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1 Executive summary 

This deliverable presents MonB5G final energy efficiency techniques which cover Task 5.3. It starts by 
highlighting the energy management and orchestration architectural building blocks. They are divided 
between inter-domain management and orchestration (IDMO) and domain-specific DMO which can 
dynamically deploy management functions that interact with Infrastructure Domain Manager (IDM) to 
achieve energy-saving and cost-effective infrastructure management. Specifically, one of the most appealing 
use cases is the possibility to deploy additional infrastructure management and orchestration functions 
(IOMF) for resource consumption estimations and resource groupings to maximize resource utilization and 
achieve energy-saving goals.  

On the other hand, AI-driven zero-touch closed-loop management is adopted. It is based on the three 
administrative elements of monitoring system (MS), analytic engine (AE) and decision engine (DE), wherein 
feedback interfaces are leveraged to reconfigure MS, AE and DE to fulfill energy efficiency and scalability 
objectives along with network automation and service management. In this regard, MS, AE, and DE are 
instantiated at each technological domain and for each slice. This allows for several energy-aware 
decentralized sustainable artificial intelligence (AI) techniques  to achieve MonB5G energy-efficiency vision 
in MS, AE, and DE. They rely on a key design principle, wherein the energy cost for running multiple 
distributed local computation tasks is much lower than transmitting raw monitoring data. This is justified by 
the high transmit power over, e.g., fiber transport links compared with the cloud central processing unit 
(CPU) power consumption that depends on the product of its extremely small capacitance (in the order of 
octillions) and its number of cycles required for computing one data sample. 

Categorically, the MS has been designed in such a way to minimize the measurement load by adding an 
internal memory called common online memory store (COMS) and using the concept of sampling loops to 
collect monitoring data. Moreover, to reduce the transmission overhead and thereby the underlying energy 
consumption, a cross-domain constrained federated learning (FL)-based AE is introduced which makes the 
analysis and prediction task more than x10 energy-efficient by dramatically reducing the amount of raw data 
exchanged between local AEs and the end-to-end AE and resulting in more scalability to support a massive 
number of concurrent slices. Based on slice traffic analysis. Finally, distributed cross -domain multi-agent 
Deep Reinforcement Learning (DRL)-based DEs are considered to perform cross-domain joint slice VNF 
placement and energy control by incorporating the energy cost into the DE multi -objective reward function. 

 

The deliverable covers the following aspects:  

• MonB5G reference architecture for energy management, 

• AI/ML-driven energy management through MS/AE/DE, 

• MonB5G energy-efficient techniques with cross-domain Decentralized Energy Efficient DE,  

• Energy efficiency at RAN and Edge with cross-domain statistical FL-based decentralized AEs, 

• Stochastic FL-based policy for scalable AE and DE energy-aware techniques. 
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2 Introduction 

2.1 Scope of the deliverable 

MonB5G aims at the design of a novel zero-touch management and orchestration (MANO) framework by 
deeply leveraging the distribution of operations together with beyond state-of-the-art AI algorithms. In this 
respect, MonB5G develops a hierarchical, automated, and data-driven network management system that 
incorporates energy efficiency as a key feature to orchestrate a high number of parallel network slices in a 
sustainable way.  

This deliverable provides the final report of MonB5G contributions for a zero-touch distributed x10 energy-
efficient MANO compared to a centralized approach. First, the deliverable introduces the MonB5G reference 
architecture for energy management. Then it details the role of the three administrative elements ---MS, AE, 
and DE---in the AI-driven energy-efficiency. In addition, cross-domain energy-aware AEs and DEs are 
presented, which range from scalable constrained federated learning resource prediction/allocation to multi -
agent deep reinforcement learning intelligent slice reconfiguration. 

 

 

2.2 Structure of the deliverable 

The deliverable covers the following energy efficiency aspects: 

Subsection  Description  Domain 

3.1 MonB5G reference architecture for energy management,  Cross-Domain 

3.2 AI/ML-driven energy management through MS/AE/DE Cross-Domain 

4 .1 
MonB5G energy-efficient techniques   

Decentralized Cross-domain Energy Efficient DE  
Cross-Domain 

4.2.1 Statistical FL-Based decentralized AE RAN and Edge 

4.2.2 Stochastic FL-based policy for scalable AE RAN and Edge 

4.3 DE energy-aware technique RAN and Cloud 
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3 MonB5G reference architecture for energy management 

3.1 Energy management architecture and components 

Energy efficiency has always been a significant aspect of network development, driven by both economic and 
environmental considerations. Although B5G networks support many new and existing energy-saving 
features that network operators can utilize to reduce network energy consumption, the optimization of 
resources consumption and energy usage for sustainable mobile networks is a challenging subject. 

5G-era networks will be much more energy efficient on a per-bit basis than 4G. However, they will transmit 
significantly more bits due to mobile data traffic growth, as well as the expanding variety and increasing 
complexity of 5G applications, which will impose additional demands through a greater number of cell sites 
powered by energy-hungry antennas. Consequently, 5G network operators could face up to 2-3 times higher 
energy costs versus 4G [1].  

By introducing greater levels of virtualization, automation, and software-defined networking (SDN), 5G 
promises to significantly reduce OPEX. A 5G network and beyond that is built on a software-driven, 
orchestrated architecture will reduce the OPEX per site because of a more flexible allocation of resources [2].  

Energy is a significant B5G network cost. Consequently, energy management is one of the largest cost 
optimization targets for all network vendors and operators. In B5G mobile networks, network virtualization, 
automation, and artificial intelligence (AI) will be the key tools for energy consumption reduction. AI 
capabilities can be used at different layers of the 5G Network and will  improve the operators’ understanding 
of the energy perspective and identify the root causes of inefficiencies. ML-based techniques make it possible 
to reduce energy consumption in all network elements without impacting QoE. A data-driven AI-based 
energy-saving solution on RAN, predicts low traffic periods and shuts down resources at exactly the right 
time, and reduces the waste of the energy during the peak traffic hours.  

Network slices are simply segments of virtual computing and connectivity resources t hat are configured and 
provisioned for specific services based on their requirements and features. Network slices have a wide range 
of requirements in terms of resources, quality objectives, and lifetime. Slice deployment algorithms that are 
efficient are crucial for lowering network operator costs and energy usage while also offering better service 
to users. The performance of cloud computing and network slicing depends on the efficient allocation of 
virtual resources and the optimal placement of Virtualized Network Functions (VNFs) composing these  [3].  

