝑖
𝑝
) = (𝐶𝑤 + 𝐶𝑟 + 𝑃𝑟𝐶𝑑) ∗ (𝑦𝑖

𝑝
 – 𝑦𝑖). (𝐸𝑞. 6)

In Equation 6, the parameter 𝐶𝑤 is a gain that assigns a numerical penalty to the over-provisioning of
resources, which are in fact wasted resources. The parameter 𝐶𝑑 has the same meaning as it was the case of
the penalty associated with under-provisioning (under-estimation of resource demand), while the 𝑃𝑟
represents the sensitivity of the system model to the condition of indirect under -provisioning of other
network slices due to over-provisioning of a particular slice.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 81

Using both sets of equations outlined above, it is possible to obtain a set of loss functions that can be used
to train a neural network to work as a time series predictor. Two variations result from varying the
conditionals of the regularization function. A new parameter is added, 𝑦𝑠, called “slack” that allows to
customize the region of ideal allocation depending on system behavior. Equation 7 forces 𝑦𝑠 to be above
zero, which imposes a bias on the predictor against under-provisioning (thus, under-estimation) of real
resource demand. Equation 8 creates some flexibility, by allowing the ideal allocation region to revolve

around the situation in which 𝑦𝑖 = 𝑦𝑖
𝑝

, allowing for the slack 𝑦𝑠 to be spread evenly below and above the

case in which 𝑦𝑖 = 𝑦𝑖
𝑝

.

𝐿𝑐𝑎𝑡𝑝01(𝑦𝑖, 𝑦𝑖
𝑝
) = {

(𝐶𝑑 + 𝐶𝑟) ∗ (−∆𝑥) ∆𝑥 < 0
0 0 ≤ ∆𝑥 ≤ 𝑦𝑠
(𝐶𝑤 + 𝐶𝑟 + 𝑃𝑟𝐶𝑑) ∗ (∆𝑥 − 𝑦𝑠) ∆𝑥 > 𝑦𝑠

 (𝐸𝑞. 7)

𝐿𝑐𝑎𝑡𝑝02(𝑦𝑖, 𝑦𝑖
𝑝
) =

{

 (𝐶𝑑 + 𝐶𝑟) ∗ (

𝑦𝑠
2
 − ∆𝑥) ∆𝑥 < −

𝑦𝑠
2

0 |∆𝑥| ≤
𝑦𝑠
2

(𝐶𝑤 + 𝐶𝑟 + 𝑃𝑟𝐶𝑑) ∗ (∆𝑥 –
𝑦𝑠
2
) ∆𝑥 >

𝑦𝑠
2

 (𝐸𝑞. 8)

The evaluation of CATP consisted in training state-of-the-art DNNs with ECATP formulated loss functions. The
implementation is in Python 3.8 and Tensorflow 2.1. Table 10 describes the DNN architectures and the
parameters used for each. The hyperparameters chosen for the STN [57] and the 3D-CNN [58] architectures
were chosen based on the recommendations by their respective authors. STN stands for “Spatio-Temporal
Neural Network” and it uses an encoder-decoder paradigm, combining a stack of Convolutional Long Short-
Term Memory (ConvLSTM) and three-dimensional Convolutional Network (3D-ConvNet) elements. In the case
of LSTM and Conv-LSTM2D, the hyper-parameters were chosen based on empirical experimentation,
choosing the best performing ones for a trial of experiments using a portion of the available dataset.

Table 10 DNNs evaluated with CATP and their parameters. All DNNs use a learning rate of 0.001 with Adam
Optimizer, and 100 Epochs.

DNN

Parameters

Description Hidden
Layers

Hidden
Layer/

Filter Size

Activation
Function

Dropout
Rat

Batch
Size

Unrolling

LSTM 4 50 Tanh 0.2 42 24
Widely used for time-series
prediction

3DCNN 4
32-16-64-

32
ReLu 0.3 128 24

DNN architecture in [58]

STN 9
3-3-3-6-6-

6-6-6-4
ReLu - 128 6

DNN architecture in [57]

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 82

Conv-
LSTM2D

4 4 tanh - 128 6
Using Conv-LSTM2D (CL2D)
as hidden layers

Different loss functions were tested with each DNN. Our baseline for comparison consists of three loss
functions: MAE, MSE and the loss function in [58]. We implemented the two loss functions 𝐿𝑐𝑎𝑡𝑝01 and 𝐿𝑐𝑎𝑡𝑝02

previously outlined. Every DNN architecture was paired with these loss functions, generating 8 different
(DNN, Loss Function) pairs. For every pair, a large set of experiments were run with different values and
combinations of the parameters 𝐶𝑤, 𝐶𝑑 and 𝐶𝑟, resulting in a larger number (~102) of experiments. All the
DNNs were trained using mobile traffic data from the city of Milano [59]. However, our predictors are agnostic
to this and it is possible to train them using any time-series data from any generation of technology and/or
service type.

In order to evaluate the effectiveness of each (DNN, Loss Function) pair, we introduce a total penalty cost
function TC (Equation 9) that quantifies the resource demand mispredictions of a (DNN, Loss Function), with
different cost of misprediction for under- and over-provisioning cases. TC can be interpreted as the monetary
or operational cost of resource demand of misprediction. In its formulation, TC uses the ratio between the
cost of over-provisioning to the cost of under-provisioning, the latter of which is usually larger. The expression
for TC is given by Equation 9 (which in practice tends to be smaller) over the real cost of under -provisioning,
and expresses it as in Equation 10 across a series of predictions and ground-truth values.

𝑇𝐶 = ∑𝑃𝑖(𝑦𝑖 , 𝑦𝑖
𝑝
)

𝑇

𝑖=1

 (𝐸𝑞. 9)

𝑃𝑖 = {
𝐶𝑅𝑂𝑃

𝑈𝑃
∗ (𝑦𝑖

𝑝
 − 𝑦𝑖) if 𝑦𝑖

𝑝
 > 𝑦𝑖

1.0 ∗ (𝑦𝑖 − 𝑦𝑖
𝑝
) 𝑖𝑓 𝑦𝑖 > 𝑦𝑖

𝑝
 (𝐸𝑞. 10)

This ratio allows to understand TC as a function of under-provisioning, which tends to be more significant in
real case scenarios. For example, for 𝐶𝑅𝑂𝑃

𝑈𝑃

= 0.5, the resulting TC will correspond to the case in which the

impact of over-estimating demand (resulting in resource over-provisioning) is 50% that of the impact of
under-estimating demand (under-provisioning).

Figure 47 Normalized Total Penalty for 𝐶𝑅𝑂𝑃
𝑈𝑃

= 0.5 pairs (less is better)

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 83

Figure 47 shows the normalized penalty for 𝐶𝑅𝑂𝑃
𝑈𝑃

= 0.5. The (LSTM, 𝐿𝑐𝑎𝑡𝑝02) pair performs the best with 𝐶𝑤 =

 50.0, 𝐶𝑟 = 30.0, 𝐶𝑑 = 100.0 and 𝑦𝑠 = 20.0. Following very closely, it is the (LSTM, 𝐿𝑐𝑎𝑡𝑝01) pair with 𝐶𝑤 =

 25.0, 𝐶𝑟 = 15.0, 𝐶𝑑 = 50.0 and 𝑦𝑠 = 6.0, which has a penalty 1.1% higher. Most of the pairs for this case
have similar performance, being the (CL2D, 𝐿𝑐𝑎𝑡𝑝02) the least performing one, which is 81.1% higher than

(LSTM, L_{catp02}), while the (LSTM, 𝐿𝑑𝑒𝑒𝑝𝑐𝑜𝑔) is 13.5% higher than (LSTM, 𝐿𝑐𝑎𝑡𝑝02).

Figure 48 Normalized penalty for 𝐶𝑅𝑂𝑃
𝑈𝑃

= 1.0.

Figure 48 shows the normalized penalty for 𝐶𝑅𝑂𝑃
𝑈𝑃

= 1.0. In this case, it is the (LSTM, 𝐿𝑐𝑎𝑡𝑝01) pair with 𝐶𝑤 =

 50.0, 𝐶𝑟 = 30.0, 𝐶𝑑 = 25.0 and 𝑦𝑠 = 7.0 that performs the best. Closely following, it is the (LSTM, 𝐿𝑐𝑎𝑡𝑝02)

pair with a penalty 1.3% larger (worse) using 𝐶𝑤 = 50.0, 𝐶𝑟 = 30.0, 𝐶𝑑 = 25.0 and 𝑦𝑠 = 15.0. The (CL2D,
𝐿𝑐𝑎𝑡𝑝02) pair performs the least with a penalty 79.4% higher than the first one, while the pair (LSTM,

𝐿𝑑𝑒𝑒𝑝𝑐𝑜𝑔) with 𝜖 = 0.25 and 𝛼 = 0.01 has a penalty 13.3% higher.

Figure 49 Probability of under-provisioning for 𝐶𝑅𝑂𝑃
𝑈𝑃

= 1.0 (less is better).

Figure 50 Average under-provisioning percentage for 𝐶𝑅𝑂𝑃
𝑈𝑃

= 1.0 (less is better).

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 84

Figure 49 and Figure 50 show the probability of SLA violation (i.e. probability of under-provisioning) and the
average magnitude of under-provisioning, respectively. The ones performing the best have a lower average
percentage and probability of under-provisioning, while the least performing pairs, (LSTM, 𝐿𝑑𝑒𝑒𝑝𝑐𝑜𝑔) and

(CL2D, 𝐿𝑐𝑎𝑡𝑝02), have the highest values.

The results show that CATP-derived loss functions achieve the best results consistently. The problem domain
knowledge formulation with the approximation constraints generate prediction values that yield the least
penalty with respect to resource allocation, reducing the gap between resource demand prediction and
orchestration.

7.3.2 RAN-MEC SPLIT CONVNET ARCHITECTURES FOR NETWORK-AWARE KPI PREDICTION

As explained from the beginning of the project, sophisticated architectures based on deep neural networks
have been heavily explored recently for various wireless network related prediction tasks. While these
approaches are promising, the standard assumption of a centralized implementation of the DNN
architectures raise significant challenges when used to control key 5G+ network functions. First, unlike the
use of DNNs for application layer tasks (e.g., image classification on a phone) that can be lazily offloaded to
a central computational cloud, the use of DNNs for controlling key 5G network functions (e.g., allocation of
RAN resource blocks among tenants and/or users) require significantly lower latency, which might not be
satisfiable by sending all required data to a central DNN, making the decision there, then sending it back the
actuation message to the desired edge components; Second, constantly sending raw monitored data over a
possibly already congested network towards a DNN architecture lying deep in the core might have a
prohibitive network footprint. As a result, in MonB5G we have been exploring how such DNN -based
architectures could be appropriately implemented in a distributed fashion, both for KPI prediction as well as
reacting to such predictions in the decision engine, e.g., resource scaling (to be discussed further in the
context of WP4 deliverables). The main goal of this thread has been resolving both of the above concerns
towards greatly increased scalability, yet without compromising the observed accuracy advantages of a larger
(centralized) DNN architecture.

In our initial exploration of the topic in D3.1 [3], we discussed how a DNN architecture based on 3D
convolutional neural networks [58] can be effectively split between:

• An edge DNN (e.g., running at the RAN or edge cloud) of the DNN that is lightweight, i.e., shallower
than a baseline centralized DNN: this edge DNN can make sufficiently accurate KPI predictions locally,
in the majority of cases, thus (i) greatly increasing prediction latency (due to both fewer DNN layers
in the forward pass, as well as proximity to the monitored signals); (ii) alleviating the network load to
collect raw monitored data to a centralized DNN and thus improving the architectures scalability; (iii)
allowing in many instances the (also) local DE component to take immediate decisions, compared to
a more rigid centralized AE/DE.

• A central DNN (running at a core or central cloud location) that is significantly more powerful (and
thus slower) and is tasked with improving the accuracy of local KPI predictions of the edge DNN, when
the latter are not sufficiently confident.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 85

• An offloading component that must frugally decide, at runtime, which predictions to delegate to the
central DNN, and how to best optimally combine local and central decisions, when the latter is
needed.

Figure 51 describes such an example D(istributed) DNN architecture that can be used for either traffic
prediction of potentially correlated sources (e.g., the future traffic demand of 4 base stations or 4 VNFs
belonging to the same slice) or also take direct action, e.g., reallocating resources to satisfy an SLA related to
these demands (to be further detailed in WP4).

Figure 51 DDNN Architecture for Network-Aware KPI Prediction: the Local Part of the NN in the RAN (near
the BSs) and the Remote Part in the MEC

Progress since D3.1. In the deliverable D3.1 [3], the distributed architecture was proposed to apply in a single
domain only: the traffic demand of up to 16 RAN components (base stations in the experiments considered)
was predicted at the local edge component, consisting of 1 convolutional layer and 2 fully connected ones,
and supplemented by a centralized component; a heuristic mechanism was used to decide whether the local
traffic prediction was confident enough, or else the output from the local convolutional layer had to be
transmitted to a centralized component running 2 additional convolutional layers and 3 fully connected ones.
Since this initial investigation, the work has greatly progressed along a number of key directions.

• Cross-domain: The distributed architecture can now support slices that contain components across
different technological domains. For example, each slice can consist of different VNFs and links
connecting those, with potential correlations in the demand of involved components being leveraged
during prediction.

• Composite KPIs: While during the first phase we considered simple MSE for prediction (as well as
symmetric objectives/SLAs for allocation problems in WP4), the architecture can now predict
sophisticated KPIs that depend on the performance of all components (VNFs, links, across domains)
of a slice. Examples include end-to-end delay through a VNF chain or bottleneck bandwidth along a
VNF path.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 86

• Optimized prediction offloading mechanism: Perhaps, the most important improvement of the
architecture has been the optimization of the network-aware offloading decision at the edge.
Specifically, a 3rd neural network is trained to predict whether the additional accuracy potentially
offered by transmitting pre-processed samples (through the local convnet layer) to the centralized
DNN is sufficient to amortize the network cost (or latency cost) to transmit this sample (with the cost
tunable at will by the operator or slice owner).

Figure 52 demonstrates the potential scalability benefits that such a distributed implementation can offer
compared to a fully centralized baseline. For example, focusing on the black curve (the different curves
correspond to different weights balancing the strength of the local and remote layers of the DDNN, an
interesting tradeoff in itself), we can make some very interesting observations:

• Compared to the leftmost values (“all predictions delegated to the stronger, centralized DNN”), and
moving towards the right of these plots, we can see that 50% of predictions could be made locally
with an inaccuracy cost increase of less than 2-3%, and 80% of predictions could be made locally with
less than 5% accuracy degradation.