In addition to the effective allocation of network resources and the satisfaction of user demands, the 
performance and scalability of the orchestration, which is responsible for the deployment, modification, and 
termination of network slices, is incredibly important to slice tenants and network operators. A robust OSS 
and BSS with automated business and operational processes is required to efficiently manage network slices 
and enable OPEX savings. The most important network functions can be dynamically crea ted, quickly 
deployed, and managed automatically throughout the entire service lifecycle using programmable and 
flexible 5G networks, advanced AI (Artificial Intelligence), and Service Level Agreement (SLA) based 
orchestration. The goal of automated deployment methods is to schedule hardware resources optimally and 
quickly provision network services to fulfill SLAs while maximizing system utilization . This lowers the costs 
and energy consumption of the network. 
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One of the main targets addressed by MonB5G is to reduce energy usage. MonB5G aims to offer all required 
techniques to enable energy consumption reduction. Numerous energy-aware artificial intelligence (AI) 
solutions are proposed, which are built on the MonB5G distributed network slicing architecture.  

The MonB5G architecture intends to provide a new framework for scalable and automated management and 
orchestration of network slices on a massive scale. The proposed MonB5G framework's core features align 
with a number of ETSI ZSM standards that have already been specified. The MonB5G architecture consists of 
static and dynamic components that support procedures for self-healing, self-configuration, self-optimization 
(including energy efficiency), and security of network slices.  

MonB5G divides the management system into a number of management subsystems, by distributing 
monitoring, analysis, and decision-making processes across multiple technological domains and components. 
AI is used at numerous levels to achieve specific management objectives and to reduce interactions across 
architectural components, through hierarchical closed-loop controls. The implementation of AI/ML 
algorithms across all technological domains (e.g., RAN, cloud, edge, core) enables resource allocation 
optimization, sustainable deployment, and operation, among other objectives, and creates a highly adaptive, 
scalable, and energy-efficient network. 

In MonB5G the management and orchestration functions are divided between inter-domain management 
and orchestration (IDMO) and Domain specific DMO(s) management and orchestration. IDMO is a centralized 
element with extensive slice management and orchestration decision capabilities. DMO can be seen as a 
combination of resource-oriented Operations Support Systems (OSS) / Business Support Systems (BSS) and 
an orchestrator. Domain Manager and Orchestrators (DMOs) can dynamically deploy management functions 
that interact with IDM to achieve energy-saving and cost-effective infrastructure management. The 
framework introduces the MonB5G portal that allows Slice Tenants (infrastructure providers, orchestrator 
operators, template providers, and VNF providers) to request slice deployment based on their chosen slice 
templates. It provides communication between tenants and system operators for network slice service 
exposure, negotiation, ordering, and LCM. 

NFV allows the separation of communication services from dedicated hardware. This separation allows 
network services, known as Virtualized Network Functions (VNFs), to be hosted on existing hardware, which 
simplifies and improves service deployment and management for providers, increases flexibility, and leads 
to more efficient and scalable resource utilization and lower costs. One of the most difficult technical 
challenges is ensuring that VNFs are properly placed in hosting infrastructures. This placement significantly 
influences the network’s performance, reliability, and operating costs. Likewise , the performance of network 
slices’ orchestration processes is crucial for efficient utilization of resources during slice lifetime and for slice 
provisioning in a timeframe accepted by verticals (slice tenants), which is also a key feature in the context of 
energy savings. Long slice termination or deployment time contributes to insufficient resource utilization and 
can cause excessive energy loss [4].  
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Figure 1. Orchestrated management functions of Infrastructure Provider 

 

As a result, the suggested architecture implies that the infrastructure also needs management, and  this 
management will benefit from the Infrastructure's programmability. To that aim, we have proposed a new 
management entity named Infrastructure Domain Manager (IDM), which can be seen in Figure 1. IDM is 
responsible for the infrastructure management of specific orchestration domains. NFVI Agent, Energy 
Consumption Agent, Resource Brokering Support, Infrastructure Operator Portal, and Infrastructure-oriented 
OSS and BSS should be included in the minimal implementation of IDM in the MANO case.  

  

 

Figure 2. Minimal implementation of IDM 
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The Infrastructure Provider can use the MonB5G portal to request the deployment of additional 
infrastructure orchestrated management functions known as IOMFs through IDM's interface with the 
Infrastructure Provider. The IOMF functions can perform a wide range of functionalities that can optimize 
infrastructure utilization efficiency and achieve effective infrastructure management. The infrastructure 
management system can deploy its services using the MonB5G mechanisms similarly to how slices are 
deployed. The framework is aware of the energy costs associated with infrastructure resources and can 
optimize them. Utilizing IOMF for resource consumption estimations and resource groupings to maximize 
resource utilization and achieve energy-saving goals is one of the most promising use cases. The IOMF 
functions are orchestrated in a way that is consequently, they must be customized specifically for each IDM 
type [5]. 

The deployment of multiple network slices requires the network to reserve enough resources for each specific 
slice instance according to its requirements. In terms of management of Network Slices, we use the concept 
of In-Slice Management, (ISM). In-Slice Management involves embedding a specialized management function 
(in the form of a VNF) into slices, which exposes interfaces to both the Orchestrator and the slice owner, 
enabling the latter to implement its own slice instance management operations . [6].  

IDMO, DMO(s), and ISM(s) are utilized with a closed-control loop that adds intelligence to the management 
and orchestration functions through AI-based capabilities to reach zero-touch management objectives. The 
proposed closed-control loops include the necessary mechanisms and algorithms mainly relying on AI/ML to 
assist IDMO, DMO(s), and ISM(s) to achieve self-management, self-configuration, self-adaptation, and 
performance optimization including energy efficiency. As a result of the implementation of the in-slice 
management, the central OSS/BSS is slice-agnostic and the orchestrator is primarily focused on resource-
oriented operations. The In-Slice Manager can request the modification of a slice or new resource allocation 
by the interaction with the orchestrator. This method increases the orchestrator’s scalability and simplifies 
the integration of a slice. Furthermore, the slice management is programmable with the aid of AI techniques 
and KPI prediction. 

IDMO is analogous to 3GPP Network Slice Management Function (NSMF) [7] and manages the LCM of end-
to-end network slices. It provides complete slice management and orchestration decision capabilities and 
performs global actions for network-wide, slice-to-slice, and domain-to-domain optimizations. 

The DMO of a Slice Orchestration Domain (SOD) is in charge of orchestrating slices in the domain and 
managing the domain's resources. DMO can be viewed as a combination of resource-oriented OSS/BSS and 
MANO orchestrator in the NFV MANO-orchestrated domain. Slice admission, LCM, and resource sharing are 
the most common operations of DMO. The OSS/BSS component of DMO is an AI-driven resource management 
platform. Through a distributed messaging network, it communicates with IDMO, slices, and infrastructure.  