• In fact, the above quoted inaccuracies are with respect to a DDNN that has been trained with a local
exit, but still performs all prediction at the remote/centralized exit. Compared to the actual baseline
of a fully centralized DNN (e.g., DeepCog architecture used for MSE prediction [58], indicated in the
two figures as a purple cross, a very interesting phenomenon occurs in some scenarios (e.g., the right
plot): 50-60% of predictions can be resolved locally (and thus with much less latency and zero
overhead for the network) without any accuracy deterioration! The latter phenomenon is due to the
performance benefits of simply having local exits during offline training even in a centralized DNN
[60].

Summarizing, a key take home message of the current architecture is that, up to a 10x traffic reduction can
be achieved compared to the centralized baseline, with minimum performance degradation (less than 5% MSE
increase), as promised in the MonB5G description of work. As decision latency and/or network traffic can
often be the main bottlenecks in such AI-based setups, this 90-10 regime that can be supported suggests that
90% of the decisions related to these KPIs can also be acted on locally, by the collocated DE, hence greatly
facilitating the distributed/parallelized operation at the DE level as well.

As the details of the offloading mechanism and DDNN training for composite KPIs have been mainly tested
with SLAs related to resource allocation examples [61], we will further elaborate on those details in WP4
deliverables.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 87

Figure 52 Scalability curves, demonstrating the tradeoff between cost from prediction inaccuracy, e.g., MSE,
(y-axis) and percentage of predictions made locally (x-axis); The 3 curves represent different training

weights for the offline tuning of the Distributed DNN, while the actual accuracy cost (y-axis) and network
traffic (x-axis) are measured online, on test data. The cross corresponds to the baseline performance of a
fully centralized DNN network with the exact same number of convolutional layers as the distributed one.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 88

8 MonB5G Analytics Engine for Network Fault Management

This Chapter is devoted to implement the MonB5G AE features for Network Fault Management. Fault
Management is a fundamental part of the FCAPS (Fault, Configuration, Accounting, Performance and
Security) operations. It aims to detect and eliminate any malfunctions that have occurred in the monitored
systems to prevent the degradation of the provided services. In general, the process of fault management
can be dissected into three steps:

• Fault detection – the system malfunctions can usually be observed in the form of degradation of KPIs
or abnormal behaviour of specific components. Therefore, the capability to efficiently detect network
anomalies is of particular importance for the network operators;

• Fault diagnosis and isolation – the set of actions to identify the source of the fault and mitigation of
its impact on the system’s behaviour;

• Correlation and aggregation – gathering of events that correspond to the fault and performing root
cause analysis;

• Service restoration – execution of actions to restore the services that the fault has impacted;

• Fault correction is the step comprised of taking actions needed to eliminate the fault.

Typically, fault management is performed in two ways: passive and active. The first one relies on the
collection of the alarms generated by the components (e.g., using SNMP protocol in case of network
hardware) and undertaking the necessary actions on their basis. The main issue with this approach lies in the
malfunction reporting strategy. As the management relies solely on the data provided by the monitored
component in case of complete malfunctions, the alerts might not be generated; hence the issues that
occurred will not be detected by the management system. The active approach, on the other hand, involves
monitoring as well as interaction with the system components. If the element fails to respond to the
management system calls, the relevant alarms are triggered. Usually, the active approach involves monitoring
system KPIs and using relevant system information (hardware specifics, history of faults etc.) to predict the
possible future faults and mitigate them before they occur. The MonB5G framework can support both passive
and active fault management.

In Section 8.1 we propose an LSTM-based approach to outlier detection that can predict normal traffic
behaviour in the sample sequences and detect faults by identifying large deviations from the expected
behaviour. Since a system fault is an event that should be categorized as an exception, in this section we
provide more general algorithms to identify outliers in the system. Anomalies can be defined as an unseen
pattern that does not match known patterns learned from normal data. The rising volume of network data
due to the generation of approximately 1 million events every second in RAN has made intelligent monitoring
of network performance management imperative for network operators. To ensure infrastruct ures provide
a high level of robustness to customers, rule-based systems based on domain knowledge were implemented
to analyse and detect the anomalies across multiple features. However, these traditional rule-based network
application approaches fail when exposed to new previously unseen complex patterns. This has highlighted
the importance of anomaly detection and has resulted in drawing the researcher’s attention towards
adapting autonomous and intelligent network systems.

In particular, deep learning algorithms are capable of processing and learning from large data sets efficiently.
They can be applied to mine the very large data sets that are generated in large operator’s networks and

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 89

future 5G networks, and to find insights and other useful discoveries. In Section 8.2 we propose a RNN based
solution to design and develop neural network-based anomaly detection solutions with reduced training and
testing times, and get optimal anomaly detection results.

Lastly, another important aspect of anomaly detection and fault management is the identification of nodes

in a network that are not functioning properly. The deviation of these nodes from the standard expected

performance (which makes them outliers) may be due to a local fault or may become the cause of a system

fault in the short term. In any case, such outlier behaviour needs to be identified as soon as possible.

However, carrying out this identification should not require the individual nodes to disclose their private

data. To this end, in Section 8.3 we propose an algorithm for solving learning problems in a network th at

allows each node to compare its local state with the average state of the network and identify itself as an

outlier, while keeping the nodes’ data private.

8.1 Fault and Anomaly Detection Based on Link Traffic Observations with LSTM

This section presents data-driven, LSTM-based AE for anomaly detection in network traffic. The described AE
operates on real data obtained from MS of the operator’s backbone links and can be used. i.e., for anomalies
detection fault management of network slices performing functions associated with the operation of
Transport Network (TN).

8.1.1 CONCEPT

The high-level architecture of the developed engine is presented in Figure 53.

Figure 53 Architecture of LSTM-based AE for anomaly detection in TN slices.

The analysed data are link traffic samples that are acquired by the MS (IPFIX/Netflow probes) responsible for
the monitoring of the backbone links. The obtained trace is filtered using median filtering to remove artefacts
caused by the process of traffic samples acquisition - the exact accuracy is not essential to observe anomalies.
The module employs one LSTM unit working in the AutoEncoder mode. The unit's role is to recreate the
original, typical input curve without existing anomalies (perform smoothing of the curve in the selected
historical period). The configuration of LSTM has been chosen based on the empirical results, providing
satisfactory training error for the whole data-trace with good generalization and without overfitting. The
network was trained with a learning rate equal to 0.01 and Adam [62] optimizer for the duration of about
200 epochs. For the training, we have used two training sets; each of them was five days long (1440 samples).
The first training set was selected from the beginning of the trace; the second set was chosen from the final

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 90

part of the trace as we have noticed a significant change of the traffic. In both cases, the training set contained
1400 samples (c.a. 5 days), while the size of the testing set was the whole acquired trace (i.e. 90k samples).
Both subsets are presented in Figure 55, marked as XTrain1 and XTrain2, respectively. The training data has
been pre-preprocessed, which included data normalization (reshaping the data from the original range so
that all values are within 0 and 1).

The derived LSTM structure is as follows:

• Input layer: 1 channel

• LSTM layer: 100 elements

• Fully connected layer: 100x1

• Output layer: 1 channel

The output of LSTM is fed to the module responsible for error calculation; it subtracts the original input signal
from the LSTM output. The absolute value of error is later used within the outlier detection module for
anomaly detection. To find the outliers the following approach that main goal is to find the background
(envelope or amplitude) of the error.

The main goal of the AE is to distinguish anomalies based on the history of the past data (no future samples
are taken into account). For this purpose, several approaches have been evaluated. One of the considered
approaches included the removal of outliers that have values greater than three times of standard deviation,
however it is sometimes not a suitable solution as an absolute error signal rarely follows the Gaussian
distribution. Outliers can also be cut off based on mean calculations, but it often prov ides a high number of
false positives. A promising solution for traces not having a non-Gaussian distribution was using the Inter
Quartile Range (IQR). The IQR is calculated as the difference between the 75 th and the 25th percentiles of the
data. However, this method is susceptible to traces having a high variance making it inapplicable in this case.
Other considered methods of finding outliers include k-nearest neighbour algorithm as an example of
unsupervised learning, support-vector machines (SVM) and isolation forest.

To estimate the error signal envelope, a new approach has been proposed. This iterative algorithm consists
of the following steps:

• Calculate the median of the local window, 𝑋 (576 samples);

• Remove all samples that fulfil the condition 𝑋(𝑖) < 𝑚𝑒𝑑𝑖𝑎𝑛(𝑋) and create a new vector 𝑌

• Calculate the median of 𝑌

• Remove samples (local outliers detection methods can be used such as Local Outlier Factor) above
threshold (triple standard deviation, etc.)

• Go back to (1) until a condition (number of iterations, number of samples in the final set etc.) is met

The obtained envelope level is changing quickly, but in real implementation, the error threshold change is
typically very slow – in some cases, there is even a fixed threshold. Due to this fact, a slowly varying threshold
has been introduced. It has been done by limiting changes between two consecutive envelope values to a
small, predefined value (step). During testing, satisfactory results have been obtained for the step size equal
to 0.05% threshold change per step, i.e., about 15% threshold change per day. The obtained curve can be
seen as a mask that separates anomalies from regular traffic. Typically, not an envelope is directly followed,
but a certain margin (20%-50%) is added to avoid false alerts.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 91

8.1.2 DATASET

The used dataset was acquired on a backbone link over a period of consecutive 340 days. The links’ bandwidth
was measured in 5-minute intervals. The exemplary unfiltered trace is presented in Figure 54a.

The observed traffic fluctuations show an exceedingly high periodicity. Typically, during the weekdays, the
peak of activity can be observed at night (around midnight), while during the weekends, the behaviour is the
opposite, and the highest activity occurs during the first half of the day. The sudden spikes in the observed
traffic are caused by the operation of the measurement equipment and probing. Nonetheless, there exists a
high correlation between the time of day (ToD) and the user activity. Such properties of the dataset enable
building accurate models for prediction to assist anomaly detection mechanisms. In a result of the
reconfiguration of the network or failure, the traffic changes its characteristics, it is "not identical” (not
stationary) over the whole period.

Figure 54 Traffic trace without pre-processing (a) and after performing median filtration (b)

As described in section 8.1.1, in order to eliminate anomalies caused by bandwidth probes, the m edian
filtering was applied (Figure 54a). Figure 55 presents the full trace with marked anomalies that indicate
potential faults.

Figure 55 Full trace (340 days) with two data subsets used for training the LSTM network (Xtrain1 and
XTrain2) with anomalies indicating potential faults (marked with red ellipses).

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 92

8.1.3 FAULT AND ANOMALY DETECTION RESULTS

In this section, the details regarding the results of LSTM-based anomaly detection AE will be described. The
concept evaluation has been done using two separate datasets, XTrain1 and XTrain2, and tested against the
whole 340-day trace, as presented in section 8.1.2. Figure 56 presents the results of performing the
encode/decode operation using the XTrain1 subset as the input. The obtained YTrain1 set shows a very high
resemblance to the original XTrain1 curve; however, small discrepancies can be observed in the areas where
the slope changes rapidly.

Figure 56 Training accuracy evaluation: original (blue) and trained (orange) time series

Figure 57 Anomalies detected with: (Top) the envelope estimation for Xtrain2; (Bottom) slowly varying
threshold based on envelope of the top panel.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 93

The trained LSTM unit has been used to encode the whole period of 340 days testing set. The obtained
sequence has been afterwards subtracted from the original signal to get the error induced by the
AutoEncoder operations. As the final step, the fault and anomaly detection algorithm described in Section
8.1.1 has been applied to detect the outliers in the obtained trace. For this purpose, several threshold values
have been tested. The top panel of Figure 57 shows the anomalies detected using envelope estimation for
the XTrain2 subset with the total detected outliers of 1798. The increase of the threshold by 25% caused the
reduction of detected outliers to 922, which indicates the importance of the selection of the suitable
threshold values (to minimise the number of false alarms and increase the anomaly detector accuracy). To
optimise the anomaly detection process, hereby, we propose the second approach that uses a slowly varying
threshold (Figure 57 bottom).

The obtained results are much more promising than in the case shown as Figure 57 top. In total, 774 events
have been detected. Most of the anomalies are close to each other and form two separate groups. The
analysis of the detected events with the prior information regarding faults has shown that 14 malfunctions
(out of 14) have been detected. That includes two groups of consecutive anomalies (i.e. faults) and 12 isolated
events (i.e. anomalies).

The presented approach is characterised by very high scalability. Each AE for anomaly detection analyses a
single trace (link utilisation) and can be deployed for a single link, a set of intra-domain links, inter-domain
links or the e2e link. The traffic aggregation, however, can severely impact the accuracy of fault detection as
the singular anomalies can be stacked together and be observed as a normal system behaviour or local
fluctuations (that can be removed in the pre-processing stage). Moreover, the implemented AE can be used
for anomaly detection for any KPIs considering the fulfilment of the requirement regarding data
dimensionality (the input is a vector).

8.2 Local Analytics Engine for Fault Management with RNN

In this section we present an alternative approach for time series analysis and anomaly detection based on
recurrent neural networks (RNN).

This model architecture as shown in Figure 58 combines the AE predictions with the Network Fault
Management to identify the faults (anomalies) to provide root cause analysis. The local analytic engine
predictions used to detect faults are based on an unsupervised learning probabilistic prediction approach
trained using GRUs.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 94

Figure 58 Analytics Engine with Fault Management Model

8.2.1 FAULT DETECTION MODEL

A language model for sequences specifies a probability distribution for the next call in a sequence given the
sequence of previous system calls. The Gated Recurrent Unit Based Neural Network is trained to produce this
probability distribution using a training set of known normal sequences, that is, the network learns a language
model of normal sequences.

Given a set of sequences, we estimate the probability of a sequence occurring using probability distributions.
Note that p(xi |x1:i−1) is the probability of the integer xi occurring after the sequence x 1:i−1.

Figure 59 Conditional Probability over sequences

In practice, the negative log of the value p(x) defined in equation above is used resulting in high values for
unlikely sequences and low values for likely sequences. Anomaly detection for sequences can be carried out
by imposing a threshold for this negative log likelihood (L) and predicting an anomaly for sequences with an
L value above this threshold.

8.2.2 ALGORITHM FOR PREDICTION BASED ANOMALY DETECTION

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 95

Given a set of normal sequences, the anomaly detection algorithm evaluates the test slice latency as
anomalous or normal. As the algorithm implemented is cost efficient, it consumes much less computational
resources in comparison to the traditional deep neural network algorithms. In this section, we discuss the
pseudo code for anomaly detection.

Training

• The RNN based model is trained in mini batches on normal sequences in the slice latency time series
data (no anomalous sequences).

• The model is trained in mini batches with the set of normal sequences (no anomalous sequences).
The loss function is the categorical cross entropy function.