The dynamic components of the architecture are slices that contribute to the overall management of the 
MonB5G platform. The MonB5G slice template is composed of two different layers that can be orchestrated 
individually for improved flexibility, efficiency, and scalability, the Slice MonB5G Layer (SML) and the Slice 
Functional Layer (SFL). SML can be regarded as an embedded OSS/BSS with AI-based MAPE management at 
the slice level. The concept of in-slice management with embedded intelligence results in self-managed slices 
and reduces the amount of data exchanged between the slices and the architecture's external management 
components. Slice Functional Layer (SFL) consists of a set of virtual functions that compose the network slice 
to be deployed and offers the "core" functionality of the slice. 
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The SML is further divided into four different sublayers, the Monitoring System (MS), Analytic Engines (AEs), 
and Decision Engines (DE), as well as the Actuators (ACTs) sublayers. The Monitoring Subsystem Sublayer (M S 
Sublayer) is responsible for collecting, and processing of critical information on the system’s operation with 
certain granularities. The Analytic Engines Sublayer (AE Sublayer) is composed of multiple Analytic Engines 
that use the information provided by the MS Sublayer to detect and react to various events, related to FCAPS 
operations (Fault, Configuration, Accounting, Performance, and Security). The Decision Engines Sublayer (DE 
Sublayer) is composed of multiple Decision engines that are responsible for data-driven decision-making. The 
Actuators Sublayer (ACT Sublayer, ACT-S) is responsible for converting the decisions of DEs into multiple 
atomic reconfiguration-related operations that simplify the reconfiguration and reduces the traffic between 
DE and reconfigured node(s).  

MS/AE and DE form the closed-control loop of the ETS ZSM reference architecture [8] and assist IDMO, DMOs, 
and ISM in enhancing resource allocation and network sustainabil ity. All the components of the architecture 
are using interfaces between them for the management of the network slices. The role of the defined 
feedback interfaces between DE and AE, DE and MS, and AE and MS are to reconfigure MS and AE to fulfill 
energy efficiency and scalability objectives along with network automation and service management.  

In the following section, we provide more details about the role of the triplet MS/AE/DE in the energy and 
infrastructure management of 5G Network and beyond. 

  

 

3.2 AI/ML-driven energy management through MS/AE/DE 

Adoption of a highly scalable, automated infrastructure that can be adjusted on demand is required for 
energy optimization and operational expenditure minimization of 5G networks and beyond. The use of 
monitoring, analysis, real-time infrastructure provisioning, dynamic orchestration, and data-driven decisions 
provides a zero-touch energy efficient network. 

The MonB5G framework provides End-to-End (E2E) service and network management automation across 
multiple domains and network slices through the development of hierarchical closed-control loops. MonB5G 
also utilizes the cognitive capabilities provided by ETSI ENI, including AI/ML algorithms, intent policies, and 
SLA management, to increase the scalability and effectiveness of service delivery and reduce operational 
expenditures (OPEX). 

Monitoring System (MS), Analytical Engine (AE), and Decision Engine (DE) compose the closed -control loop 
with AI capabilities to accomplish energy efficiency, as well as the object ives of zero-touch management and 
network automation. Monitoring data are collected, processed, and continuously analyzed to provide 
information and insights. Using these data, decisions are taken, and the results are delivered back to the 
network, where performance is continuously monitored. 
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3.2.1 MONITORING SYSTEM (MS) 

 

MonB5G MS captures the current operation status at multiple levels of the management hierarchy (node, 
slice, domain, and inter-domain). The distributed MS agents are designed to manage the tightest metric 
sampling loops in their technological area, hence significantly reducing the requirement for data transfer and 
minimizing communication overhead generated by the monitoring system itself. The analysis and decision 
functions are located closer to MS in order to avoid the transfer of raw data. MS periodically transmits 
monitoring data to AE, which analyses the data and gives the necessary analysis output to the DE.  

Monitoring of performance KPIs applicable to different parts of the network infrastructure provides very 
powerful and holistic information for 5G and beyond Networks. MS monitors KPIs that capture the OPEX 
savings and reduction in managerial overhead due to zero-touch slice MANO. The advanced SML with the 
AI-powered capabilities of AE/DE for enhanced flexibility and resilience, as well as the real -time monitoring 
of MS enable efficient and dynamic inter-domain resource allocation. The framework is informed of the 
energy costs of infrastructure resources and can act to optimize them. 

The gathered monitoring data can be passed directly to DE and AE or might be kept in a database (internal 
memory) for later examination such as a Time-Series Database (TSDB) for measurement load minimization. 
This memory block allows the MS, AE, and DE to avoid implementing energy-intensive synchronization 
whenever information needs to be updated and transmitted between these blocks. The Common online 
memory store (COMS) is responsible for the storing and retrieval of shared historical, configuration, and 
operational data between the MS-AE-DE triplet and other closed network loops. Thus, DE and AE can be more 
flexible in terms of processing duration without reducing the granularity  with which MS can collect 
monitoring data from the controlled systems. 

 

3.2.2 ANALYTIC ENGINE (AE) 

 

Analytical Engines (AEs) in MonB5G are distributed in the different parts of the management system as the 
Monitoring System. Using Federated-Learning, AE can significantly make data analysis and prediction more 
energy efficient in real time by substantially reducing the quantity of raw data exchanged between local AEs 
and the E2E AE. Federated Learning is also used for decentralized resource estimation to maintain low SLA 
violations. This innovative function of AE enables decentralized resource allocation in network slices while 
ensuring extremely low SLA violation rates. 

The suggested Statistical FL was moved closer to the network's distributed monitoring nodes in a way that 
greatly decreases the interchange of raw data and transfers only a subset of AI model parameters for 
coordination or collaboration [9]. Statistical FL can decrease the communication overhead by more than a 
factor of 10 when compared to centralized constrained deep learning schemes as demonstrated in 
deliverable D3.1. This overhead is further decreased by a selection policy restricting the number of agents 
that cooperate throughout the FL task, hence promoting sustainability in a situation involving extensive 
network slicing. 
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MonB5G improves AI-based traffic load prediction by introducing context-aware loss into the learning 
mechanism of AE. Forecasting the volume of traffic is critical for a variety of subsequent activities, including 
resource allocation and admission control. This AE feature can predict traffic load for all technological 
domains and includes a wider span of control for resource over- and under-allocation penalties and resource 
reallocation settings. By ensuring that the appropriate quantity of resources is supplied to a network slice at 
the appropriate time, it decreases the probability of SLA violations and ensures QoS/QoE.  

 

 

3.2.3 DECISION ENGINE (DE) 

 

Network slicing, which allocates network resources according to users' specific requirements, is a key feature 
to fulfill the diversity of service requirements in 5G and beyond. The operator must decide in advance how 
much resources must be allocated to the various slices to ensure that the capacity is used as effectively as 
possible. During the decision-making process, energy efficiency and optimal infrastructure utilization must 
be considered apart from network performance KPIs.  