Calculation of Sequence Probability

• The input sequence is fed through the trained model. The output is a sequence of probability
distributions using hidden states, which represent the probability distribution for the next integer in
the sequence.

• A sequence probability value is calculated by essentially multiplying the probabilities of the next
integer in the sequence occurring, across the entire length of the sequence.

Calculation of ROC curve data and AUC for validation data

• The negative log of the sequence probability is calculated for every sequence in the validation data.

• If the negative log value for the sequence is greater than the threshold, the sequence is classified as
anomalous (Positive), otherwise it is classified as normal (Negative). (This corresponds to the
sequence probability for abnormal classification being below a threshold, i.e., unlikely).

• The sequence is identified as either True Positive, False Positive, True Negative, False Negative.

• The Detection Rate and False Alarm Rate for the particular threshold value is calculated.

• The ROC curve is plotted for the range of threshold values.

• The AUC value is calculated for the ROC curve.

8.3 Outlier Identification in Networks with Decentralized Optimization

We have already remarked the importance of data-driven anomaly detection and managing solutions that
achieve smarter decisions with less human intervention. When such tasks are executed in a network where
all nodes both gather data and need to be surveilled to detect faults in the system, the size of the network
imposes a hard challenge. Indeed, as the size of the network increases, so does the amount of data that need
to be processed, which makes traditional centralized management solutions unsuitable due to
communication overhead, stringent latency requirements, and privacy concerns.

In contrast, fully-decentralized solutions have the potential to alleviate all of these issues at once. However,
decentralized solutions come with their own challenges, namely (i) designing decentralized algorithms with
comparable (and ideally, matching) performance to that of their centralized counterparts, (ii) dealing with

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 96

potentially very different devices in terms of communication and computation capabilities, and (iii) a chieving
the above without compromising the privacy advantages of the decentralized solution.

In the centralized learning setting, each node 𝑖 sends its data {𝑋𝑗} for 𝑗 = 1,… ,𝑁𝑖 and 𝑖 = 1,… , 𝑛 to a

centralized server that solves the problem

For 𝑁 = 𝑁1 +⋯+𝑁𝑛, where the function 𝐹(⋅) is a cost that depends both on the data and the model

parameter 𝜃 . The objective is thus finding the optimal value 𝜃 that minimizes the sum of the costs over all
data in the network. This general problem can capture many network management problems such as
resource allocation and user association. However, the centralized solution has a great drawback: it needs all
nodes to send their data to the central location. This incurs a huge communication overhead that may ha ve
to be paid multiple times if data is continuously generated at all nodes. Furthermore, it requires sacrificing
privacy, since once the data leaves the node the control on its usage is lost. As a consequence, we assume
that this approach is non-viable.

On the other hand, decentralized algorithms solve the problem

where

are private functions known only by each node 𝑖 = 1,… , 𝑛 and depend on the data gathered at the node.
Decentralized algorithms to solve this problem are able to find the same solution as the centralized algorithm
but exchanging optimization variables (parameters, gradients) instead of the data itself, which lowers the
communication costs and preserves privacy. Algorithms to solve the decentralized optimization or similar
problems have been successfully applied to problems in sensor networks [63] [64], edge computing [65] [66],
and network slicing [67] [68].

However, some of the most successful algorithms in the literature that tackle the decentralized problem are
synchronous, i.e. they require some central coordinator that ensures that all nodes have completed an
iteration to start the next. For very large networks, such an approach necessarily incurs in large
communication costs and increased wall-clock time, since nodes who have quickly completed an iteration
must wait for those that have not finished yet (see section Scalability of Asynchronous Algorithms below).

To alleviate the problem, a large body of literature has proposed asynchronous algorithms where nodes can
activate at any time and communicate with one of their neighbors to complete an iteration of the algorithm
without being managed by a global synchronization enforcer [69] [70] [71]. However, most of the existing
approaches select the neighbor to contact based on a fixed probability (e.g., uniformly at random), a choice
that ignores the optimization landscape at the moment of activation. We thus propose a solution that takes

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 97

into account this information to achieve faster convergence in terms of number of iterations than the uniform
sampling baseline.

8.3.1 CONTRIBUTIONS

We propose an algorithm to solve the decentralized optimization problem that has the following convenient
characteristics:

• It is completely decentralized, in the sense that all nodes in the network can obtain the global

minimum value 𝜃 communicating only with their neighbors, without the need of a central
coordinator.

• It is asynchronous, in the sense that nodes can activate at any time and talk with their neighbors
 without having to wait for any other specific event in the network.

• Nodes can solve the decentralized optimization problem without having to share their own private
data.

The key feature of our algorithm respect to existing approaches is that it considers the improvement provided
by all its neighbors to choose the neighbor to contact to complete an iteration. For this, we propose to use
the Dual Ascent (DA) algorithm [72] to solve a constrained reformulation of the decentralized problem
showed above. We then consider three variants of this Decentralized DA (DDA) algorithm, whose differences
are illustrated in Figure 60:

• Uniform Sampling (DDA-US): When a node activates, it chooses the neighbor to contact uniformly
at random.

• Maximum Gradient (DDA-MG): When a node activates, it chooses the neighbor that corresponds
to the dual parameter with the largest gradient, and thus, the one that provides the largest cost
improvement.

• Maximum Stored Gradient (our proposed solution, DDA-MSG): Nodes keep in memory the
magnitude of the last gradient applied with each of their neighbors and each time they activate,
they choose the neighbor whose stored gradient is the largest.

Figure 60 Differences in the neighbor choosing criterion of the algorithms considered

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 98

Although DDA-MG provides a significant improvement respect to DDA-US, it has also a remarkably larger cost
in terms of computation and communication. In contrast, our proposed algorithm DDA-MSG approximates
the performance of DDA-MG at the communication and computation costs of DDA-US, as shown in section
Outlier Detection and Fault Management.

8.3.2 SCALABILITY OF ASYNCHRONOUS ALGORITHMS

Here we illustrate how asynchronous decentralized algorithms are less affected by the increase in the
network size with respect to synchronous algorithms. Figure 61 shows a scheme of how the nodes might
spend their time in each case.

Figure 61 Time spent by each node in the synchronous and asynchronous settings

The left panel of Figure 61 illustrates how in the asynchronous setting nodes that can complete computations
faster (in the example, nodes 1, 4 and 5) stay idle a large portion of the time waiting for the slower nodes (2
and 3). In contrast, in the asynchronous setting the fast nodes have the possibility of contacting different
neighbors and spend much more time active than in the synchronous case.

To further illustrate these differences, we ran DDA-US versus synchronous dual ascent for a case where the

𝑓𝑖(𝜃)are quadratic functions with 𝜃  ∈  ℝ5, and we repeated the experiment for random graphs of sizes 𝑛 =
10,  20,  30 , shown in Figure 62.

Figure 62 Graphs used in the comparison of synchronous versus asynchronous decentralized dual ascent

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 99

In our simulation we assumed that nodes wake up following an exponential distribution with rate 𝜆𝑖 =
1

𝛽𝑖
 and

the 𝛽𝑖 are sampled from a beta distribution with parameters 𝛼 = 2 and 𝛽 = 50. Figure 63 shows the
histograms of the sampled 𝛽𝑖 for each network.

Figure 63 Histograms of the generated for the comparison of the synchronous versus the asynchronous
algorithms

Figure 64 shows the convergence of the synchronous and asynchronous algorithms in a ll three cases. The
asynchronous algorithm is faster than the synchronous for all three graphs, but the difference in time
between the two for reaching a sub-optimality of 10e-4 increases with the number of nodes in the network.
This displays how the advantages of asynchronous with respect to synchronous algorithms become larger as
the network size increases.

Figure 64 Simulation of random exponential node activation. The plots show the convergence achieved by
the synchronous and asynchronous decentralized dual ascent algorithms for graphs with 10, 20 and 30

nodes respectively.

8.3.3 OUTLIER DETECTION AND FAULT MANAGEMENT

To display the performance of our algorithm DDA-MSG, we consider a scenario where base stations (BSs) in
a network attempt to learn the global traffic in the network and identify potential load imbalances, which
allows then to change the user association or reallocate resources online if one BS in the network finds more
traffic that in can cope with. By letting nodes know the average state of the network and its fluctuations,

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 100

nodes can know if the overloaded BS is an outlier and the problem can be handled by reallocating resources,
or if simply all BSs are equally loaded and there should be no feasible solution to tackle the problem with
reallocation. Detection of such imbalances can also be used to identify times of the day when a BS is
particularly under-loaded (resp. overloaded), case in which it may increase (resp. try to handover) its load to
improve the overall performance of the network (e.g. through calendaring [73] or cell breathing techniques
[74]).

In our simulations we assumed that the BSs are geographically distributed following a Poisson Point Process,
as is commonly done in analyses of cellular networks, especially ones with small cells [75]; the resulting
network is shown in Figure 65. Figure 66 shows the relative error respect to the optimum at each iteration
for three asynchronous decentralized algorithms: (i) DDA-US, which samples the neighbor to uniformly at
random, (ii) DDA-MG, which has higher communication and computation costs than DDA-US but also faster
per-iteration convergence, and (iii) our proposed algorithm DDA-MSG, which approximates the performance
of DDA-MG at the cost of DDA-US using past gradient information that is readily available at no extra cost.
Our algorithm DDA-MSG performs closely to the fast (but costly) algorithm DDA-MG, but it runs at the cost
of the cheap (but slow) DDA-US algorithm.

Figure 65 Geographic graph showing the connectivity between base stations used in our simulations

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 101

Figure 66 Convergence of the three decentralized dual ascent (DDA) algorithms considered: uniform
neighbor sampling (DDA-US), maximum gradient neighbor selection (DDA-MG), and our proposal, stored

maximum gradient neighbor selection (DDA-MSG)

Lastly, Figure 67 illustrates how all nodes, independently of their position in the network, converge to the
global model, even though local data significantly differ. The yellow lines show the data of BSs 𝑖 = 2,  7,  11
and the red lines show the fits of their local models. These three base stations differ largely in their daily
traffic profiles, but despite this high heterogeneity, the solutions retrieved by DDA-MSG at each BS (black
dashed lines) are practically identical, and in all cases very different to the local solutions (red lines). This

confirms that the solutions retrieved by our algorithm are the optimal value 𝜃 of the decentralized
optimization problem and are not biased by the local data at each node.

Figure 67 Data heterogeneity between base stations 2, 7 and 11, and comparison of the local and the global
parameter fits. The figures show the data of 3 base stations in the network (yellow lines) with the fit of their

local data only (red line) and the fit of their local copy of the global parameter (black dashed line) .

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 102

9 Conclusions

This deliverable presented our achievements in WP3 of the MonB5G project: the distributed AI-driven MS
and AE for scalable zero-touch slice management. In addition, two synthetic 5G datasets were reported to
benefit the 5G/B5G research community for development of new AI-driven solutions in the context of
network data analytics. MonB5G MS and AE embed themselves in a decentralized management architecture
to distribute monitoring and analytics among various layers, nodes and sub-slices of the management
hierarchy, such that the management tasks are executed locally for reducing communication overhead and
delay. The current tests have demonstrated the advantages of the proposed techniques with promising
results on scalable slice management.

MS provides up-to-date monitoring for online analysis and reconfiguration in response to unexpected
network dynamics. In detail, it presents the following innovations. First, MS is designed based on the
microservice architecture and implemented as a cloud-native application in e.g., a Kubernetes cluster. Next,
MS is under a hierarchical architecture, which allows multiple sub-MSs which are collaborating in a master-
slave pattern, and the data monitored by the slave MS can be further gathered by the master MS as needed.
Moreover, MS reduces the footprint of the system. MS entities can be shared among administrative
components i.e., AE and DE. Last but not least, each sampling function, used by MS to collect data, is
implemented by a single Docker image. In this way, the sampling loop resides inside the Docker image, and
there is no need to frequently create and destroy the sampling function container. All these techniques
enable MS to track the current status of a large number of slices for scalable slice management.

AE is also structured hierarchically, and empowered by advances of distributed AI techniques, which were
tailored and extended to provide hierarchical KPI prediction and fault management on different management
layers. To enable online prediction, analytics tasks will be distributed among adjacent layers vertically and
horizontally with optimal policies learned via distributed ML and FL techniques. The developed novel
techniques are able to balance the prediction performance and communication overhead/delay. AE provides
a variety of features, such as: context-aware traffic prediction, network slicing resource provisioning with FL,
network-aware KPI prediction with distributed neural networks, local fault identification with RNN, and
outlier detection with decentralized optimization.

In a summary, we developed decentralized MS/AE, alone with distributed AI techniques. The achievements
reported in this deliverable demonstrated that this work is a decisive step towards scalable and automatic
slice management.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 103

References

[1] S. Sharma, R. Miller and A. Francini, “A Cloud-Native Approach to 5G Network Slicing,” IEEE
Communications Magazine, vol. 55, no. 8, pp. 120-127, 2017.

[2] I. P. Chochliouros, A. S. Spiliopoulou, P. Lazaridis, A. Dardamanis, Z. Zaharis and A. Kostopoulos,
“Dynamic Network Slicing: Challenges and Opportunities,” in Proceedings of AIAI-2020, IFIP Advances
in Information and Communication Technology, 2020.

[3] MonB5G, “Deliverable D3.1: Techno-economic analysis of the beyond 5G environment, use case
requirements and KPIs,” 2020.

[4] 5. PPP, “Cloud Native and 5G Verticals services 2020,” 2020. [Online]. Available: https://5g-ppp.eu/wp-
content/uploads/2020/02/5G-PPP-SN-WG-5G-and-Cloud-Native.pdf.

[5] U. Paul, J. Liu, S. Troia, O. Falowo and G. Maier, “Traffic Profile and Machine Learning Based Regional
Data Center Design and Operation for 5G Network,” Journal of Communications and Networks, vol. 21,
no. 6, pp. 569-583, 2019.

[6] A. Dalgkitsis, M. Louta and G. T. Karetsos, “Traffic Forecasting in Cellular Networks Using the LSTM
RNN,” in Proceedings of the 22nd Pan-Hellenic Conference on Informatics, 2018.

[7] I. Alawe, A. Ksentini, Y. Hadjadj-Aoul and P. Bertin, “Improving Traffic Forecasting for 5G Core Network
Scalability: A Machine Learning Approach,” IEEE Network, vol. 32, no. 6, pp. 42-49, 2018.

[8] J. Wang, J. Tang, Z. Xu, Y. Wang, G. Xue, X. Zhang and D. Yang, “Spatio Temporal Modeling and Prediction
in Cellular Networks: A Big Data Enabled Deep Learning Approach,” in Proceeding of IEEE Conference on
Computer Communications, 2017.