Decision Engine (DE) is one of the core components of the MonB5G architecture, and the closed-control loop 
is designed to achieve zero-touch administration of a large number of network slices in Beyond 5G networks. 
Admission control, intra-slice orchestration, and inter-slice orchestration are the three main management 
tasks of the network slice life cycle process that we have addressed using of DEs. During the lifecycle of 
network slices, the Decision Engine (DE) regulates the decision-making process of the closed-control loop, by 
relying heavily on artificial intelligence (AI) and the outputs of the Analytical Engine (AE) from data processing 
[10]. AI can play a significant role in zero-touch networks that reduce complexity by managing the vast 
amount of network and service parameters. Recent AI innovations have demonstrated that more accurate 
decision models may be constructed using decentralized architectures such as Multi -Agent DRL and 
Federated DRL [11][12]. 

Within the framework of the MonB5G project, we suggested various deep reinforcement learning (DRL) 
schemes for network slice-related problems that can perform energy-aware configuration decisions. RL can 
be trained to maximize the energy efficiency in the network by placing VNFs on the same physical machine, 
when possible, which will reduce the quantity of VNF migrations. According to traffic conditions, RL is used 
to decide when to scale up or down, instantiate, terminate, or even duplicate a specific VNF, VNF chain, or 
slice, and to switch off the servers. All layers of the MonB5G architecture employ AI/ML models for network 
slicing that are scalable and sustainable. 

DEs use Decentralized Deep Reinforcement Learning strategies (e.g., Multi -Agent DRL, Federated DRL) to 
perform cross-domain energy-aware VNF and SFC placement in 5G service-customized network slices. The 
energy cost is integrated into the DE multi-objective reward function, along with latency. DEs choose the 
ideal compromise solution to achieve a balance between energy efficiency and SLAs. Distributed AI enables 
the local processing of management information, consequently decreasing the exchange of management 
information between entities. Local DE can make AI-driven decisions based on the intelligence obtained from 
a local analytic engine. Moreover, cross-domain re-configuration is performed when the assignment becomes 
too complex, and the local information is insufficient. 
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In order to accomplish the goal of end-to-end DE, the distributed AI-driven solutions at several levels of the 
management hierarchy (node, slice, domain, and inter-domain) leverage communication interfaces across 
domains permitting resource brokering and energy-efficient operations.  

DE leverages DMO-exposed APIs to implement the chosen decisions. DE is required to interact with IDMO in 
order to make global decisions, whereas for local decisions, it communicates with DMO and ISM. Cross -
domain operations between local DEs (i.e., DEs of each technological domain) or with end-to-end DEs are 
managed by the IDMO, whereas inter-slice DE operations are managed by the DMO. 
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4 MonB5G energy-efficient techniques 

4.1 Decentralized Cross-Domain Energy Efficient DE 

The decentralized Energy-Efficient DE utilizes the distributed notion of network domains to operate locally. 
This action enables parallelism and avoids unnecessary VM migrations between the domains or costly re-
orchestration of the entire slice. An entity disconnected from the decision function, called the Auction 
Mechanism, is introduced to enable inter-domain VNF migration. It operates with multiple agents, 
eliminating a centralized point of failure as the Auction Mechanism module can be instantiated anywhere  in 
the network. 

 

Figure 3. Slice graph DE deployment example 

 

The Energy Consumption Model 

The total energy consumed by the network during the operation of the slice branches into two distinct 
segments. 

First, the energy consumed by the utilization of computational resources 𝐸𝑚 while hosting the VM 𝑚  on a 
network node is calculated based on the work of Mao, et. al in [10] as defined below: 

𝐸𝑚 = 𝜙𝑠
𝑐𝑝𝑢

𝜇𝐶𝐷𝑠𝐹2, 

where 𝐹  indicates the computational capacity of the node measured in CPU cycles per second, 𝐶  stands for 

the CPU cycles required for computing one data sample at each CPU core, 𝜙𝑠
𝑐𝑝𝑢

  is the number of utilized 
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CPU cores by the VM and 𝐷𝑠 represents the amount of processed data expressed in bits. The constant 𝜇 
expresses the effective switched capacitance of the CPU architecture. 

Second, the link energy consumption 𝐸𝑢𝑣 can be calculated as the data sent between the VMs hosted in 
servers 𝑢  and 𝑣 , divided by the data rate and multiplied by the power of the link transmitted optical power 
𝜌𝑢𝑣. The transmission energy is calculated as follows: 

𝐸𝑢𝑣 = 𝜌𝑢𝑣
𝑡𝑢

𝑅𝑢
, 

where the variable 𝑅𝑢 expresses the transmission data rate of a network node 𝑢  in Gigabits per second, 
𝜌𝑢𝑣 is the optical transmit power of link 𝑢𝑣 in dBm and 𝑡𝑢 stands for the amount of transmitted data of a 
server expressed in bits. 

The total slice energy consumption 𝐸𝑠 that we attempt to optimize for the operation of the slice in the 
current iteration is defined as follows: 

𝐸𝑠 = ∑ +𝑢𝑣∈𝐸 ∑ +𝑢𝑠𝑣𝑠∈𝐸𝑠
𝐸𝑢𝑣𝑧𝑢𝑣

𝑢𝑠𝑣𝑠 + ∑ +𝑚∈𝑀 ∑ +𝑢𝑠∈𝑉𝑠
𝐸𝑚𝑧𝑚

𝑢𝑠. 

The Auction Mechanism Module 

We also introduce the Auction Mechanism, a system that enables inter-domain VM migration in a distributed 
multi-domain network. As shown in figure 4, the Auction Mechanism enables scalability and parallel 
operation. 

 

Figure 4. Overview of the multi-domain and distributed Auction Mechanism. 
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The operation of the Auction Mechanism can be described in the following steps:  

1. Auction Initiation: The Auction Mechanism chooses the next slice VM and initiates an auction with 
the distributed domains. 

2. Distributed Operation: The distributed RL agents of the domains generate their local action and the 
corresponding Confidence Vector with respect to the local placement for the VM in auction.  The 
Confidence Metric of each domain is then sent to the Auction Mechanism, ensuring minimum data 
transfers. 

3. Global Operation: The Auction Mechanism receives the Confidence Metric of each domain and 
selects the highest bidder or the domain with the maximum Confidence Metric as a candidate to 
receive the VM currently in auction. The Auction Mechanism notifies the candidate domain with an 
acknowledgment. 

4. Orchestration: If the candidate domain is different from the current domain that hosts the VM in 
the auction, the inter-domain migration is initiated. Otherwise, the domain agent performs an intra-
domain migration to the node with the highest Confidence Metric of the local Confidence Vector 
with a much lower cost in terms of both energy, time and overall cost. If the VM is already 
instantiated in the same node, the procedure of migration is declined. 