[9] A. Adebiyi, A. Adewumi and C. Ayo, “Comparison of ARIMA and Artif icial Neural Networks Models for
Stock Price Prediction,” J. Appl. Math., pp. 1-7, 2014.

[10] C. Nichiforov, I. Stamatescu, I. Fagarasan and G. Stamatescu, “Energy Consumption Forecasting Using
ARIMA and Neural Network Models,” in Proceeding of the 5th International Symposium on Electrical
and Electronics Engineering (ISEEE), 2017.

[11] S. Siami-Namini, N. Tavakoli and A. S. Namin, “A Comparison of ARIMA and LSTM in Forecasting Time
Series,”,” in Proceeding of the 17th IEEE International Conference on Machine Learning and Applications
(ICMLA), 2018.

[12] T. Zhang and S. Mao, “Machine Learning for End-to-End Congestion Control,” IEEE Communications
Magazine, vol. 58, no. 6, pp. 52-57, 2020.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 104

[13] C. Gutterman, E. Grinshpun, S. Sharma and G. Zussman , “RAN Resource Usage Prediction for a 5G Slice
Broker,” in Proceedings of the 20th ACM International Symposium on Mobile Ad Hoc Networking and
Computing, 2019.

[14] S. Irina, S. Irina and M. Anastasiya, “Forecasting 5G Network Multimedia Traffic Characteristics,” in
Proceeding of IEEE 15th International Conference on Advanced Trends in Radioelectronics,
Telecommunications and Computer Engineering (TCSET), 2020.

[15] Y. Zhou, Z. M. Fadlullah, B. Mao and N. Kato, “A Deep-Learning-Based Radio Resource Assignment
Technique for 5G Ultra Dense Networks,” IEEE Network, vol. 32, no. 6, pp. 28-34, 2018.

[16] I. Alawe, Y. Hadjadj-Aoul, A. Ksentinit, P. Bertin, C. Viho and D. Darche, “An Efficient and Lightweight
Load Forecasting for Proactive Scaling in 5G Mobile Networks,” in Proceeding of IEEE Conference on
Standards for Communications and Networking (CSCN), 2018.

[17] A. Mozo, J. L. Lopez-Presa and A. FernandezAnta, “A Distributed and Quiescent Max-Min Fair Algorithm
for Network Congestion Control,” Expert Systems with Applications, vol. 91, pp. 492-512, 2018.

[18] R. Xie, X. Jia and K. Wu, “Adaptive Online Decision Method for Initial Congestion Window in 5G Mob ile
Edge Computing Using Deep Reinforcement Learning,” IEEE Journal on Selected Areas in
Communications, vol. 38, no. 2, pp. 389-403, 2020.

[19] T. Kipf and M. Welling, “Semi-Supervised Classification with Graph Convolutional Networks,” arXiv
preprint arXiv:1609.02907, 2016.

[20] M. Schlichtkrull, “Modeling Relational Data with Graph Convolutional Networks,” in Proceeding of
European Semantic Web Conference, 2018.

[21] Z. Yan et al., “Automatic Virtual Network Embedding: A Deep Reinforcement Learning Approach With
Graph Convolutional Networks,” IEEE Journal on Selected Areas in Communications, pp. 1040-1057,
2020.

[22] V. Mnih, “Asynchronous Methods for Deep Reinforcement Learning,” arXiv: 1602.01783, 2016.

[23] M. Dolati et al., “DeepViNE: Virtual Network Embedding with Deep Reinforcement Learning,” in
Proceeding of IEEE Conference on Computer Communications Workshops, 2019.

[24] T. Li, A. K. Sahu, A. Talwalkar and V. Smith, “Federated Learning: Challenges, Methods, and Future
Directions,” IEEE Signal Processing Magazine, vol. 37, no. 3, pp. 50-60, 2020.

[25] J. Konecny, H. B. McMahan, F. X. Yu, P. Richtarik, A. T. Suresh and D. Bacon, “Federated Learning:
Strategies for Improving Communication Efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[26] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar and V. Smith, “Federated Optimization in
Heterogeneous Networks,” in Proceedings of Machine Learning and Systems, 2020.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 105

[27] V. Smith, C. K. Chiang, M. Sanjabi and A. S. Talwalkar, “Federated Multi -Task Learning,” in Advances in
Neural Information Processing Systems, 2017.

[28] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, MIT press, 2018.

[29] H. Wang et al., “Data-Driven Dynamic Resource Scheduling for Network Slicing: A Deep Reinforcement
Learning Approach,” Information Sciences, 2019.

[30] Y. Xiao et al., “NFVdeep: Adaptive Online Service Function Chain Deployment with Deep Reinforcement
Learning,” in Proceeding of IEEE/ACM 27th International Symposium on Quality of Service , 2019.

[31] 3GPP, “System Architecture for the 5G System (5GC),” 3GPP TS 29.520 v17.1.0, Dec 2020.

[32] 3GPP, “Architecture Enhancements for 5G System (5GC) to Support Network Data Analytics Services,”
3GPP TS 23.288 v16.6.0, Dec 2020.

[33] 3GPP, “5G System; Network Data Analytics Services; Stage 3,” 3GPP TS 29.520 v17.1.0, Dec 2020.

[34] 3GPP, “Policy and Charging Control Framework for the 5G System (5GC); Stage 2,” 3GPP TS 23.503
v16.7.0, Dec 2020.

[35] ETSI, “Zero-Touch Network and Service Management (ZSM); Closed-loop automation; Enablers,” ETSI
GS ZSM 009-1 V0.10.5, Jan 2021.

[36] N. J. Gunther, “A Simple Capacity Model of Massively Parallel Transaction Systems,” in Proceeding of
CMG National Conference, 1993.

[37] H. Hamman, “Superlinear Scalability in Parallel Computing and Multi-Robot Systems: Shared resources,
Collaboration and Network Topology,” in Lecture Notes in Computer Science, 2018.

[38] MonB5G, “Deliverable D2.4: Final release of MonB5G architecture (including security),” Oct. 2021.

[39] S. Knight, H. Nguyen, N. Falkner, R. Bowden and M. Roughan, “The Internet Topology Zoo,” IEEE Journal
on Selected Areas in Communications, vol. 29, no. 9, pp. 1765-1775, 2011.

[40] A. Dalgkitsis, P. V. Mekikis, A. Antonopoulos, G. Kormentzas and C. Verikoukis, “Dynamic Resource
Aware VNF Placement with Deep Reinforcement Learning for 5G Networks,” in Proceeding of 2020 IEEE
Global Communications Conference, 2020.

[41] A. Dalgkitsis, L. Garrido, K. Ramantas, L. Alonso and C. Verikoukis, “Schema: Service Chain Elastic
Management with Distributed Reinforcement Learning,” in Proceeding of 2021 IEEE Global
Communications Conference, 2021.

[42] M. Peuster et al., “Medicine: Rapid Prototyping of Production-Ready Network Services in Multi-Pop
Environments,” in Proceeding of IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN), 2016.

[43] B. Lantz et al., “A Network in a Laptop: Rapid Prototyping for Software-Defined Networks,” 2010.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 106

[44] M. Polverini, J. Galan-Jimenez, F. Lavacca, A. Cianfrani and V. Eramo, “Improving Dynamic Service
Function Chaining Classification in NFV/SDN Networks through the Offloading Concept,” Computer
Networks, vol. 182, 2020.