5. Iteration: The procedure is repeated indefinitely. 

It is apparent that the Auction Mechanism acts as the auctioneer and it is only responsible for the inter-
domain communication making it non-essential for the local domain orchestration. The Auction Mechanism 
can be deployed quickly at any node of the network eliminating the single point of failure in the system.  

Results Evaluation 

In this section, we conduct a simulation study with a diverse variety of scenarios on a realistic multi -domain 
network to prove the performance superiority of the proposed scheme. 

The performance of the proposed SCHE2MA solution is compared with two references from the literature 
scenarios: 

• Centralized RL: An RL-based orchestration algorithm located in a central location, which is a common 
baseline in the related research literature, such as in [11], [12], and [13]. The central orchestration 
algorithm overlooks the entire network as opposed to our proposed distributed orchestration 
scheme, where the VNFs are serially placed and the VNFs are migrated to the node with the highest 
action value.  

• Static Placement: A typical VNF placement strategy, which is adopted by many providers[14]. In this 
strategy the VNF placement is static and the VNFs remain hosted in the initial node throughout the 
experiment. 

Results Analysis 

The performance of the baseline scenarios is normalized to the SCHE2MA performance, and the plots show 
the relative gain or loss for each metric. The analysis shows the performance of SCHE2MA in both average 
energy consumption and average service latency. The energy consumption curves of all figures are 
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normalized based on the SCHE2MA performance to improve legibility. The values are expressed in millijoules 
(mJ) under the curve of SCHE2MA. 

 

Figure 5. (a) Average energy consumption improvement expressed in percentages, compared to the 
proposed solution. (b) Average service latency per number of users in multiple traffic scenarios. Lower is 

better for both figures. 

 

In Figure 5(a), we depict the average energy consumption of the examined network of 500 simulations for a 
varying number of users, that is normalized based on the SCHE2MA performance (%,mJ). We observe that 
the energy consumption increases almost linearly with the number of users due to the massive number of 
transmissions. The reason is that introducing more users to the network generates additional requests that 
consume more energy during each transmission. Therefore, the overall energy consumption of the network 
is higher. The proposed solution can maintain lower energy consumption in all scenarios, reaching almost 
17.1% reduction in the case of 100 users. The reason for this behaviour is the ability of SCHE2MA to cluster 
VNFs into the servers, minimizing the costly communication between servers.  

Figure 5(b) presents the performance of the most critical metric in URLLC services, the average service 
latency. We observe that the average service latency increases due to insufficient computing resources in 
servers within the domains as the number of active users grow. However, it has to be noted that SCHE2MA 
outperforms both baselines by offering a 103.4% reduction in latency for the case of 100 users without 
increasing the energy consumption, which is a considerable performance improvement while also 
maintaining lower energy consumption than both baselines. That is possible due to VNF clustering in servers, 
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which minimizes the number of transmissions in physical media. SCHE2MA demonstrates a clear indication 
of its ability to conceive better VNF placements that satisfy the latency and energy consumption trade-off. 

 

Figure 6. (a) Energy consumption deviation in a 3-domain network with 500 users and 25 SFCs. (b) Average 
energy consumption in multi-domain network configurations for 500 users and 25 SFCs. Lower is better for 

both figures. 

 

Figure 6(a) presents how the energy consumption fluctuates during the operation of each algorithm, 
specifically for the scenario with 3 domains and 500 users in a simulation cycle. We observe that the 
maximum difference in energy consumption is 15.91% between the Static solution and SCHE2MA. The reason 
for this is that, as can be seen in Fig. 5a SCHE2MA tends to consolidate multiple SFC VNFs in hosts id-est hosts 
2 and 5, to minimize both energy consumption and latency by turning physical link connections into virtual 
that yield minimal losses. In Figure 6 (b), we plot the average energy consumption per domain to evaluate 
the scalability of the given solutions. We observe that the energy consumption steadily increases as we 
introduce more domains into the network, hence increasing the number of data that need to be considered 
when planning a VNF placement. It can be seen that the Centralized RL fails to converge due to the larger 
state space. SCHE2MA can reduce the energy consumption by 14.85% compared to the baseline solutions 
with 500 users. This is due to the flexibility and scalability of SCHE2MA's distributed architecture where the 
decision-making takes place locally in multi-domain agents that communicate through the Auction 
Mechanism, dividing and sharing that way the immense problem space. 
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Figure 7. (a) Average energy consumption by the number of SFCs in the network for 500 users. (b) Average 
number of rejected services for a 3-domain network. Lower is better for both figures. 

 

 

Figure (a) outlines the average energy consumption per SFC deployed in the network. We observe that in the 
case of 25 SFCs, the average energy consumption per SFC of SCHE2MA is reduced by 6.36% compared to the 
Static solution. The reason is that compared to the baseline scenarios, SCHE2MA is capable of operating with 
less energy, as we have previously discussed and analysed in Figure 5. Figure (b) illustrates the average 
number of rejected services in a 3-domain scenario with a varying number of users. When the number of 
users increases in a network with finite resources, the number of rejected services increases.  Given that the 
SCHE2MA can re-organize the VNFs, several  
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Figure 8. (a) Latency deviation per algorithm for both 500 and 1000 user traffic scenarios in a 3-domain 
network. (b) Average service latency of 500 users in a 3-domain network. Lower is better for both figures. 

 

 

Figure 8 illustrates how the service latency oscillates during the operation of each algorithm for the 
scenarios with 500 and 1000 users. We observe that SCHE2MA can achieve 73.52% less service latency than 
the baseline scenarios in the case of 5 domains, depicted in the right-hand Figure. This is possible by 
devising VNF placements that minimize the number of transmissions through local intra -domain 
orchestration. The Centralized RL is hugely affected by the number of users, as the deviation in the figure 
suggests. 
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Figure 7. (a) VNF occupancy index represents the average number of hosted VNFs per total number of VNFs 
for 100 iterations of simulated traffic with 500 users. (b) Average migration operations of 100 iterations of 
simulated traffic with 50 SFCs and 125 VNFs. 

Finally, Figure 9a shows the average number of hosted VNFs divided by the number of total VNFs to 
indicate the occupancy of the hosts of the first domain. We can see that SCHE2MA gravitated towards 
consolidating the SFC VNFs to reduce the number of hops to the end-user. Additionally, Figure 9b illustrates 
the total number of migrations of the local agent originally depicted in Fig. 5a that was applying an identical 
placement for a sustained period to avoid inter-domain SFC re-configurations and additional data 
transmissions that lead to higher energy consumption and latency. 