[45] A. Martin, J. Egana, J. Florez, J. Montalban, I. G. Olaizola, M. Quartulli, R. Viola and M. Zorrilla, “Network
Resource Allocation System for qoe-aware Delivery of Media Services in 5G Networks,” IEEE
Transactions on Broadcasting, vol. 64, no. 2, pp. 561-574, 2018.

[46] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang and W. Zaremba, “Openai
GYM,” arXiv preprint arXiv:1606.01540, 2016.

[47] P. Kairouz, H. B. McMahan and e. al., “Advances and Open Problems in Federated Learning,” Now
Foundations and Trends, 2021.

[48] A. Cotter et al., “Two-Player Games for Efficient Non-Convex Constrained Optimization and Other Data-
Dependent Constraints,” 2018. [Online]. Available: https://arxiv.org/abs/1804.06500.

[49] H. Chergui, L. Blanco and C. Verikoukis, “Statistical Federated Learning for Beyond 5G SLA -Constrained
RAN Slicing,” IEEE Transactions on Wireless Communications, vol. 21, no. 3, pp. 2066-2076, 2022.

[50] S. Roy, H. Chergui, L. Sanabria-Russo and C. Verikoukis, “A Cloud Native SLA-Driven Stochastic Federated
Learning Policy for 6G Zero-Touch Network Slicing,” in Proceeding of IEEE ICC 2022, 2022.

[51] J. X. Salvat et al., “Overbooking Network Slices through Yield-Driven End-to-End Orchestration,” in
Proceeding of the 14th Intl. Conf. on Emerging Networking EXperiments and Technologies , 2018.

[52] O.-L. J. et al., “Network Slicing for 5G with SDN/NFV: Concepts, Architectures, and Challenges,” IEEE
Communications Magazine, vol. 55, no. 5, pp. 80-87, 2017.

[53] L. Le et al., “Applying Big Data, Machine Learning, and SDN/NFV to 5G Traffic Clustering, Forecasting,
and Management,” in Proceeding of the 4th IEEE Conference on Network Softwarization and Workshops
(NetSoft), 2018.

[54] A. Borghesi, B. Federico and M. Milano, “Improving Deep Learning Models via Constraint-Based Domain
Knowledge: a Brief Survey,” ArXiv abs/2005.10691, 2020.

[55] N. Muralidhar et al., “Incorporating Prior Domain Knowledge into Deep Neural Networks,” Proceeding
of IEEE Intl. Conf. on Big Data, 2018.

[56] P. Martinez-Julia, V. P. Kafle and H. Asaeda, “Using the Total Cost of Ownership to Decide Resource
Adjustment in Virtual Networks,” in Proceeding of the 22nd Conf. on Innovation in Clouds, Internet and
Networks and Workshops (ICIN), 2019.

[57] C. Zhang and P. Patras, “Long-Term Mobile Traffic Forecasting Using Deep Spatio-Temporal Neural
Networks,” in Proceeding of the 18th ACM Intl. Symp. on Mobile Ad Hoc Networking and Computing ,
2018.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 107

[58] D. Bega, M. Gramaglia, M. Fiore, A. Banchs and X. Costa-Perez, “DeepCog: Cognitive Network
Management in Sliced 5G Networks with Deep Learning,” in Proceeding of IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications, 2019.

[59] T. Italia, “Telecommunications - SMS, Call, Internet - MI,” 2015. [Online]. Available:
https://doi.org/10.7910/DVN/EGZHFV.

[60] S. Teerapittayanon, B. McDanel and H. Kung, “Distributed Deep Neural Networks Over the Cloud, the
Edge and End Devices,” in Proceeding of IEEE 37th International Conference on Distributed Computing
Systems (ICDCS), 2017.

[61] T. Giannakas et al., “Fast and Accurate Edge Resource Scaling for 5G/6G Networks with Distributed Deep
Neural Networks,” in Proceeding of IEEE WoWMoM 2022, 2022.

[62] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimisation,” [Online]. Available:
https://arxiv.org/abs/1412.6980. [Accessed 20 04 2022].

[63] C. Fischione, “Fast-Lipschitz Optimization with Wireless Sensor Networks Applications,” IEEE
Transactions on Automatic Control, vol. 56, no. 10, pp. 2319-2331, 2011.

[64] S. Yang and J. A. Mccann, “Distributed Optimal Lexicographic Max-Min Rate Allocation in Solar-Powered
Wireless Sensor Networks,” ACM Transactions on Sensor Networks (TOSN), vol. 11, no. 1, pp. 1-35, 2014.

[65] B. Xiang, J. Elias, F. Martignon and E. Di Nitto, “Resource calendaring for Mobile Edge Computing:
Centralized and decentralized optimization approaches.,” Computer Networks, vol. 199, p. 108426,
2021.

[66] H. Chen, Y. Ye, M. Xiao, M. Skoglund and H. V. Poor, “Coded Stochastic ADMM for Decentralized
Consensus Optimization With Edge Computing,” IEEE Internet of Things Journal, vol. 8, no. 7, pp. 5360-
5373, 2021.

[67] S. Doro, L. Bonati, F. Restuccia, M. Polese, M. Zorzi and T. Melodia, “Sl-EDGE: Network Slicing at the
Edge,” in Proceeding of the 21st International Symposium on Theory, Algorithmic Foundations, and
Protocol Design for Mobile Networks and Mobile Computing, 2020.

[68] A. Huang, Y. Li, Y. Xiao, X. Ge, S. Sun and H. C. Chao, “Distributed Resource Allocation for Network Slicing
of Bandwidth and Computational Resource,” in Proceeding of IEEE International Conference on
Communications (ICC), 2020.

[69] S. Pu, W. Shi, J. Xu and A. Nedic, “Push-Pull Gradient Methods for Distributed Optimization in
Networks,” IEEE Trans. Automat. Control, vol. 66, no. 1, pp. 1-16, 2020.

[70] E. Wei and A. Ozdaglar, “On the O(1/k) Convergence of Asynchronous Distributed Alternating Direction
Method of Multipliers,” in Proceeding of 2013 IEEE Global Conference on Signal and Information
Processing, 2013.

871780 — MonB5G — ICT-20-2019-2020

Deliverable D3.2 – Final Report on AI-driven Techniques for the MonB5G
AE/MS [Public]

©MonB5G, 2019 Page | 108

[71] J. Xu, S. Zhu, Y. C. Soh and L. Xie, “Convergence of Asynchronous Distributed Gradient Methods Over
Stochastic Networks,” IEEE Trans. Automat. Control, vol. 63, no. 2, pp. 434-448, 2017.

[72] S. Boyd, N. Parikh and E. Chu, Distributed Optimization and Statistical Learning via the Altern ating
Direction Method of Multipliers, Now Publishers Inc, 2011.

[73] M. Morcos, J. Elias, F. Martignon, T. Chahed and L. Chen, “On Efficient Radio Resource Calendaring in
Cloud Radio Access Network,” Computer Networks, vol. 162, p. 106862, 2019.

[74] Y. Bejerano and S.-J. Han, “Cell Breathing Techniques for Load Balancing in Wireless LANs,” IEEE
transactions on Mobile Computing, vol. 8, no. 6, pp. 735-749, 2009.

[75] J. G. Andrews, F. Baccelli and R. K. Ganti, “A Tractable Approach to Coverage and Rate in Cellular
Networks,” IEEE Transactions on communications, vol. 59, no. 11, pp. 3122-3134, 2011.