 

4.2 Energy efficiency at RAN and Edge 

4.2.1 ENERGY-EFFICIENT STATISTICAL FL-BASED DECENTRALIZED AES 

To ensure energy efficiency at e.g., the edge, resource analysis for network slicing can leverage advanced 
federated learning techniques to build decentralized analytic engines. In this regard, Figure 8 depicts a 
decentralized architecture consisting of 𝐾 slice/node levels MS/AEs with a B5G/6G tailored CU-DU functional 
split per slice.} Each CU k (k = 1, … , 𝐾) runs as a VNF on top of commodity hardware located at the edge 
cloud and performs slice-level RAN KPI data collection via a local MS as well as implements AI-enabled slice 
resource analytics through a local AE. To strengthen the analysis, the AE instances of each slice participate in 
an FL task by sharing their local models with the end-to-end AE that plays the role of an aggregation server. 
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Figure 8. Decentralized architecture. 

 

A typical SLA between slice n tenant and the infrastructure provider would state that any assigned resource 
to the tenant should not exceed a range [𝜶𝒏, 𝜷𝒏] with a probability higher than an agreed threshold 𝜸𝒏. 
This translates into learning the AE local resource prediction model under empirical cumulative density 
function (ECDF) and complementary ECDF (ECCDF) constraints that reflect the upper and lower bounds 
violation rates. The operator and slice tenant may also agree that, e.g., the Q-th percentile of a specific 
resource, i.e., the value below which Q% of the samples of this resource are distributed, must be lower than 
𝜋𝑛, to ensure isolation. In both SLAs, the FL local task must capture the challenging long-term statistical 
behaviour of the target KPIs, especially that the learning is performed over offline datasets, which makes the 
constraints also data-dependent. Therefore, we call this novel AI scheme Statistical Federated Learning (StFL). 

Unfortunately, the ECDF/ECCDF statistical measures are defined as an average sum of indicator functions 
that are non-convex and non-differentiable. On the other hand, the Q-th percentile is also non-smooth. 
Instead of optimizing the local FL problem with respect to their convexified surrogates only as mostly done 
in the literature (using e.g., the convex-concave procedure), we jointly consider both the original and 
surrogates by formulating the local FL problem via the so-called proxy Lagrangian framework [15], where we 
jointly optimize over two Lagrangians. The first, ℒ1, is containing the loss function (between the predicted 
KPI and the observation) and a smooth approximation of the statistical measures called proxy constraints. 
Specifically, the ECDF/ECCDF constraints might see their indicator functions replaced with smooth Logistic 
functions, and the Q-th percentile approximated by the so-called smoothed empirical percentile. The second 
Lagrangian, ℒ2, is composed of the original non-smooth SLA constraints. While optimizing the first Lagrangian 
with respect to the FL model weights requires differentiating the smooth functions, to differentiate the 
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second Lagrangian with respect to Lagrange multipliers, we only need to evaluate the original ECDF/ECCDF 
or the Q -th percentile function. Finally, the joint optimization of the two Lagrangians turns out to be a non-
zero-sum two-player game wherein the first player wishes to minimize  ℒ1 and the second player aims at 
maximizing ℒ2. This process ends up reaching a nearly-optimal nearly-feasible solution to the original 
constrained problem. The obtained model weights are then sent back to the end-to-end AE to perform 
averaging and broadcast the obtained model to all the AEs to start a new round of training until reaching 
convergence. 

To exemplify the StFL performance, we provide numerical results of the ECDF/CCCDF SLA case. In this regard, 
the considered local K=200 MSs datasets are non-independent identically distributed (NIID). These datasets 
of size Dk,n = 1000 are randomly sampled from encoded measurement data corresponding to a live LTE-
advanced network of size D = 21417  samples. It includes, as input features, the hourly traffics of the main 
over-the-top (OTT) applications, channel quality indicator (CQI) and MIMO full-rank usage, while the 
considered supervised output KPIs are the downlink physical resource blocks (PRBs) and the CPU load. Once 
the slices are defined, the traffic of the underlying OTTs is summed to yield the traffic per slice. To exemplify 
the general framework of StFL, three main slices are considered: 

• eMBB: involves NetFlix, Youtube and Facebook Video, 

• Social Media: includes Facebook, Facebook Messages, Whatsapp and Instagram, 

• Browsing: encompasses Apple, HTTP and QUIC, 

The proposed StFL enables to control the long-term statistical behaviour of the SLA compared to FedAvg 
baseline. Indeed, as depicted in Figure 9, the FedAvg empirical CPU usage CDF of, e.g., eMBB and Social Media 
slices are breaching the bounds with high probabilities of about 25% and 15%, respectively. This stems from 
the fact that the baseline FL model cannot learn statistical properties over an observation interval and 
operate only at the sample level. However, in the StFL case, the CPU loads achieve a trade -off between 
dynamic allocation and long-term statistical SLA. In this case, the eMBB and Social Media CPU loads are 
confined in the imposed bounds with a high probability of 99%. 

 

 

Figure 9. CPU CDF with 𝛼 = [0,0,0], 𝛽 = [4,7,10] % and 𝛾 = [0.01,0.01,0.01]. 
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Figure 10. Convergence of the StFL vs the Constrained Centralized Learning (CCL) for SLA 𝛼 = [0,0,0], 𝛽 =
[15, 10,10] % and 𝛾 = [0.01,0.01,0.01] 

 

 

On the other hand, based on the overhead analysis and datasets ’ sizes coded in 32 bits, the energy 
consumption is calculated by considering both the local computation energy at each CU [16] as well as the 
transmission energy over fiber optic transport links [17]. In this respect, Table 1 shows the overhead and 
energy consumption induced by both baselines fully centralized SLA-constrained deep learning (CCL) [18] and 
StFL where the samples have been coded in 32 bits. This means that a communication round in the federated 
setup is equivalent to 100 epochs over a batch in the centralized one. Starting from the convergence point of 
StFL, i.e., round 50 shown in Figure 10, more than 10 times overhead and energy consumption reductions are 
obtained at the expense of the short communication delay. Therefore, StFL turns out to be a more efficient 
scheme, especially when the transmission latency is comparable to the CCL processing delay, while also 
enabling to dramatically reduce CPU SLA violation rate compared to the FedAvg unconstrained algorithm  [19] 
as showcased by Figure 9. 
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Table 1. Overhead and energy comparison 

 

 

 

4.2.2 STOCHASTIC FL-BASED POLICY FOR SCALABLE AE 

 

To further reduce further the network data overhead, optimize the FL computation time and improve the 
underlying energy efficiency of the system, we can select only a subset of active AEs in each FL round. In this 
regard, we propose an SLA-driven stochastic AE selection policy. Upon the completion of the training at round 

t, each AE (k,n) evaluates the generalization of its FL model using a typical test dataset 𝒟ñ of size 𝐷�̃�, which 
is common to all monitoring systems of slice n and calculates the so-called SLA violation rate as, 

νk,n =
1

Dñ

∑ 1 [(yk,n
(i)̂

< αn) ⋃ (𝑦𝑘,𝑛
(𝑖)̂

> 𝛽𝑛) ]

Dñ

i=1

. 

 

 

Figure 11. Proposed policy for AE selection 

 

Next, at each FL round, all of the AEs send their SLA violation rates to the server which generates a probability 
distribution using the softmin function as, 

πk,n =
exp{ − νk,n}

∑ exp{ − νp,n}K
p=1

, 
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wherein AEs with low SLA violation are given a high probability of FL participation to dr ive the model 
convergence, but also AEs with high SLA violation may take part in the FL training with a low probability to 
guarantee the generalization that could stem from their datasets. Based on the probability distribution, only 
a subset of m<K AEs is drawn at each FL. Thus, the AEs would have stochastically participated in the FL task 
while avoiding the concurrent training at each round. And the model averaging at round t is performed as, 

 

Wn
(t+1)

= ∑
Dk,n

Dn
Wk,n

(t)

k∈{k1,…,km}

. 

 

Where Dn is the sum of datasets sizes over all the AEs of slice n. This proposed procedure is summarized in 
Algorithm 1. 
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4.3 DE energy-aware technique 

 

Consider a C-RAN architecture presented in Figure 12. It is composed of N single-antenna small-cells (n=1, 
…,N) connected to a virtual baseband unit (i.e., CUs) pool that runs as a set of VNFs. A total number of J VNFs 
(j = 1, …, J) can be deployed on top of the C-RAN datacenter endowed with I active central processing units 
(CPUs), where each processor i (I = 1, …, I) has a computing capability of P i million operations per time slot 
(MOPTS). At each time step t, M UEs (m = 1, …, M) can connect to the N small-cells according to the maximum 
received power criteria. Each UE m requests a slice and starts its activity, wherein the packet arrival to the 

CU VNF follows a Poisson distribution with mean rate  λm
(t)

. In this case, let Ω = ∑ λm
(t)𝑀

m=1 . The mean arrival 
data rate of all UEs to the CU VNFs is Ω/𝑗, where j is the number of active VNFs. 

 

 

 

 

 

Figure 12. Distributed and hierarchical C-RAN architecture 
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NETWORK COSTS 

We define overall network cost as all costs incurred at each time step t as follows: 

𝒩𝑇
(𝓉)

=
ω1

∗KNet
(t)

+ ω2
∗ ℒ𝒩ℯ𝓉

(𝑡)
+ ω3

∗ ℰ𝒩ℯ𝓉
(𝑡)

M
, 

where 𝐾𝑁𝑒𝑡
(𝑡)

 denotes the computational cost, ℒ𝒩ℯ𝓉
(t)

 is the latency and ℰ𝒩ℯ𝓉
(t)

 represents the energy 
consumption. The weights 𝜔1

∗, 𝜔2
∗  and 𝜔3

∗  are fixed weights and are determined based on the network 
preferences.  

 

Computation cost (𝐾𝑁𝑒𝑡
(𝑡)

): The baseband processing procedure at a VNF consists of coding, Fast Fourier 
Transform (FFT) and modulation. Following the approach in [20], the corresponding computing resource is 
given by: 

KNet
(t)

= ∑ [θ log2(1 + δm)]

M

m=1

+ MK0, 

 

where 𝜃 is an experimental parameter, 𝛿𝑚 denotes the signal-to-interference-plus-noise ratio (SINR) of UE m 
and 𝐾0 includes computing resources for the FFT function that imposes a constant base processing load on 
the system.  

 

Latency (ℒ𝒩ℯ𝓉
(t)

): We assume that VNFs have a FIFO queue. Let μ∗ denote the mean service rate and 𝑟𝑚 =

𝐵𝑚 log(1 + 𝛿𝑚) the wireless transmission rate, where 𝐵𝑚 represents the wireless transmission bandwidth for 
the m-th user. In this respect, we further suppose that cloud processing and wireless transmission queues 

follow an exponential distribution with a mean 
1

μ∗  and  
1

𝑟𝑚
, respectively. According to queuing theory, the 

mean processing delay at time step t is ℒ𝓅𝓇ℴ𝒸
(t)

=
j

jμ∗−Ω
 and transmission latency in wireless transmission queue 

is ℒ𝓉𝓇𝒶𝓃𝓈
(t)

=
1

rm−λm
(t) . Hence, the latency in the system is given by: 

 

ℒ𝒩ℯ𝓉
(t)

= jℒ𝒹
(t)

+ ∑ [
j

jμ∗ − Ω
+

1

rm − λm
(t)

]

M

m=1

, 

 

where ℒ𝒹
(𝑡)

 denotes latency for creating, booting up and loading new VNFs and j denotes the total number of 

active VNFs to be deployed. We suppose  ℒ𝒩ℯ𝓉
(𝑡)

< η𝑚
(𝑡)

 where η𝑚
(𝑡)

 is a predefined maximum network delay for 
UEs which can be viewed as  quality of service (QoS) requirement. 
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Energy (ℰ𝒩ℯ𝓉
(𝑡)

): The energy consumption incurred by the VNF instantiation, running processors and the 

wireless transmission power where ℰ𝓋
(𝑡)

= ψ𝑗 refers to energy consumption associated with the deployment 

of the 𝑗𝑡ℎ VNF instance where ψ𝑗 is a constant value. The energy consumed by the i-th processor (in Watts) 

is ℰ𝓅
(𝑡)

= σ∗𝑃𝑖
3, where 𝜎∗ is a parameter determined by the processor structure. The wireless transmission 

power for UE m is given by ℰ𝓌
(𝑡)

=
1

ρ
||𝑊𝑚||

2

2
, where 𝑊𝑚 is the precoding vector from all cells to UE m, and 

𝜌 denotes the efficiency of the power amplifier at the cells. Finally, we have that the energy consumption is 
expressed as: 

 

ℰ𝒩ℯ𝓉
(𝑡)

= ∑ σ∗𝑃𝑖
3

𝐼

𝑖=1

+ ∑ ψ𝑗

𝐽

𝑗=1

+ ∑
1

ρ
||𝑊𝑚||

2

2
.

𝑀

𝑚=1

 

 

DRL-based resource allocation  

The optimal resource allocation problem is formulated as a Markov Decision Process (MDP). The aim of the 
CU is to improve the average DRL (Deep Reinforcement Learning) return. Towards this end, continuous state 
and action spaces are defined, as well as the reward function. The MDP for a single agent is defined by a 5-
tuple (𝑆, 𝐴, 𝑃, γ, 𝑅), consisting of a set of states 𝑆 (state space), a set of actions 𝐴 (action space) and 𝑃 denotes 
the state transition probability for state 𝑠 and action a. In this problem, both state space and action space 
are continuous and OpenAI Gym has been considered for the comparison of different DRL algorithms.  

 

State space.  We use Box spaces as multidimensional continuous spaces with bounds. The state at time step 
t consists of: 

• Number of new UEs which connect to the network and request services for each slice (𝑋(𝑡)) 

• Computing resources allocated to each VNF (𝐶(𝑡)) 

• Delay status with respect to latency cost for each slice (ℒ (𝑡)) 

• Energy status with respect to energy cost for each slice (ℰ(𝑡)) 

• Number of users being served in each slice (𝑚(𝑡)) 

• Number of VNF instantiations in each slice (𝑉(𝑡)) 

   

The network state space is given by 𝑆(𝑡) = {𝑋(𝑡), 𝐶(𝑡), ℒ(𝑡), ℰ(𝑡), 𝑚(𝑡), 𝑉(𝑡)}.  

 

Action space. A vertical scaling action space is considered. This vertical scaling can be classified into scale up 
and scale down which , respectively. The CU selects continuous value action with respect to traffic fluctuation 
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and learn to decide to increase/decrease computing resources allocated to each VNF.  Let us denote the 

vertical scaling of CPU resources as ζ𝐶𝑃𝑈
(𝑡)

. The change of CPU resources at time slot t is given by:  

 

ζ𝐶𝑃𝑈
(𝑡)

 ∈ { 𝑧  |   𝑧 ∈ ℝ, −𝐾𝑁𝑒𝑡
(𝑡)

≤ 𝑧 ≤ 𝐾𝐼
(𝑡)

− 𝐾𝑁𝑒𝑡
(𝑡)

} 

    

It is worth noting that vertical scaling is limited by the free computational resources available in the physical 
server hosting the virtual machine.  

 

Reward. The aim is to minimize the total network cost to let the DRL algorithm to increase the expected 
return. Having this aim in mind, the return is defined as follows:  

𝑅(𝑡) =
1

𝒩𝑇
(𝑡)

 

 

TWIN DELAYED DDPG algorithm  

 

The Twin Delayed DDPG (TD3) algorithm is the following:  
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Herein, we omit the details of the TD3 algorithm. Interested readers are referred to [21]. TD3 is based on the 
actor-critic paradigm. Next, we present some remarks of the proposed technique: 

1) It considers clipped double Q-learning with pair of critic networks. We use two DNNs as two actor 
networks and denote them by ϕ for the actor network and 𝜙′ for the actor target. Two learnings 
happen simultaneously, namely, Q-learning and Policy learning, and they address approximation 
error, reduce the bias, and find the highest Q-value. 

2) Delayed policy updates and target networks. The main idea is to update the policy network less 
frequently than the value network since we need to estimate the value with lower variance. 

3) Policy smoothing and noise regularisation. When updating the critic, a learning target using a 
deterministic policy is highly susceptible to inaccuracies induced by function approximation error, 
increasing the variance of the target. This induced variance can be reduced through regularization to 
be sure for the exploration of all possible continuous parameters. We add Gaussian noise to the next 
action 𝑎′ to prevent two large actions played and disturb the state of the environment: 
 

�̃� ⟵ πϕ′(𝑠′) + ϵ,    ϵ ∼ 𝑐𝑙𝑖𝑝(𝒩(0, σ̃), −𝑐, 𝑐) 

 
SIMULATION RESULTS 
 
The implementation is written in Pytorch. We measure the performance on a customized Network 
slicing environment, interfaced through OpenAI Gym. In this environment, the mobile network 
operator (MNO) collects the free and unused resources from the tenants and when slices need more 
resources can receive new resources. It is done either periodically to avoid over-heading or based on 
requests of tenants. We consider a two-tenants scenario, i.e., two slices with different QoS 
requirements in terms of latency and CPU constraints. For each time step, the user’s packets arrive 
at the network and the algorithm computes the computing requirements to allocate to the relevant 
VNF. We compare the performance of TD3 method against a fine-tuned version of the DDPG (Deep 
Deterministic Policy Gradient) [21] and TD3 as well as Soft Actor-Critic (SAC) [22] to keep all 
algorithms consistent.  
 
As shown in Figure 15, the learning curve of TD3 outperforms the different baselines when reaching 
the convergence. Although the problem formulation is general, we take the constraints into 
consideration as penalties to lead the agent to the good results and this is the reason of negative 
values in the learning curves. 
 

 

Figure 13. Learning curves of the gym NS environment for the different DRL methods.  
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Figure 16 presents the network performance and cost comparison between the proposed TD3 algorithm and 

other DRL baselines (SAC, DDPG). QoS requirement of slice 1 (η𝑚
(𝑡)

= 20 𝑚𝑠), QoS requirement of slice 2 

(η𝑚
(𝑡)

= 40 𝑚𝑠) 
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Figure 14. Network performance and costs. Comparison of DRL techniques (TD3, SAC, DDPG). 

 

Latency: Our solution leads to less average delay per user compared to DDPG and SAC.  

Delay QoS violation: The comparison between Delay QoS metric of TD3 and other DRL schemes. 

Energy consumption: The performance of our scheme and other methods where the agent learns to satisfy 
another objective and minimize power consumption by decreasing VNFs instantiation and tuning wireless 
transmission power. 

CPU utilization: TD3 deployment leads to more efficient usage of CPU compared to other methods. 
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5 Conclusions 

 
This deliverable presents the final energy efficiency techniques that are proposed in MonB5G within the 
framework of Task 5.3. It starts with introducing the main energy management and orchestration 
architectural building blocks. Then, it presents the main energy-efficient algorithmic innovations. The first 
method which is shown herein is SCHE2MA. It enables a decentralized cross-domain energy efficiency. It 
operates with multiple agents, eliminating a centralized point of failure and is based on the auction 
mechanism. The performance of SCHE2MA outperforms the two baselines, namely, classical centralized RL 
and static placement. 
The second solution in this deliverable is a novel statistical federate learning (StFL)-based analytic engine for 
slice-level KPI prediction, under strict SLA constraints. This scheme yields more than x10 energy efficiency 
gain compared to its centralized SLA-constrained deep learning counterpart while achieving x20 lower SLA 
violation with respect to FedAvg, which allows high scalability and sustainability for analysing a massive 
number of concurrent slices. As presented in Section 4.2.2, the communications overhead and the energy 
efficiency of this technique can be further improved by selecting the subset of AEs for the FL round based on 
their violation rate. Having this aim in mind, a stochastic FL-based policy is presented for scalable DE.  
 
Finally, an advanced continuous DRL algorithm, called twin delayed deep deterministic policy gradient (TD3) 
is introduced in Section 4.3. It deals with a multi-objective optimization problem to make the CU learn how 
to re-configure the computing resources autonomously in C-RAN while minimizing latency, energy 
consumption, and VNF instantiation of each slice. A B5G network slicing environment is built using OpenAI 
Gym. The network performance and costs between TD3 is compared with other DRL benchmarks. As it is 
depicted, the proposed solution outperforms other DRL methods.  
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